

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

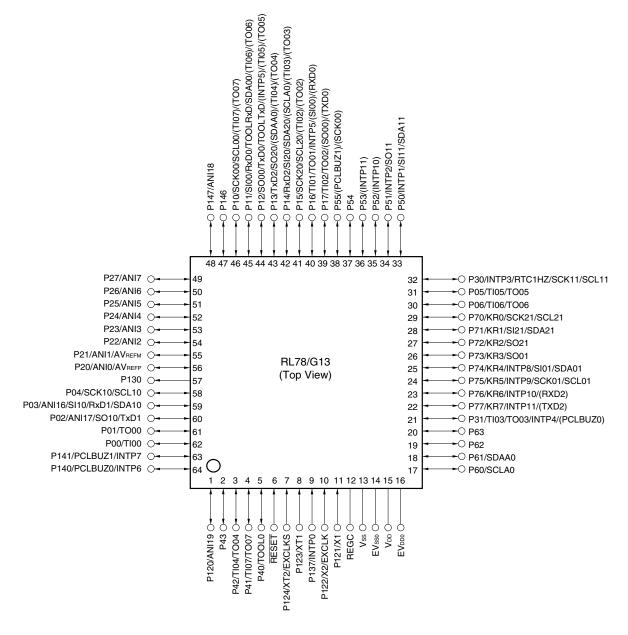
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100ljgfb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of Ordering Part Numbers
------------	-------------------------------

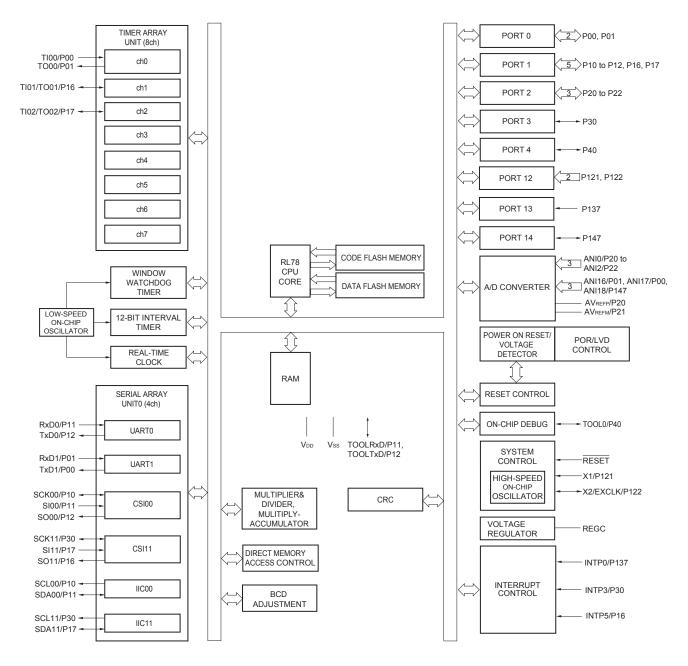
Pin count	Package	Data flash	Fields of Application ^{Note}	Ordering Part Number
64 pins	64-pin plastic LQFP	Mounted	А	R5F100LCAFA#V0, R5F100LDAFA#V0,
	(12 × 12 mm, 0.65			R5F100LEAFA#V0, R5F100LFAFA#V0,
	mm pitch)			R5F100LGAFA#V0, R5F100LHAFA#V0,
	. ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0
				R5F100LCAFA#X0, R5F100LDAFA#X0,
				R5F100LEAFA#X0, R5F100LFAFA#X0,
			D	R5F100LGAFA#X0, R5F100LHAFA#X0,
				R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0
				R5F100LCDFA#V0, R5F100LDDFA#V0,
				R5F100LEDFA#V0, R5F100LFDFA#V0,
				R5F100LGDFA#V0, R5F100LHDFA#V0,
				R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0
			G	R5F100LCDFA#X0, R5F100LDDFA#X0,
				R5F100LEDFA#X0, R5F100LFDFA#X0,
				R5F100LGDFA#X0, R5F100LHDFA#X0,
				R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0
				R5F100LCGFA#V0, R5F100LDGFA#V0,
				R5F100LEGFA#V0, R5F100LFGFA#V0
				R5F100LCGFA#X0, R5F100LDGFA#X0,
				R5F100LEGFA#X0, R5F100LFGFA#X0
				R5F100LGGFA#V0, R5F100LHGFA#V0,
				R5F100LJGFA#V0
				R5F100LGGFA#X0, R5F100LHGFA#X0,
				R5F100LJGFA#X0
		Not	А	R5F101LCAFA#V0, R5F101LDAFA#V0,
		mounted		R5F101LEAFA#V0, R5F101LFAFA#V0,
				R5F101LGAFA#V0, R5F101LHAFA#V0,
				R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0
				R5F101LCAFA#X0, R5F101LDAFA#X0,
				R5F101LEAFA#X0, R5F101LFAFA#X0,
			D	R5F101LGAFA#X0, R5F101LHAFA#X0,
				R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0
				R5F101LCDFA#V0, R5F101LDDFA#V0,
				R5F101LEDFA#V0, R5F101LFDFA#V0,
				R5F101LGDFA#V0, R5F101LHDFA#V0,
				R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0
				R5F101LEDFA#X0, R5F101LFDFA#X0,
				R5F101LGDFA#X0, R5F101LHDFA#X0,
				R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.11 64-pin products

