

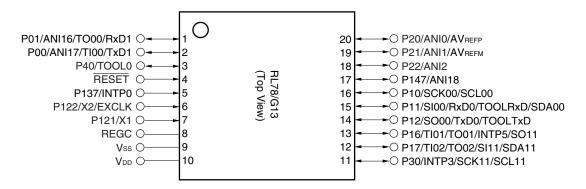
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

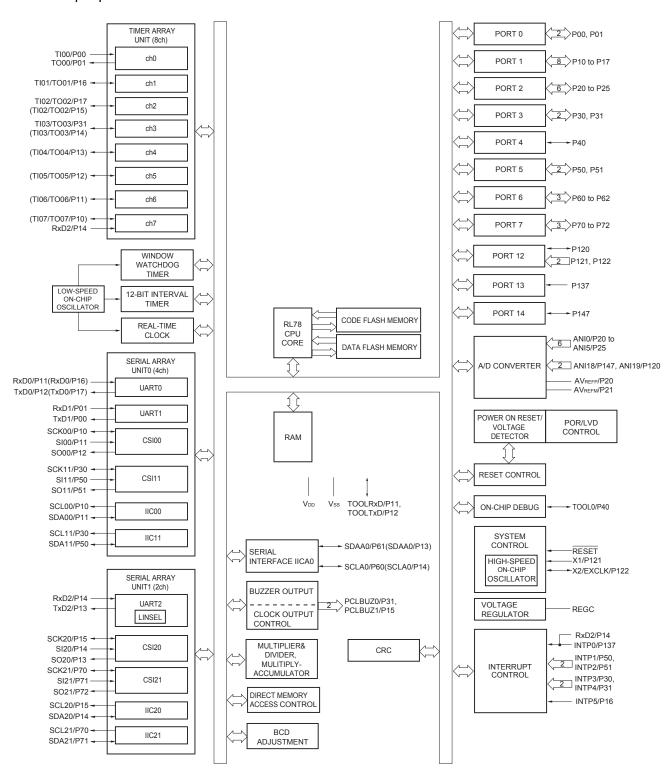
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 17x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100mfdfa-v0


Email: info@E-XFL.COM

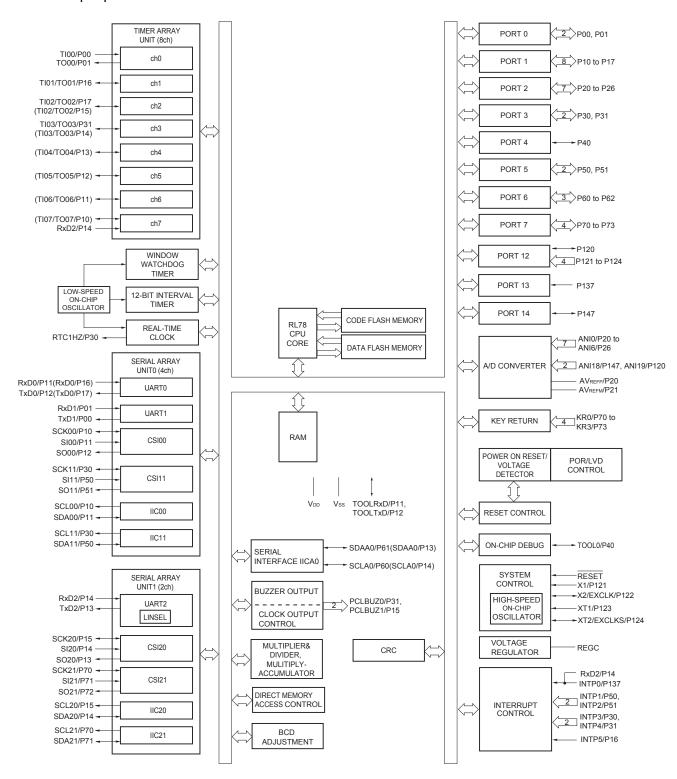
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

