Welcome to **E-XFL.COM** ### What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Details | | | Product Status | Active | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 64 | | Program Memory Size | 192KB (192K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 8K x 8 | | RAM Size | 16K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 17x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 80-LQFP | | Supplier Device Package | 80-LFQFP (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100mhafb-50 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong RL78/G13 1. OUTLINE ### 1.3.2 24-pin products • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$ RL78/G13 1. OUTLINE ### 1.3.4 30-pin products • 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. RL78/G13 1. OUTLINE **3.** The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual). 4. When setting to PIOR = 1 | 70 | n | ١ | |----|---|---| | 1/ | ' | п | | _ | _ | , | | Iter | m | 20- | nin | 24- | nin | 25- | nin | 30- | pin | 32 | -pin | 36 | pin | |--------------------------------------|----------------------|--|--|--|---|--|---------------------------|-----------|-----------|----------|-----------|----------|----------| | itoi | | | | | | | | | | | İ | | i | | | | R5F1006x | R5F1016x | R5F1007x | R5F1017x | R5F1008x | R5F1018x | R5F100Ax | R5F101Ax | R5F100Bx | R5F101Bx | R5F100Cx | R5F101Cx | | Clock output/buzze | er output | - | = | | 1 | | 1 | | 2 | | 2 | | 2 | | | | | | 88 kHz, 9
n clock: fr | | | | ИНz, 5 М | Hz, 10 N | МНz | | | | | 8/10-bit resolution | A/D converter | 6 chanr | nels | 6 chanr | nels | 6 chanr | nels | 8 chanı | nels | 8 chan | nels | 8 chan | nels | | Serial interface | | [20-pin, 24-pin, 25-pin products] | | | | | | | | | | | | | | | • CSI: | 1 chann | el/simplif | ied I ² C: | 1 channe | el/UART | : 1 chanr | nel | | | | | | | | • CSI: | 1 chann | el/simplif | ied I ² C: | 1 channe | el/UART | : 1 chanr | nel | | | | | | | | [30-pin, | 32-pin | products] |] | | | | | | | | | | | | • CSI: | 1 chann | el/simplif
el/simplif | ied I ² C: | 1 channe | el/UART | : 1 chanr | nel | | | | | | | | | | el/simplif | fied I ² C: | 1 channe | el/UART | (UART s | supportir | ng LIN-b | us): 1 ch | nannel | | | | | [36-pin | | | | | | | | | | | | | | | 1 | | el/simplif | | | | | | | | | | | 1 | | CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified l²C: 2 channels/UART (UART supporting LIN-bus): 1 channel | | | | | | | | | | | | | ſ | I ² C bus | - | = | 1 chanr | | 1 chanr | | 1 chanı | | 1 chan | | 1 chan | nel | | Multiplier and divide accumulator | er/multiply- | 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) | | | | | | | | | | | | | DMA controller | | 2 channels | | | | | | | | | | | | | Vectored interrupt | Internal | 2 | 3 | 2 | 24 | 2 | <u>!</u> 4 | 2 | 27 | 2 | 27 | 2 | 27 | | sources | External | ; | 3 | ļ | 5 | | 5 | | 6 | | 6 | | 6 | | Key interrupt | | _ | | | | | | | | | | | | | Reset | | | | | | | | | | | | | | | | | InterrInterrInterrInterrInterr | nal reset
nal reset
nal reset
nal reset
nal reset | SET pin by watch by power by volta by illega by RAM by illega | er-on-res
ge detec
al instruc
parity e | et
ctor
tion exec
rror | | e | | | | | | | Power-on-reset circ | puit | InterrInterrInterrInterrInterrInterrInterrPower | nal reset
nal reset
nal reset
nal reset
nal reset
er-on-res | by watch
by power
by volta
by illega
by RAM
by illega | er-on-res
ge detect
al instruct
parity e
al-memod | et stor
stor
tion exec
rror
ry access | | 0 | | | | | | | Power-on-reset circ | cuit | InterrInterrInterrInterrInterrInterrInterrPower | nal reset
nal reset
nal reset
nal reset
nal reset
nal reset
er-on-reser
er-down- | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detectal instruction parity et al-memorial.51 V (Tours) (| et stor
stor
tion exec
rror
ry access | s
14 stage | es) | | | | | | | | | Interr Interr Interr Interr Interr Interr Interr Powe | nal reset er-on-reser-down- g edge: g edge | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detectal instruction parity et al-memorial.51 V (Tours) (| et
ctor
tion exec
rror
ry access
YP.)