- 64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)


Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the V_{SS} and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5 Block Diagram

1.5.1 20-pin products

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-p	oin	24-	pin	25	-pin	30-	pin	32-	pin	(1/2 36-	pin
		, ד	Ъ	Я	דג	д	גר	Ъ	דג	Ъ	ភ្ល	Ъ	
		5F1	5F1	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F1(
	R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx	
Code flash me	16 to	64	16 t	o 64	161	o 64	16 to	128		128	16 to	128	
Data flash me	emory (KB)	4	_	4	_	4	_	4 to 8	_	4 to 8	_	4 to 8	_
RAM (KB)	2 to 4	Note1	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to ⁻	12 ^{Note1}	2 to 1	2 ^{Note1}	2 to ⁻	2 ^{Note1}	
Address spac	1 MB												
Main system clock	High-speed system clock	X1 (crys HS (High HS (High LS (Low LV (Low	n-speed n-speed -speed	l main) m l main) m main) m	node: 1 t node: 1 t ode: 1 to	o 20 MH o 16 MH o 8 MHz	Iz (V _{DD} = Iz (V _{DD} = (V _{DD} = 1.	2.7 to 5. 2.4 to 5. 8 to 5.5	.5 V), .5 V), V),	EXCLK)			
	High-speed on-chip oscillator	HS (High HS (High LS (Low- LV (Low-	n-speed -speed	l main) m main) m	node: 1 f ode: 1 f	to 16 MH to 8 MHz	Iz (Vdd = 2 (Vdd = 1	2.4 to 5 1.8 to 5.5	.5 V), 5 V),				
Subsystem cl	ock												
Low-speed or	n-chip oscillator	15 kHz (TYP.)										
General-purp	(8-bit register × 8) × 4 banks												
Minimum instruction execution time		0.03125 μ s (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)											
	0.05 μs ((High-sp	beed sys	tem cloo	ck: fмx =	20 MHz	operatio	n)					
Instruction set	·	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 											
I/O port	Total	16	;	2	0	2	21	2	6	2	8	3	2
	CMOS I/O	13 (N-ch O [V₀₀ with voltage	.D. I/O nstand	(N-ch C	thstand	(N-ch ([V _{DD} w	5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V⊳⊳ wi voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi [*] voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi voltag	D.D. I/C
	CMOS input	3		:	3		3	:	3	3	3	3	3
	CMOS output	-		-	-		1	-	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	-		2	2		2	2	2	3	3	3	3
Timer	16-bit timer						8 cha	nnels					
	Watchdog timer						1 cha	nnel					
	Real-time clock (RTC)						1 chan	nel Note 2					
	12-bit interval timer (IT)						1 cha	nnel					
	Timer output	3 channels (PWM outputs: 4 channels (PWM outputs: 3 ^{Note 3})					4 channels (PWM outputs: 3 ^{Note 3}), 8 channels (PWM outputs: 7 ^{Note 3})						
	RTC output			•				-					
Notes 1.	The flash library us The target products R5F100xD, R5F R5F100xE, R5F For the RAM areas for RL78 Family (I Only the constant	s and sta 101xD (: 101xE () used by R20UT29	$\begin{array}{l} \text{rt addr} \\ x = 6 \ \text{to} \\ x = 6 \ \text{to} \\ \text{the flat} \\ \textbf{944}. \end{array}$	ress of t o 8, A to o 8, A to ash libra	he RAN o C): S o C): S ury, see	A areas Start add Start add Start add Self R	used by dress Ff dress Ff AM list	y the fla F300H EF00H of Flas	sh libra h Self-	ry are s Progra i	hown b mming	Library	

