

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 17x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LFQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100mfgfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of	Ordering	Part	Numbers
------------	---------	----------	------	---------

				(4/12)
Pin	Package	Data flash	Fields of	Ordering Part Number
count			Application	
44 pins	44-pin plastic LQFP	Mounted	А	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0,
	(10 \times 10 mm, 0.8 mm			R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
				R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not	А	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
		mounted		R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

[40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

										(1/	(2)	
	Item	40-	pin	44	pin	48-	pin	52-	pin	64-	pin	
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx	
Code flash me	emory (KB)	16 to 192		16 t	o 512	16 to	o 512	32 to	o 512	32 to	o 512	
Data flash me	mory (KB)	4 to 8	_	4 to 8	_	4 to 8	_	4 to 8	_	4 to 8	_	
RAM (KB)	,	2 to ⁻	16 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	
Address spac	e	1 MB	1 MB									
Main system clock	High-speed system clock High-speed on-chip	X1 (cryst HS (High HS (High LS (Low- LV (Low- HS (High	al/ceramic n-speed ma n-speed ma speed ma voltage m n-speed ma	e) oscillation ain) mode ain) mode in) mode: ain) mode ain) mode	on, externa : 1 to 20 l : 1 to 16 l 1 to 8 M : 1 to 4 M : 1 to 32 N	al main sys MHz (Vdd : MHz (Vdd = IHz (Vdd = IHz (Vdd =	etem clock = 2.7 to 5. = 2.4 to 5. 1.8 to 5.5 1.6 to 5.5 = 2.7 to 5.8	input (EX 5 V), 5 V), V), V), V)	CLK)			
	$ \begin{array}{c} \text{Oscillator} \\ \text{Is (High-speed main) mode: 1 to 16 MHz (Vbb = 2.4 to 5.5 V),} \\ \text{LS (Low-speed main) mode: 1 to 8 MHz (Vbb = 1.8 to 5.5 V),} \\ \text{LV (Low-voltage main) mode: 1 to 4 MHz (Vbb = 1.6 to 5.5 V)} \end{array} $											
Subsystem clock XT1 (crystal) oscillation, external subsystem clock 32.768 kHz						k input (E)	XCLKS)					
Low-speed or	-chip oscillator	15 kHz (TYP.)										
General-purpo	ose registers	(8-bit reg	jister × 8) :	< 4 banks								
Minimum instr	ruction execution time	0.03125	μ s (High-s	peed on-o	chip oscilla	ator: f⊮ = 3	2 MHz op	eration)				
		0.05 <i>μ</i> s (High-spee	d system	clock: fmx	= 20 MHz	operation)				
		30.5 µs (Subsyster	n clock: fs	ив = 32.76	8 kHz ope	ration)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 										
I/O port	Total	3	36	2	10	2	4	4	18	5	58	
	CMOS I/O	(N-ch ([V⊳⊳ w voltag	28 O.D. I/O ithstand ge]: 10)	(N-ch ⊄ [V⊳⊳ w voltag	31 O.D. I/O ithstand ge]: 10)	(N-ch ([V⊳⊳ w voltag	34 D.D. I/O ithstand je]: 11)	3 (N-ch 0 [V⊳⊳ wi voltag	88 D.D. I/O thstand je]: 13)	∠ (N-ch ([V₀⊳ wi voltag	I8 D.D. I/O ithstand je]: 15)	
	CMOS input		5		5		5		5		5	
	CMOS output		-		_		1		1		1	
	N-ch O.D. I/O (withstand voltage: 6 V)		3		4		4		4		4	
Timer	16-bit timer					8 cha	nnels					
	Watchdog timer					1 cha	annel					
	Real-time clock (RTC)					1 cha	annel					
	12-bit interval timer (IT)					1 cha	annel					
	Timer output	4 channels (PWM outputs: 4 Note 2), outputs: 3 Note 2), outputs: 3 Note 2), outputs: 3 Note 2), outputs: 7 Note 2),							S (PWM 7 ^{Note 2})			
Notos 1	The flack library us	1 channe • 1 Hz (s	el subsystem	clock: fsu	B = 32.768	3 kHz)	f the det	flach m	mory			
Notes 1.	The hash library us	Ses MAIVI	in seit-pr	ogrammi	ny anu re	swinnig 0		a nasn me	eniory.			