YP.) | s
14 stage | es) | | | | | | | Voltage detector | ction | Interresident In | nal reset er-on-reser-down- g edge: g edge d | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detect
al instruct
parity e
al-memon
.51 V (T
.50 V (T
.67 V to | set stor rich execution ex | s
14 stage | es) | | | | | | | Voltage detector On-chip debug fund | ction | Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide | nal reset er-on-reser down- g edge: g edge d | by watch
by power
by volta
by illega
by RAM
by illega
set: 1
reset: 1 | er-on-res
ge detect
al instruct
parity e
al-memon
.51 V (T
.50 V (T
.67 V to
.63 V to | set stor return execution exec | s
14 stage | es) | | | | | | | Voltage detector On-chip debug fund | ction | Interr Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide V_{DD} = 1 V_{DD} = 2. | nal reset er-on-res er-down- g edge g edge d .6 to 5.5 | by watch by power by volta by illegar by RAM by illegar set: 1 reset: 1 | er-on-res
ge detect
al instruct
parity e
al-memor
.51 V (T
.50 V (T
.63 V to
.63 V to | set stor rich execution ex | s
14 stage
14 stage | es) | applica | tions) | | | | Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. # 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C) This chapter describes the following electrical specifications. Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxAxx, R5F101xxAxx D: Industrial applications T_A = −40 to +85°C R5F100xxDxx, R5F101xxDxx G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$ R5F100xxGxx - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}. - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. #### 2.3 DC Characteristics ### 2.3.1 Pin characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$ | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |---|------------------------------|---|---------------------------------------|------|-------|------------------|------| | Output current,
high ^{Note 1} | Іонт | Per pin for P00 to P07, P10 to P17,
P30 to P37, P40 to P47, P50 to P57, P64
to P67, P70 to P77, P80 to P87, P90 to
P97, P100 to P106,
P110 to P117, P120, P125 to P127,
P130, P140 to P147 | $1.6~V \leq EV_{DD0} \leq 5.5~V$ | | | -10.0
Note 2 | mA | | | P40 to P47 P100 to P106 P100 | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | | | -55.0 | mA | | | | | P40 to P47, P102 to P106, P120,
P125 to P127, P130, P140 to P145 | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -10.0 | mA | | | | (When duty $\leq 70\%^{\text{Note 3}}$) | $1.8~V \leq EV_{DD0} < 2.7~V$ | | | -5.0 | mA | | | | Total of P05, P06, P10 to P17, P30, P31, | $1.6~V \leq EV_{DD0} < 1.8~V$ | | | -2.5 | mA | | | | | | | | -80.0 | mA | | | | P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -19.0 | mA | | | | P117, P146, P147 | $1.8~V \leq EV_{DD0} < 2.7~V$ | | | -10.0 | mA | | | | (When duty ≤ 70% Note 3) | $1.6~V \leq EV_{DD0} < 1.8~V$ | | | -5.0 | mA | | | | Total of all pins (When duty $\leq 70\%$ Note 3) | $1.6~V \leq EV_{DD0} \leq 5.5~V$ | | | -135.0
Note 4 | mA | | | 10н2 | Per pin for P20 to P27, P150 to P156 | $1.6~V \leq V_{DD} \leq 5.5~V$ | | | -0.1 Note 2 | mA | | | | Total of all pins (When duty $\leq 70\%$ Note 3) | $1.6~V \leq V_{\text{DD}} \leq 5.5~V$ | | | -1.5 | mA | - **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin. - 2. However, do not exceed the total current value. - 3. Specification under conditions where the duty factor $\leq 70\%$. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%). • Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and loh = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA. Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V} : \text{MIN. } 250 \text{ ns}$ Remark fmck: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)) ### Minimum Instruction Execution Time during Main System Clock Operation ### **AC Timing Test Points** ### **External System Clock Timing** # **TI/TO Timing** # **Interrupt Request Input Timing** # **Key Interrupt Input Timing** # **RESET** Input Timing # 2.6 Analog Characteristics ### 2.6.1 A/D converter characteristics Classification of A/D converter characteristics | | | Reference Voltage | | |----------------------------|--------------------------------|-----------------------------|--| | | Reference voltage (+) = AVREFP | Reference