^{2.} Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fiL) is selected

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F100xxAxx, R5F101xxAxx

- D: Industrial applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxDxx, R5F101xxDxx
- G: Industrial applications when $T_A = -40$ to $+105^{\circ}$ C products is used in the range of $T_A = -40$ to $+85^{\circ}$ C

R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

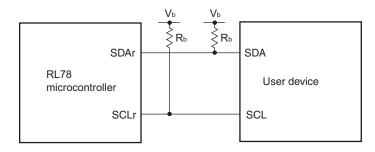
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions	1	1	MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	IDD1	Operating	HS (high-	f⊪ = 32 MHz ^{№te 3}	Basic	VDD = 5.0 V		2.1		mA
current		mode	speed main) mode ^{Note 5}		operation	$V_{DD} = 3.0 V$		2.1		mA
			mode		Normal	VDD = 5.0 V		4.6	7.0	mA
				operation	$V_{DD} = 3.0 V$		4.6	7.0	mA	
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA
			operation	$V_{DD} = 3.0 V$		3.7	5.5	mA		
				Normal	VDD = 5.0 V		2.7	4.0	mA	
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low- speed main) mode ^{Note 5}	fін = 8 MHz ^{Note 3}	Normal	VDD = 3.0 V		1.2	1.8	mA
					operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
		voltage main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.7	mA	
		HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA	
		speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operation	Resonator connection		3.2	4.8	mA	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.6	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		3.2	4.8	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA	
			$V_{DD} = 5.0 V$	operation	Resonator connection		1.9	2.7	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.9	2.7	mA
		LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.1	1.7	mA	
			speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$	operation	Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				^{Note 4} T _A = +25°C	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4	operation	Resonator		4.3	5.6	μΑ
			T _A = +50°C		connection					
			fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA	
			Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		4.4	6.4	μA	
				fsuв = 32.768 kHz	Normal	Square wave input	<u> </u>	4.6	7.7	μA
			Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μA	

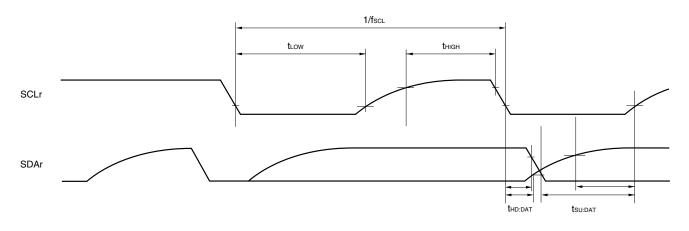
(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		``	r-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:V} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
			1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $	1/f _{MCK} + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:VDD} \begin{split} & 1.8 \ V \leq EV_{\rm DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\rm b} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\rm b} = 100 \ pF, \ R_{\rm b} = 5.5 \ k\Omega \end{split}$	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)