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H

- R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H
- R5F100xJ, R5F101xJ (x = F, G, J, L): Start address FAF00H
 - Start address F7F00H

R5F100xL, R5F101xL (x = F, G, J, L): For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F100xxAxx, R5F101xxAxx

- D: Industrial applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxDxx, R5F101xxDxx
- G: Industrial applications when $T_A = -40$ to $+105^{\circ}$ C products is used in the range of $T_A = -40$ to $+85^{\circ}$ C

R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{\text{IH}} = 32 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		2.1		mA
current Note 1		mode	speed main)		operation	V _{DD} = 3.0 V		2.1		mA
			mode		Normal	$V_{DD} = 5.0 V$		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	$f_{\text{IH}} = 4 \text{ MHz}^{\text{Note 3}}$	Normal	$V_{DD} = 3.0 V$		1.2	1.7	mA
			voltage main) mode		operation	$V_{DD} = 2.0 V$		1.2	1.7	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.6	mA
			speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 20 \text{ MHz}^{Note 2}$,	Normal	Square wave input		3.0	4.6	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 5.0 V$	operation	Resonator connection		1.9	2.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.9	2.7	mA
			LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal operation	Square wave input		1.1	1.7	mA
			speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$		Resonator connection		1.1	1.7	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2}$,	Normal	Square wave input		1.1	1.7	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
				Note 4 TA = $+70^{\circ}$ C	operation	Resonator connection		4.4	6.4	μA
				fsug = 32,768 kHz	Normal	Square wave input		4.6	77	//Α
				Note 4	operation	Resonator		4.7	7.8	μA
				1A = +85°C						

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1$ MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol		Conditions			high- main) ode	LS (low main)	/-speed Mode	LV (voltage Mo	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps	
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$: MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(7)	Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp internal clock output,
	corresponding CSI00 only) (2/2)

	<i>,</i>								
Parameter	Symbol	Conditions	HS (hig main)	HS (high-speed main) Mode		/-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsıkı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	23		110		110		ns
		$C_b = 20 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$							
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	33		110		110		ns
		$C_b = \underline{20 \text{ pF}}, \text{R}_b = 2.7 \text{k}\Omega$							
SIp hold time (from SCKp↓) ^{Note 2}	tksi1		10		10		10		ns
		$C_b = 20 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$							
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	10		10		10		ns
		$C_b=20 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		10		10		10	ns
SOp output Note 2		$C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$							
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		10		10		10	ns
		$C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$							

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

- n: Channel number (mn = 00))
- 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	Conditions HS (high-speed main) Mode		LS (low main)	-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsikı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} \end{array} \label{eq:VD0}$	81		479		479		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	177		479		479		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
		$ \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{split} $	479		479		479		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↑) ^{№ote 1}	tksi1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{aligned} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{aligned} $	19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp↓ to	tkso1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		100		100		100	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$		195		195		195	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		483		483		483	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

1	$(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \text{ V} \le \text{EV}_{DD} = \text{EV}_{D1} \le \text{V}_{D2} \le 5.5$	5 V	$V_{SS} = FV_{SS0} = FV_{SS1} = 0 V$
١.	$(1A = -40 10 + 05 0, 1.0 4 \le 24000 = 24001 \le 400 \le 5.5$, v ;	$, v_{33} - \Box v_{330} - \Box v_{331} - O v_{j}$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $EV_{DD0} \ge V_b$.

(Remarks are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıкı	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array}$	44		110		110		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	44		110		110		ns
		C_{b} = 30 pF, R_{b} = 2.7 $k\Omega$							
		$ \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{split} $	110		110		110		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↓) ^{№ te 1}	tksi1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array}$	19		19		19		ns
,		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{aligned} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{aligned} $	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		25		25		25	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

1	$(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \text{ V} \le \text{EV}_{DD} = \text{EV}_{D1} \le \text{V}_{D2} \le 5.5$	5 V	$V_{SS} = FV_{SS0} = FV_{SS1} = 0 V$
١.	$(1A = -40 10 + 05 0, 1.0 4 \le 24000 = 24001 \le 400 \le 5.5$, v ;	$, v_{33} - \Box v_{330} - \Box v_{331} - O v_{j}$