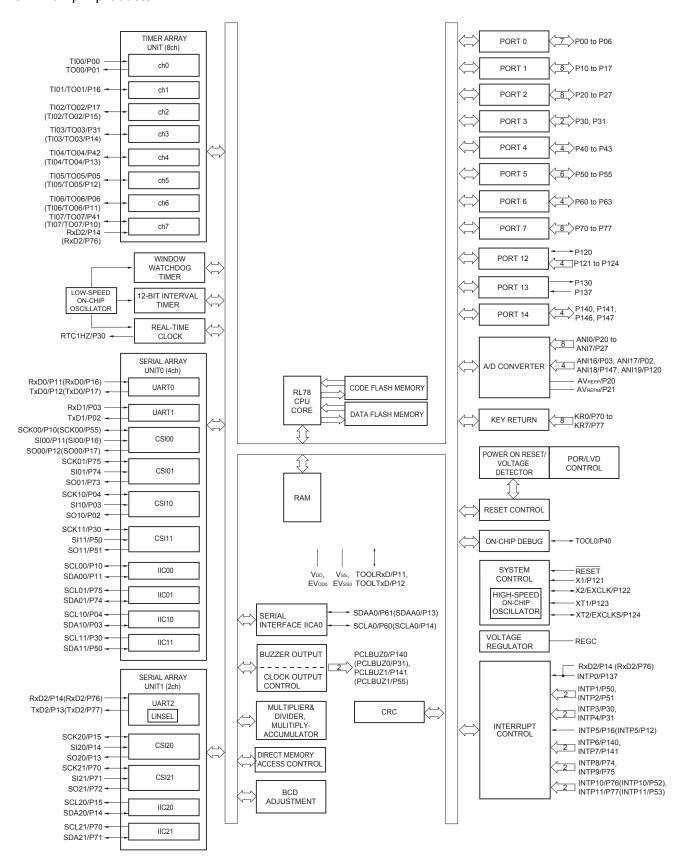
1.3.1 20-pin products


• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remark For pin identification, see 1.4 Pin Identification.

1.5.6 36-pin products


Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.7 40-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.11 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.54	1.63	mA
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.54	1.63	mA
				$f_{IH} = 24 \text{ MHz}^{\text{Note 4}}$	V _{DD} = 5.0 V		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μА
			speed main) mode Note 7		V _{DD} = 2.0 V		260	530	μА
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μА
			voltage main) mode		V _{DD} = 2.0 V		420	640	μА
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.26	0.67	mA
			LS (low-	$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.26	0.67	mA
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μΑ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		145	380	μΑ
			mode	$f_{MX} = 8 MHz^{Note 3},$	Square wave input		95	330	μΑ
				$V_{DD} = 2.0 \text{ V}$	Resonator connection		145	380	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μΑ
			clock	T _A = -40°C	Resonator connection		0.44	0.76	μΑ
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μΑ
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.37	1.17	μΑ
				T _A = +50°C	Resonator connection		0.56	1.36	μΑ
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.53	1.97	μΑ
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.82	3.37	μΑ
				T _A = +85°C	Resonator connection		1.01	3.56	μΑ
	IDD3 Note 6	STOP	T _A = -40°C				0.18	0.50	μΑ
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μА
	T _A = +50°C				0.30	1.10	μА		
			T _A = +70°C				0.46	1.90	μА
			T _A = +85°C				0.75	3.30	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main	HS (high-	$2.7 V \le V_{DD} \le 5.5 V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	1.6 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
		Subsystem of	clock (fsuв)	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	28.5	30.5	31.3	μS
		operation						
		In the self	HS (high-	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
		programming mode	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
			LS (low-speed main) mode	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.125		1	μS
			LV (low- voltage main) mode	1.8 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
External system clock	fex	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} <			1.0		16.0	MHz
		1.8 V ≤ V _{DD} <	< 2.4 V		1.0		8.0	MHz
		1.6 V ≤ V _{DD} <	< 1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7~V \leq V_{DD} \leq 5.5~V$			24			ns
nigh-level width, low-level width		2.4 V ≤ V _{DD} •	< 2.7 V		30			ns
		1.8 V ≤ V _{DD} •	< 2.4 V		60			ns
		1.6 V ≤ V _{DD} «	< 1.8 V		120			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
			1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spec	ed 1.8 V	\leq EV _{DD0} \leq 5.5 V			4	MHz
		main) mode	1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	age 1.6 V	\leq EV _{DD0} \leq 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
				≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee		\leq EV _{DD0} \leq 5.5 V			4	MHz
		main) mode	_	1.6 V ≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode		\leq EV _{DD0} \leq 5.5 V \leq EV _{DD0} $<$ 1.8 V			2	MHz MHz
Interrupt input high-level width,	tinitii	INTP0		$\leq V_{DD} \leq 1.8 \text{ V}$ $\leq V_{DD} \leq 5.5 \text{ V}$	1		۷	
low-level width	tinth, tintl	INTPU		≤ VDD ≤ 5.5 V ≤ EVDD0 ≤ 5.5 V	1			μS
Key interrupt input low-level	tkr	KR0 to KR7	1.8 V	≤ EV _{DD0} ≤ 5.5 V	250			ns
width			1.6 V	≤ EV _{DD0} < 1.8 V	1			μS
RESET low-level width	trsl		•		10			μS