Notes 1. The value must also be equal to or less than f_MCK/4.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage								
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR							
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM							
ANI0 to ANI14	Refer to 2.6.1 (1) .	Refer to 2.6.1 (3).	Refer to 2.6.1 (4) .							
ANI16 to ANI26	Refer to 2.6.1 (2) .									
Internal reference voltage	Refer to 2.6.1 (1) .		_							
Temperature sensor output										
voltage										

(1) When reference voltage (+)= AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(T_A = -40 to +85°C, 1.6 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
		$AV_{REFP} = V_{DD}{}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2 to	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI14	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μS
		10-bit resolution Target pin: Internal	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.5	LSB
		$AV_{REFP} = V_{DD}{}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±1.5	LSB
		$AV_{REFP} = V_{DD}{}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS	eference voltage /□□ ≤ 5.5 V, HS (high-speed main) mode)				V
		Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS	VTMPS25 ^{Note 5}			V	

(Notes are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{BGR}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}^{\text{Note 4}}, \text{HS (high-speed main) mode}$

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

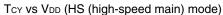
Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

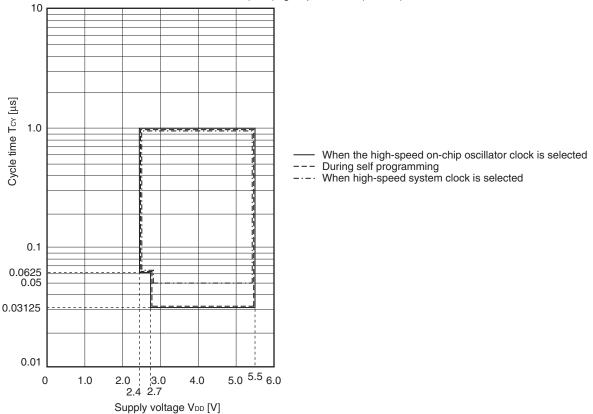
- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

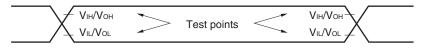
Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

3.3.2 Supply current characteristics

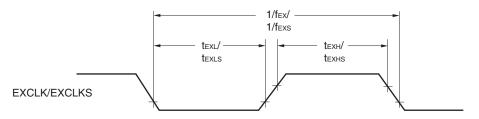

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{IH}=32~MHz^{Note~3}$	Basic	$V_{DD} = 5.0 V$		2.1		mA
Current Note 1		mode	speed main) mode ^{Note 5}		operatio n	Vdd = 3.0 V		2.1		mA
					Normal	$V_{DD} = 5.0 V$		4.6	7.5	mA
					operatio n	$V_{DD} = 3.0 V$		4.6	7.5	mA
				fin = 24 MHz ^{Note 3} Norm	Normal	$V_{DD} = 5.0 V$		3.7	5.8	mA
					operatio n	$V_{DD} = 3.0 V$		3.7	5.8	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		2.7	4.2	mA
				operatio n	V _{DD} = 3.0 V		2.7	4.2	mA	
		HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.9	mA	
		speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operatio n	Resonator connection		3.2	5.0	mA	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.9	mA
			$V_{DD} = 3.0 V$	operatio n	Resonator connection		3.2	5.0	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.9	mA	
		$V_{DD} = 5.0 V$	operatio n	Resonator connection		1.9	2.9	mA		
			Subsystem clock operation	$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal operatio n	Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.9	2.9	mA
				fsuв = 32.768 kHz	4 operatio	Square wave input		4.1	4.9	μA
				Note 4 $T_A = -40^{\circ}C$		Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				Note 4 $T_A = +25^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4 $T_A = +50^{\circ}C$	operatio n	Resonator connection		4.3	5.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
				Note 4	operatio n	Resonator connection		4.4	6.4	μA
				$T_A = +70^{\circ}C$	Newsel			4.0	~ ~	
			fsub = 32.768 kHz Note 4	Normal operation	Square wave input		4.6	7.7	μA	
		T _A = +85°C	sportuoli	Resonator connection		4.7	7.8	μA		
			fsuв = 32.768 kHz	Normal	Square wave input		6.9	19.7	μA	
				_{Note 4} T _A = +105°C	operation	Resonator connection		7.0	19.8	μA