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Сог	nditions	HS (high- speed main) Mode		LS (low main)	/-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0 V \le EV_{DD0} \le 5.5 V$, 27 V < Vb < 4.0 V	24 MHz < fмск	14/ fмск						ns
$2.7 \text{ V} \leq 0.5 \leq 4.0 \text{ V}$	20 MHz < fмск ≤ 24 MHz	12/ fмск						ns		
		8 MHz < fмск ≤ 20 MHz	10/ fмск		_				ns	
		4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns	
		fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns	
$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	24 MHz < fмск	20/ fмск						ns		
		20 MHz < fмск ≤ 24 MHz	16/ fмск		—		_		ns	
			16 MHz < fмск ≤ 20 MHz	14/ fмск						ns
			8 MHz < fмск ≤ 16 MHz	12/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$\label{eq:VDD0} \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note}} \end{split}$	24 MHz < fмск	48/ fмск		—				ns
		2	20 MHz < fмск ≤ 24 MHz	36/ fмск						ns
		16 MHz < fмск ≤ 20 MHz	32/ fмск						ns	
			8 MHz < fмск ≤ 16 MHz	26/ fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск				ns
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Items	Symbol		Conditio	ns		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum Tcy Main		Main	HS (high-speed		$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.03125		1	μS
instruction execution time)		system clock (f _{MAIN}) operation	main) mode	:	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
		Subsystem of operation	lock (fsub)	:	$2.4 V \le V_{DD} \le 5.5 V$	28.5	30.5	31.3	μS
		In the self	HS (high-spe	ed	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.03125		1	μS
		programming mode	main) mode	:	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
External system clock frequency	fex	$2.7 \ V \leq V_{DD} \leq$	≤ 5.5 V			1.0		20.0	MHz
		$2.4 V \le V_{DD}$ <	< 2.7 V			1.0		16.0	MHz
	fexs					32		35	kHz
External system clock input high-	texh, texl	$2.7 V \leq V_{DD} \leq$	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		24			ns	
level width, low-level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$				30			ns
	texhs, texls					13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟					1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	eed 4.0	V≤	$EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
output frequency		main) mode	2.7	V≤	$EV_{DD0} < 4.0 V$			8	MHz
			2.4	$2.4~V \leq EV_{\text{DD0}} < 2.7~V$				4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0	V≤	$EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
frequency		main) mode	2.7	V≤	$EV_{DD0} < 4.0 V$			8	MHz
			2.4	V≤	EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4	V≤	$V_{\text{DD}} \leq 5.5 ~\text{V}$	1			μS
low-level width	t INTL	INTP1 to INT	P11 2.4	V≤	$EV_{\text{DD0}} \leq 5.5 \text{ V}$	1			μS
Key interrupt input low-level width	t ĸĸ	KR0 to KR7	2.4	V≤	$EV_{DD0} \leq 5.5 V$	250			ns
RESET low-level width	trsl					10			μS

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

 $\label{eq:rescaled} \textbf{Remark} \quad \text{f_{MCK}: Timer array unit operation clock frequency}$

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
Transfer rate Note 1					fмск/12 ^{Note 2}	bps
			Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 1.3 Mbps
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{\text{KCY1}} \ge 4/f_{\text{CLK}} 2.7 \text{ V} \le EV_{\text{DD0}} \le 5.5 \text{ V}$		250		ns
			$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq EV_{\text{DD}}$	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			ns
	tĸ∟1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 5.5 \ V \\ \\ 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V \end{array}$		tксү1/2 – 36		ns
				tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) Note 1	tsik1	$4.0~V \leq EV_{\text{DD}}$	$_{0} \leq 5.5 \text{ V}$	66		ns
		$2.7 \ V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	66		ns
		$2.4 \ V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	113		ns
SIp hold time (from SCKp \uparrow) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note}	54		50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Parameter	Symbol	Conditions	HS (high-sj Mo	Unit	
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$		400 ^{Note1}	kHz
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$		100 ^{Note1}	kHz
		$C_b = 100 \text{ pF}, \text{R}_b = 3 \text{k}\Omega$			
Hold time when SCLr = "L"	t∟ow	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1/fмск + 220		ns
		$C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{ k}\Omega$	Note2		
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V,$	1/fмск + 580		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note2		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	770	ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			

(4) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

(6)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp internal clock
	output) (1/3)

Parameter	Symbol	Conditions HS		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 4/fc∟к	$\label{eq:kcy1} \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$			ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1000		ns
			2.4 V \leq EV _{DD0} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, C _b = 30 pF, R _b = 5.5 k Ω	2300		ns
SCKp high-level width	tкнı	$4.0 V \le EV_{DD}$	$0 \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	tксү1/2 – 150		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF, F}$	$_{0} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $R_{b} = 2.7 \text{ k}\Omega$	tксү1/2 — 340		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF, F}$	$_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R_{b} = 5.5 k Ω	tксү1/2-916		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \\ C_{\text{b}} = 30 \ \text{pF}, \ \text{F} \end{array}$	$_{0}$ \leq 5.5 V, 2.7 V \leq V_{b} \leq 4.0 V, R_{b} = 1.4 k Ω	tксү1/2 – 24		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF, F}$	$\label{eq:V_b} \begin{array}{l} _{0} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	tксү1/2 – 36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$_{0}$ < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	tксү1/2 – 100		ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed two pages after the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Condi	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to $+105^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, $T_A = +25^{\circ}C$		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