(Note and Remark are listed on the next page.)

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high main)	•	LS (low main)	•	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fс∟к	$2.7~V \leq EV_{DD0} \leq 5.5$ V	125		500		1000		ns
			$2.4~V \leq EV_{DD0} \leq 5.5$ V	250		500		1000		ns
			$1.8~V \le EV_{DD0} \le 5.5$ V	500		500		1000		ns
			$1.7~V \leq EV_{DD0} \leq 5.5$ V	1000		1000		1000		ns
		$1.6~V \le EV_{DD0} \le 5.5$ V	_		1000		1000		ns	
SCKp high-/low-level width	tкн1, tкL1	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү1/2 – 12		tксу1/2 — 50		tксү1/2 — 50		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$		tксу1/2 — 18		tксу1/2 — 50		tксү1/2 — 50		ns
		2.4 V ≤ EVD	₀₀ ≤ 5.5 V	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		1.8 V ≤ EVD	₀₀ ≤ 5.5 V	tксү1/2 — 50		tксу1/2 — 50		tксү1/2 — 50		ns
		1.7 V ≤ EVD	₀₀ ≤ 5.5 V	tксу1/2 — 100		tксу1/2 — 100		tксу1/2 — 100		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		tксу1/2 — 100		tксу1/2 — 100		ns
SIp setup time	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	44		110		110		ns
(to SCKp↑)		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	44		110		110		ns
		2.4 V ≤ EV _{DI}	00 ≤ 5.5 V	75		110		110		ns
		1.8 V ≤ EV _{DI}	oo ≤ 5.5 V	110		110		110		ns
		1.7 V ≤ EV _{DI}	oo ≤ 5.5 V	220		220		220		ns
		1.6 V ≤ EV _{DI}	00 ≤ 5.5 V	_		220		220		ns
SIp hold time	t _{KSI1}	1.7 V ≤ EV _{DI}	00 ≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		1.6 V ≤ EV _{DI}	00 ≤ 5.5 V	_		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$1.7 \text{ V} \le \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$			25		25		25	ns
output Note 3		$1.6 \text{ V} \leq \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$			_		25		25	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$

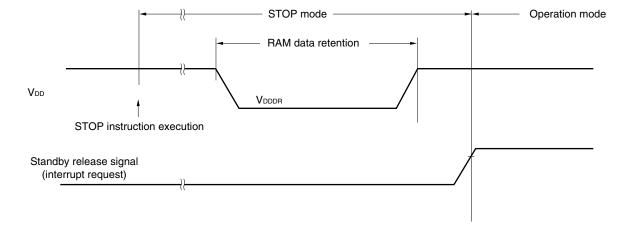
Parameter	Symbol	l .	≤ VDD ≤ 5.5 V, Vss =	HS (high- main) ode	LS (low		-	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1		$4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$	24 MHz < fмск	14/ fмск		_		_		ns
			20 MHz < fмcκ ≤ 24 MHz	12/ fмск						ns
			8 MHz < fмcк ≤ 20 MHz	10/ fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/ fмск		_		ns
	$2.7 \text{ V} \leq \text{EV}_{DD0} < 4.0 \text{ V}$ $2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$		fmck ≤ 4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	24 MHz < fмск	20/ fмск		_		_		ns
			20 MHz < fмcк ≤ 24 MHz	16/ fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	14/ fмск		_		_		ns
			8 MHz < fмcк ≤ 16 MHz	12/ fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fмск ≤ 4 MHz	6/ƒмск		10/ fмск		10/ fмск		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$	24 MHz < fмск	48/ fмск		_		_		ns
		2	20 MHz < fмcк ≤ 24 MHz	36/ fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	32/ fмск		_		_		ns
			8 MHz < f _{MCK} ≤ 16 MHz	26/ fмск						ns
		4 MHz < f _{MCK} ≤ 8 MHz	16/ fмск		16/ fмск		_		ns	
			fмcк ≤ 4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	Svdd				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	1.8 V ≤ VDD ≤ 5.5 V	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