voltage (+) = VDD | Reference voltage (+) = V _{BGR} | | Input channel | Reference voltage (-) = AVREFM | Reference voltage (-) = Vss | Reference voltage (–) = AVREFM | | ANI0 to ANI14 | Refer to 2.6.1 (1) . | Refer to 2.6.1 (3) . | Refer to 2.6.1 (4) . | | ANI16 to ANI26 | Refer to 2.6.1 (2) . | | | | Internal reference voltage | Refer to 2.6.1 (1) . | | _ | | Temperature sensor output | | | | | voltage | | | | (1) When reference voltage (+)= AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage (TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V) | Parameter | Symbol | Con | ditions | MIN. | TYP. | MAX. | Unit | |--|-----------------|--|--|--------|-------------------------|--------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution | 1.8 V ≤ AV _{REFP} ≤ 5.5 V | | 1.2 | ±3.5 | LSB | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$ | | 1.2 | ±7.0 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μS | | | | Target pin: ANI2 to ANI14 | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875 | | 39 | μS | | | | ANTI | $1.8~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ | 57 | | 95 | μS | | | | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375 | | 39 | μS | | | | Target pin: Internal reference voltage, and | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625 | | 39 | μS | | | | temperature sensor
output voltage
(HS (high-speed main)
mode) | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μs | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution | 1.8 V ≤ AV _{REFP} ≤ 5.5 V | | | ±0.25 | %FSR | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$ | | | ±0.50 | %FSR | | Full-scale error Notes 1, 2 | E _{FS} | 10-bit resolution | $1.8~V \leq AV_{REFP} \leq 5.5~V$ | | | ±0.25 | %FSR | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$ | | | ±0.50 | %FSR | | Integral linearity error ^{Note 1} | ILE | 10-bit resolution | $1.8~V \leq AV_{REFP} \leq 5.5~V$ | | | ±2.5 | LSB | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$ | | | ±5.0 | LSB | | Differential linearity error Note 1 | DLE | 10-bit resolution | $1.8~V \leq AV_{REFP} \leq 5.5~V$ | | | ±1.5 | LSB | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$ | | | ±2.0 | LSB | | Analog input voltage | VAIN | ANI2 to ANI14 | | 0 | | AVREFP | V | | | | Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS | | | V _{BGR} Note 5 | | V | | | | Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS | • | \ | /TMPS25 Note | 5 | V | (Notes are listed on the next page.) # 2.6.2 Temperature sensor/internal reference voltage characteristics (TA = -40 to $+85^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode) | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------------------|---------------------|--|------|------|------|-------| | Temperature sensor output voltage | V _{TMPS25} | Setting ADS register = 80H, Ta = +25°C | | 1.05 | | ٧ | | Internal reference voltage | V _{BGR} | Setting ADS register = 81H | 1.38 | 1.45 | 1.5 | V | | Temperature coefficient | Fvтмps | Temperature sensor that depends on the temperature | | -3.6 | | mV/°C | | Operation stabilization wait time | tamp | | 5 | | | μs | ### 2.6.3 POR circuit characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-------------------------------------|------------------|-----------------------------|------|------|------|------| | Detection voltage | VPOR | VPOR Power supply rise time | | 1.51 | 1.55 | V | | | V _{PDR} | Power supply fall time | 1.46 | 1.50 | 1.54 | V | | Minimum pulse width ^{Note} | T _{PW} | | 300 | | | μS | **Note** Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC). ### 2.6.4 LVD circuit characteristics # LVD Detection Voltage of Reset Mode and Interrupt Mode (Ta = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V) | | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-------------|----------------------|--------------------|------------------------|------|------|------|------| | Detection | Supply voltage level | V _{LVD0} | Power supply rise time | 3.98 | 4.06 | 4.14 | V | | voltage | | | Power supply fall time | 3.90 | 3.98 | 4.06 | V | | | | V _{LVD1} | Power supply rise time | 3.68 | 3.75 | 3.82 | V | | | | | Power supply fall time | 3.60 | 3.67 | 3.74 | V | | | | V _{LVD2} | Power supply rise time | 3.07 | 3.13 | 3.19 | V | | | | | Power supply fall time | 3.00 | 3.06 | 3.12 | V | | | | V _{LVD3} | Power supply rise time | 2.96 | 3.02 | 3.08 | V | | | | | Power supply fall time | 2.90 | 2.96 | 3.02 | V | | | | V _{LVD4} | Power supply rise time | 2.86 | 2.92 | 2.97 | V | | | | | Power supply fall time | 2.80 | 2.86 | 2.91 | V | | | | V _{LVD5} | Power supply rise time | 2.76 | 2.81 | 2.87 | V | | | | | Power supply fall time | 2.70 | 2.75 | 2.81 | V | | | | V _{LVD6} | Power supply rise time | 2.66 | 2.71 | 2.76 | V | | | | | Power supply fall time | 2.60 | 2.65 | 2.70 | V | | | | V LVD7 | Power supply rise time | 2.56 | 2.61 | 2.66 | V | | | | | Power supply fall time | 2.50 | 2.55 | 2.60 | V | | | | V _{LVD8} | Power supply rise time | 2.45 | 2.50 | 2.55 | V | | | | | Power supply fall time | 2.40 | 2.45 | 2.50 | V | | | | V _{LVD9} | Power supply rise time | 2.05 | 2.09 | 2.13 | V | | | | | Power supply fall time | 2.00 | 2.04 | 2.08 | V | | | | V _{LVD10} | Power supply rise time | 1.94 | 1.98 | 2.02 | V | | | | | Power supply fall time | 1.90 | 1.94 | 1.98 | V | | | | V _{LVD11} | Power supply rise time | 1.84 | 1.88 | 1.91 | V | | | | | Power supply fall time | 1.80 | 1.84 | 1.87 | V | | | | V _{LVD12} | Power supply rise time | 1.74 | 1.77 | 1.81 | V | | | | | Power supply fall time | 1.70 | 1.73 | 1.77 | V | | | | V _{LVD13} | Power supply rise time | 1.64 | 1.67 | 1.70 | V | | | | | Power supply fall time | 1.60 | 1.63 | 1.66 | V | | Minimum p | ulse width | tLW | | 300 | | | μS | | Detection d | elay time | | | | | 300 | μS | # 3.3.2 Supply current characteristics # (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2) | Parameter | Symbol | | | Conditions | | | MIN. | TYP. | MAX. | Unit | | |----------------|------------------|----------------|--------------------------|--|--------------------------|-------------------------|----------------------|------|------|------|----| | Supply current | I _{DD1} | Operating mode | HS (high-
speed main) | fih = 32 MHz ^{Note 3} | Basic operatio | V _{DD} = 5.0 V | | 2.1 | | mA | | | Note 1 | | mode | mode Note 5 | | n | V _{DD} = 3.0 V | | 2.1 | | mA | | | | | | | | Normal | V _{DD} = 5.0 V | | 4.6 | 7.5 | mA | | | | | | | | operatio
n | V _{DD} = 3.0 V | | 4.6 | 7.5 | mA | | | | | | | fin = 24 MHz Note 3 | Normal | V _{DD} = 5.0 V | | 3.7 | 5.8 | mA | | | | | | | | operatio
n | V _{DD} = 3.0 V | | 3.7 | 5.8 | mA | | | | | | | fih = 16 MHz ^{Note 3} | Normal | V _{DD} = 5.0 V | | 2.7 | 4.2 | mA | | | | | | | | operatio
n | V _{DD} = 3.0 V | | 2.7 | 4.2 | mA | | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal | Square wave input | | 3.0 | 4.9 | mA | | | | | | | speed main)
mode Note 5 | $V_{DD} = 5.0 \text{ V}$ | operatio
n | Resonator connection | | 3.2 | 5.0 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal | Square wave input | | 3.0 | 4.9 | mA | | | | | | | $V_{DD} = 3.0 \text{ V}$ | operatio
n | Resonator connection | | 3.2 | 5.0 | mA | | | | | | | $f_{MX} = 10 \text{ MHz}^{Note 2},$ | Normal | Square wave input | | 1.9 | 2.9 | mA | | | | | | | $V_{DD} = 5.0 \text{ V}$ | operatio
n | Resonator connection | | 1.9 | 2.9 | mA | | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Normal | Square wave input | | 1.9 | 2.9 | mA | | | | | | | $V_{DD} = 3.0 \text{ V}$ | operatio
n | Resonator connection | | 1.9 | 2.9 | mA | | | | | | Subsystem | fsuв = 32.768 kHz | Normal | Square wave input | | 4.1 | 4.9 | μΑ | | | | | | clock
operation | Note 4 $T_A = -40^{\circ}C$ | operatio
n | Resonator connection | | 4.2 | 5.0 | μΑ | | | | | | | fsub = 32.768 kHz | Normal | Square wave input | | 4.1 | 4.9 | μΑ | | | | | | | T _A = +25°C | operatio
n | Resonator connection | | 4.2 | 5.0 | μΑ | | | | | | | fsuв = 32.768 kHz | Normal | Square wave input | | 4.2 | 5.5 | μΑ | | | | | | | Note 4 $T_A = +50^{\circ}C$ | operatio
n | Resonator connection | | 4.3 | 5.6 | μΑ | | | | | | | fsuв = 32.768 kHz | Normal | Square wave input | | 4.3 | 6.3 | μΑ | | | | | | | Note 4 $T_A = +70^{\circ}C$ | operatio