(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = -40 to $+105^{\circ}$ C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 5.5$ V, Vss = EVss₀ = 0 V) (1/2)

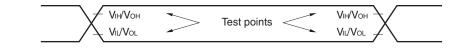
(Notes and Remarks are listed on the next page.)



Minimum Instruction Execution Time during Main System Clock Operation



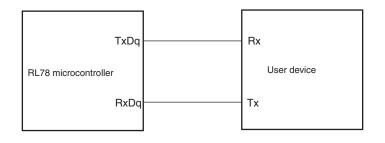
AC Timing Test Points


External System Clock Timing

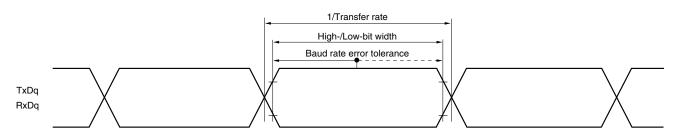
3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit


(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
Transfer rate Note 1				fмск/12 ^{Note 2}	bps
		Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMCk = fcLk		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 1.3 Mbps
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	Unit	
					MAX.	
SCKp cycle time	tkCY1	$t_{\text{KCY1}} \geq 4/f_{\text{CLK}}$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		ns
			$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкнı, tкlı	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 24		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tĸcy1/2 – 36		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıkı	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		66		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		66		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		113		ns
SIp hold time (from SCKp \uparrow) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4			50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Parameter	Symbol		Condit	ions	HS (high-spee	ed main) Mode	Unit	
					MIN.	MAX.		
Transfer rate		rate	fer rate Transmission 4.0	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$	$0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$		Note 1	bps
			V, $2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate		2.6 Note 2	Mbps	
				$\begin{array}{l} C_{b}=50 \; pF, \; R_{b}=1.4 \; k\Omega, \; V_{b}=2.7 \\ V \end{array} \label{eq:cb}$				
			$2.7 \ V \leq EV_{\text{DD0}} < 4.0$			Note 3	bps	
			V, $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3$		1.2 Note 4	Mbps	
			2.4 V ≤ EV _{DD0} < 3.3	V		Note 5	bps	
			V, $1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6$ V		0.43 Note 6	Mbps	

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV _DD0 \leq 5.5 V and 2.7 V \leq V _b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \\ V, \end{array}$	24 MHz < fмск	28/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	24/f мск		ns
		$2.7 V \le V_b \le 4.0 V$	$8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$2.7~V \leq EV_{DD0} < 4.0$	24 MHz < fмск	40/f мск		ns
		V,	$20 \text{ MHz} < f_{\text{MCK}} \le 24 \text{ MHz}$	32/f мск		ns
		$2.3V{\leq}V_b{\leq}2.7V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/fмск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$2.4~V \leq EV_{\text{DD0}} < 3.3$	24 MHz < fмск	96/f мск		ns
		V,	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	72/f мск		ns
		$1.6 V {\le} V_b {\le} 2.0 V$	$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	64/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	52/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	32/f мск		ns
			fмск \leq 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tкL2			tkcy2/2 - 24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4. \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		tkcy2/2 - 36		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{\text{DD0}} < 3. \\ 1.6 \; V \leq V_{\text{b}} \leq 2.0 \; V \end{array}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note2}	tsik2	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5. \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		1/fмск + 40		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		1/fмск + 40		ns
		$\label{eq:linear} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3. \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№te 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\label{eq:linear} \begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5. \\ C_{\text{b}} = 30 \; pF, \; R_{\text{b}} = 1 \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, .4 k\Omega		2/fмск + 240	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4. \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 2 \end{array}$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ		2/fмск + 428	ns
			3 V, 1.6 V \leq Vb \leq 2.0 V		2/fмск + 1146	ns