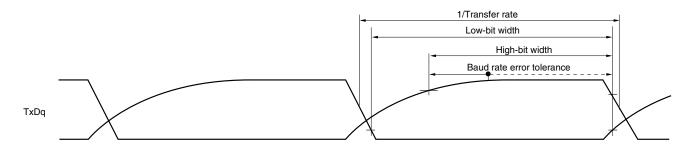
- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

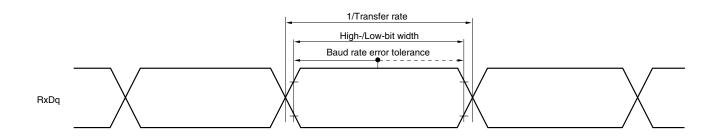
2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200	_	1,000,000	bps

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz


- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- **9.** Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

UART mode bit width (during communication at different potential) (reference)

- $\begin{array}{lll} \textbf{Remarks 1.} & R_b[\Omega]: Communication line (TxDq) \ pull-up \ resistance, \\ & C_b[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ V_b[V]: \ Communication \ line \ voltage \\ \end{array}$
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

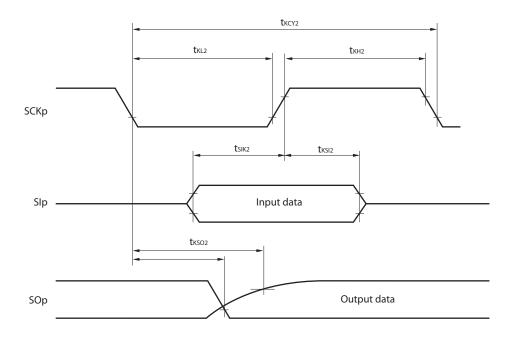
Parameter	Symbol		Conditions	HS (high-speed	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0$ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$	600		ns
			$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7$ $V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$	1000		ns
			$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0$ $V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$	2300		ns
SCKp high-level width	tкн1	4.0 V ≤ EV _{DD} C _b = 30 pF, F	$_{0}$ \leq 5.5 V, 2.7 V \leq V $_{b}$ \leq 4.0 V, $_{c}$ $_{c$	tксу1/2 - 150		ns
		2.7 V ≤ EV _{DD}	$0 < 4.0 \text{ V}, 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V},$ $R_b = 2.7 \text{ k}\Omega$	tkcy1/2 - 340		ns
		2.4 V ≤ EV _{DD} C _b = 30 pF, F	$_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R_{b} = 5.5 k Ω	tксу1/2 — 916		ns
SCKp low-level width	tĸL1	$4.0 \text{ V} \leq \text{EV}_{DD}$ $C_b = 30 \text{ pF, F}$	$_{0} \leq 5.5 \; \text{V, } 2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V,}$ $R_{\text{b}} = 1.4 \; \text{k}\Omega$	tkcy1/2 - 24		ns
		$2.7 \text{ V} \leq \text{EV}_{DD}$ $C_b = 30 \text{ pF, F}$	0 < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, $R_b = 2.7 \text{ k}\Omega$	tkcy1/2 - 36		ns
		$2.4 \text{ V} \leq \text{EV}_{DD}$ $C_b = 30 \text{ pF, F}$	$_{0} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V,$ $R_{b} = 5.5 \ k\Omega$	tксу1/2 — 100		ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vpd tolerance (for the 20- to 52-pin products)/EVpd tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