n | Resonator connection | | 4.4 | 6.4 | μА | | | | | | | fsuB = 32.768 kHz | Normal | Square wave input | | 4.6 | 7.7 | μΑ | | | | | | | Note 4 $T_A = +85^{\circ}C$ | operation | Resonator connection | | 4.7 | 7.8 | μА | | | | | | | fsus = 32.768 kHz | Normal | Square wave input | | 6.9 | 19.7 | μΑ | | | | | | | Note 4 $T_A = +105^{\circ}C$ | operation | Resonator connection | | 7.0 | 19.8 | μΑ | | (Notes and Remarks are listed on the next page.) # Minimum Instruction Execution Time during Main System Clock Operation ### **AC Timing Test Points** ### **External System Clock Timing** # **TI/TO Timing** # **Interrupt Request Input Timing** # **Key Interrupt Input Timing** # **RESET** Input Timing # (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | C | Conditions | HS (high-spe | ed main) Mode | Unit | |---|---------------|--|--|---------------|---------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time Note 1 | tkCY2 | $4.0~V \leq EV_{DD0} \leq 5.5$ | 24 MHz < fмск | 28/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 24/fмск | | ns | | | | $2.7~V \leq V_b \leq 4.0~V$ | 8 MHz < fмcк ≤ 20 MHz | 20/fмск | | ns | | | | | 4 MHz < fmck ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | $2.7~V \leq EV_{DD0} < 4.0$ | 24 MHz < fмск | 40/fмск | | ns | | | | V, | $20~\text{MHz} < \text{fmck} \le 24~\text{MHz}$ | 32/fмск | | ns | | | | $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ | 16 MHz < fмcк ≤ 20 MHz | 28/fмск | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 24/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | 2.4 V ≤ EV _{DD0} < 3.3 | 24 MHz < fмск | 96/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 72/fмск | | ns | | | | $1.6 \ V \le V_b \le 2.0 \ V$ | 16 MHz < fмcк ≤ 20 MHz | 64/fмск | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 52/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 32/fмск | | ns | | | | | fмcк ≤ 4 MHz | 20/fмск | | ns | | SCKp high-/low-level width | tкн2,
tкL2 | $4.0 \ V \le EV_{DD0} \le 5.$ $2.7 \ V \le V_b \le 4.0 \ V$ | 5 V, | tkcy2/2 - 24 | | ns | | | | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$ | | tkcy2/2 - 36 | | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$ | | tkcy2/2 - 100 | | ns | | SIp setup time (to SCKp↑) Note2 | tsık2 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $ | 5 V, | 1/fмск + 40 | | ns | | | | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$ | 0 V, | 1/fмск + 40 | | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$ | 3 V, | 1/fмск + 60 | | ns | | Slp hold time
(from SCKp [↑]) Note 3 | tksi2 | | | 1/fmck + 62 | | ns | | Delay time from SCKp↓
to SOp output Note 4 | tkso2 | $4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$ | 5 V, 2.7 V \leq V _b \leq 4.0 V, .4 k Ω | | 2/fмск + 240 | ns | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2$ | 0 V, 2.3 V \leq V _b \leq 2.7 V, .7 kΩ | | 2/fмск + 428 | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $C_b = 30 \ pF, \ R_b = 5$ | 3 V, 1.6 V ≤ V _b ≤ 2.0 V
.5 kΩ | | 2/fмск + 1146 | ns | (Notes, Caution and Remarks are listed on the next page.) # (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | | peed main)
ode | Unit | |---------------------------|--------|---|------|-------------------|------| | | | | MIN. | MAX. | | | SCLr clock frequency | fscL | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | | 400 Note 1 | kHz | | | | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | | 400 Note 1 | kHz | | | | $\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$ | | 100 Note 1 | kHz | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$ | | 100 Note 1 | kHz | | | | $\begin{split} &2.4 \; V \leq \text{EV}_{\text{DDO}} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; p\text{F}, \; R_b = 5.5 \; k\Omega \end{split}$ | | 100 Note 1 | kHz | | Hold time when SCLr = "L" | tLow | $\begin{aligned} 4.0 & \ V \le EV_{DD0} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 50 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 1200 | | ns | | | | $\begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$ | 1200 | | ns | | | | $\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$ | 4600 | | ns | | | | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 4600 | | ns | | | | $\begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$ | 4650 | | ns | | Hold time when SCLr = "H" | tніgн | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 620 | | ns | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$ | 500 | | ns | | | | $\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$ | 2700 | | ns | | | | $2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$ | 2400 | | ns | | | | $2.4 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$ | 1830 | | ns | (${f Notes}$ and ${f Caution}$ are listed on the next page, and ${f Remarks}$ are listed on the page after the next page.) (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$ | Parameter | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |--|--------|------------------|--------------------------------|------|------|-------------------------|------| | Resolution | RES | | | | 8 | | bit | | Conversion time | tconv | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | Zero-scale error ^{Notes 1, 2} | Ezs | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | Integral linearity error ^{Note 1} | ILE | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | Differential linearity error Note 1 | DLE | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±1.0 | LSB | | Analog input voltage | Vain | | | 0 | | V _{BGR} Note 3 | V | - **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. - 4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM. ### 3.6.2 Temperature sensor/internal reference voltage characteristics (TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode) | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------------------|---------------------|--|------|------|------|-------| | Temperature sensor output voltage | V _{TMPS25} | Setting ADS register = 80H, Ta = +25°C | | 1.05 | | V | | Internal reference voltage | V _{BGR} | Setting ADS register = 81H | 1.38 | 1.45 | 1.5 | ٧ | | Temperature coefficient | FVTMPS | Temperature sensor that depends on the temperature | | -3.6 | | mV/°C | | Operation stabilization wait time | tамр | | 5 | | | μS | # 3.8 Flash Memory Programming Characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---|--------|---|---------|-----------|------|-------| | CPU/peripheral hardware clock frequency | fclk | $2.4~V \le V_{DD} \le 5.5~V$ | 1 | | 32 | MHz | | Number of code flash rewrites | Cerwr | Retained for 20 years TA = 85°C Note 4 | 1,000 | | | Times | | Number of data flash rewrites | | Retained for 1 years TA = 25°C | | 1,000,000 | | | | | | Retained for 5 years TA = 85°C Note 4 | 100,000 | | | | | | | Retained for 20 years TA = 85°C Note 4 | 10,000 | | | | - **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite. - 2. When using flash memory programmer and Renesas Electronics self programming library. - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation. - 4. This temperature is the average value at which data are retained. ### 3.9 Dedicated Flash Memory Programmer Communication (UART) ### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---------------|--------|---------------------------|---------|------|-----------|------| | Transfer rate | | During serial programming | 115,200 | | 1,000,000 | bps | ### 4.5 32-pin Products R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F100BGGNA, R5F100BGNA, R5F100BGN | JEITA Package code | RENESAS code | Previous code | MASS (TYP.)[g] | |--------------------|--------------|----------------|----------------| | P-HWQFN32-5x5-0.50 | PWQN0032KB-A | P32K8-50-3B4-5 | 0.06 | | Referance | Dimens | ion in Mil | limeters | |----------------|--------|------------|----------| | Symbol | Min | Nom | Max | | D | 4.95 | 5.00 | 5.05 | | E | 4.95 | 5.00 | 5.05 | | Α | | | 0.80 | | A ₁ | 0.00 | _ | | | b | 0.18 | 0.25 | 0.30 | | е | | 0.50 | | | Lp | 0.30 | 0.40 | 0.50 | | х | | | 0.05 | | у | | | 0.05 | | Z _D | | 0.75 | | | Z _E | | 0.75 | | | C ₂ | 0.15 | 0.20 | 0.25 | | D ₂ | | 3.50 | _ | | E ₂ | | 3.50 | | \bigcirc 2013 Renesas Electronics Corporation. All rights reserved. ### 4.10 52-pin Products R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JGAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP52-10x10-0.65 | PLQP0052JA-A | P52GB-65-GBS-1 | 0.3 | © 2012 Renesas Electronics Corporation. All rights reserved. (UNIT:mm) ### 4.14 128-pin Products R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |-----------------------|--------------|-----------------|-----------------| | P-LFQFP128-14x20-0.50 | PLQP0128KD-A | P128GF-50-GBP-1 | 0.92 | \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.