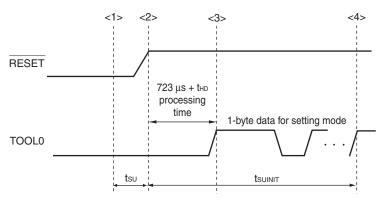
(Notes, Caution and Remarks are listed on the next page.)

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$ Reference voltage (+) = AV_{\text{REFP}}, Reference voltage (-) = AV_{\text{REFM}} = 0 \text{ V})

Parameter	Symbol	Conditior	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	$\begin{array}{l} 10\text{-bit resolution} \\ EV_{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin : ANI16 to ANI26	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	$\begin{array}{l} \mbox{10-bit resolution} \\ \mbox{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	$\begin{array}{l} \text{10-bit resolution} \\ \text{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \end{array} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution $EVDD0 \leq AV_{REFP} = V_{DD}^{Notes 3, 4}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±3.5	LSB
Differential linearity error	DLE	$\begin{array}{l} 10\text{-bit resolution} \\ EV \text{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI26		0		AVREFP and EVDD0	V

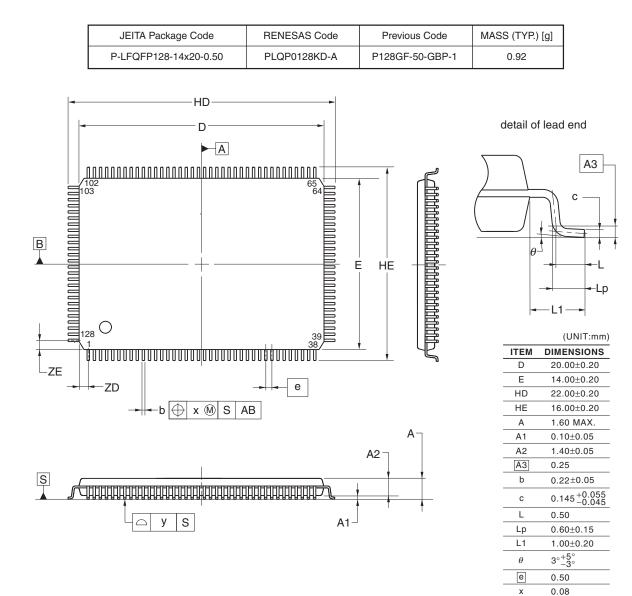
Notes 1. Excludes quantization error ($\pm 1/2$ LSB).


- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows.
- 4. When AVREFP < EVDDD S VDD, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$



- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

©2012 Renesas Electronics Corporation. All rights reserved.

х

y ZD

ZE

0.08

0.75

0.75

Rev. Date			Description	
		Page Summary		
3.00 Aug 02, 2013	163	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)		
		164, 165	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		166	Modification of table in 3.5.2 Serial interface IICA	
		166	Modification of IICA serial transfer timing	
		167	Addition of table in 3.6.1 A/D converter characteristics	
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)	
		169	Modification of description in 3.6.1 (2)	
		170	Modification of description and note 3 in 3.6.1 (3)	
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)	
		172	Modification of table and note in 3.6.3 POR circuit characteristics	
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics	
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)	
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
3.10	Nov 15, 2013	123	Caution 4 added.	
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
3.30	Mar 31, 2016		Modification of the position of the index mark in 25-pin plastic WFLGA (3×3 mm, 0.50 mm pitch) of 1.3.3 25-pin products	
			Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24- pin, 25-pin, 30-pin, 32-pin, 36-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44- pin, 48-pin, 52-pin, 64-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100- pin, 128-pin products]	
			ACK corrected to ACK	
			ACK corrected to ACK	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.