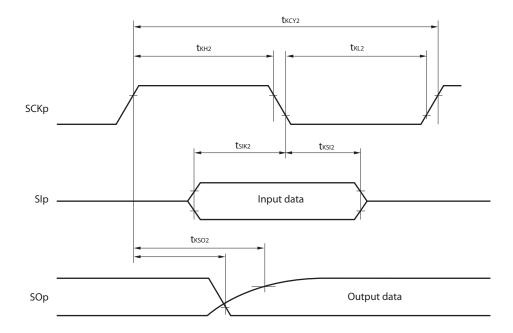
(Remarks are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-spe	eed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsıĸı	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	88		ns
(to SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	88		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \le V_{\text{b}} \le 2.0 \ V,$	220		ns
	<u> </u>	$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	38		ns
(from SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		50	ns
SOp output Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$		50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_b=30~pF,~R_b=5.5~k\Omega$			

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

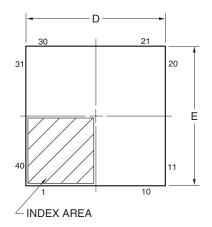
(Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

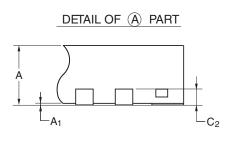
CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

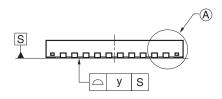
Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

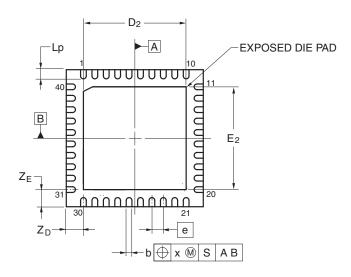
2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

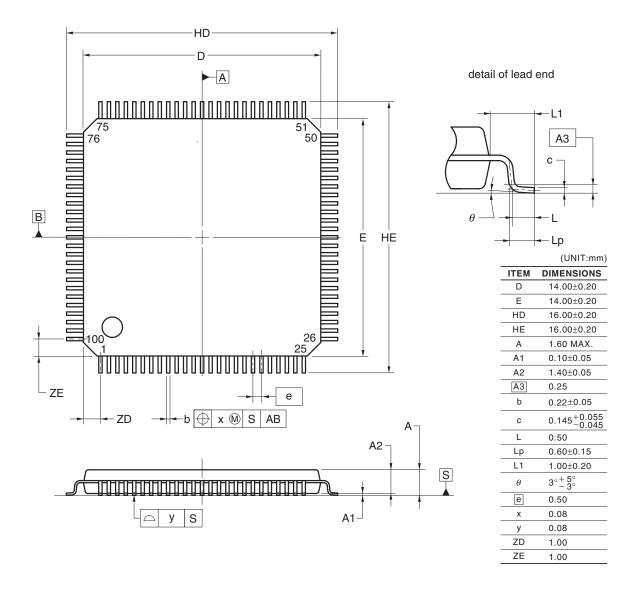

4.7 40-pin Products

R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA R5F101EAANA, R5F101ECANA, R5F101EDANA, R5F101EEANA, R5F101EFANA, R5F101EGANA, R5F101EHANA R5F100EADNA, R5F100ECDNA, R5F100EDDNA, R5F100EEDNA, R5F100EFDNA, R5F100EGDNA, R5F100EHDNA


R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA


R5F100EAGNA, R5F100ECGNA, R5F100EDGNA, R5F100EEGNA, R5F100EFGNA, R5F100EGGNA, R5F100EHGNA


JEITA Package code	RENESAS code	Previous code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-5	0.09


Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	5.95	6.00	6.05
Е	5.95	6.00	6.05
А			0.80
A ₁	0.00	_	
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х	_		0.05
у			0.05
Z _D		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		4.50	_
E ₂		4.50	

©2013 Renesas Electronics Corporation. All rights reserved.

4.13 100-pin Products

R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F101PGDFB, R5F101PGDFB, R5F101PJDFB, R5F101PJDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

©2012 Renesas Electronics Corporation. All rights reserved.