

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I²C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 20x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100pfafb-50

Email: info@E-XFL.COM

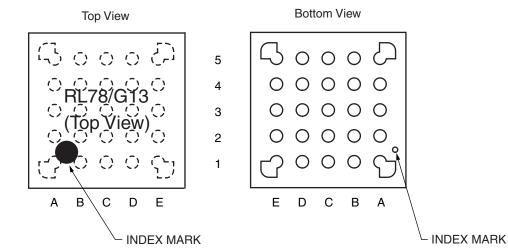
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(4/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
44 pins	44-pin plastic LQFP (10 × 10 mm, 0.8 mm	Mounted	А	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0, R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
	,			R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not	Α	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
		mounted		R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0

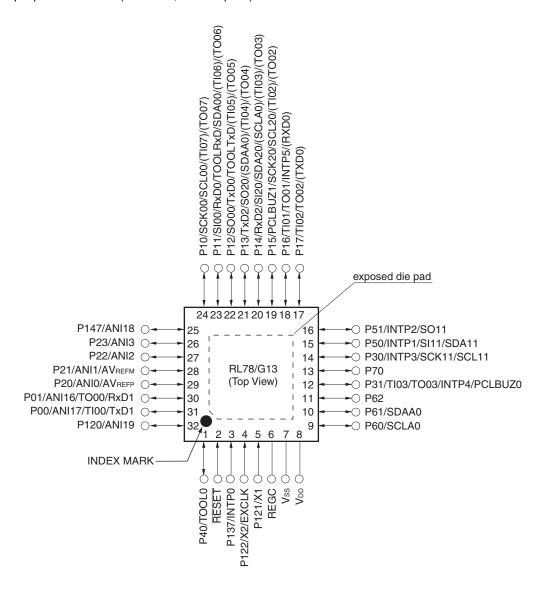
Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.3 25-pin products

<R>

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)

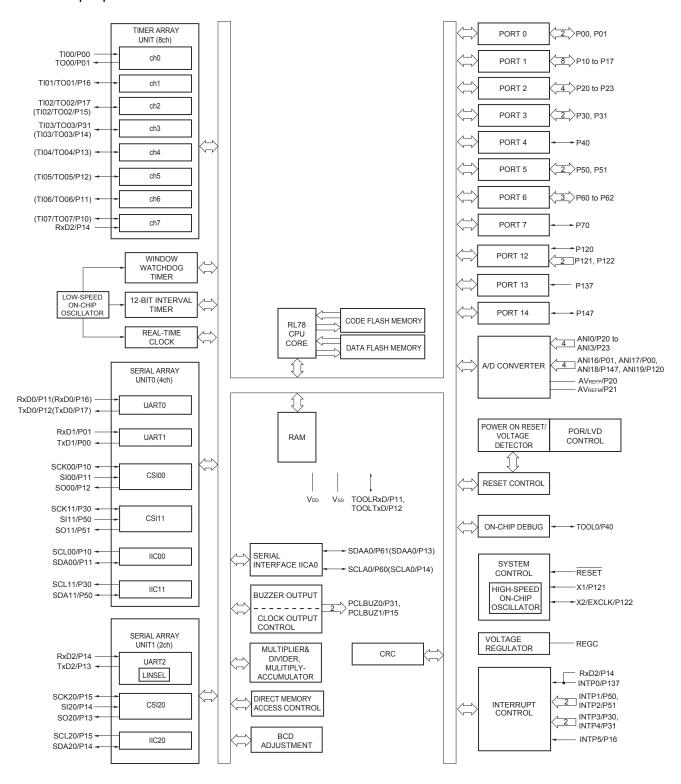

	Α	В	С	D	E	
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AVREFM	P10/SCK00/ SCL00	4
3	P121/X1	V _{DD}	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/Tl02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	A	В	С	D	E	

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

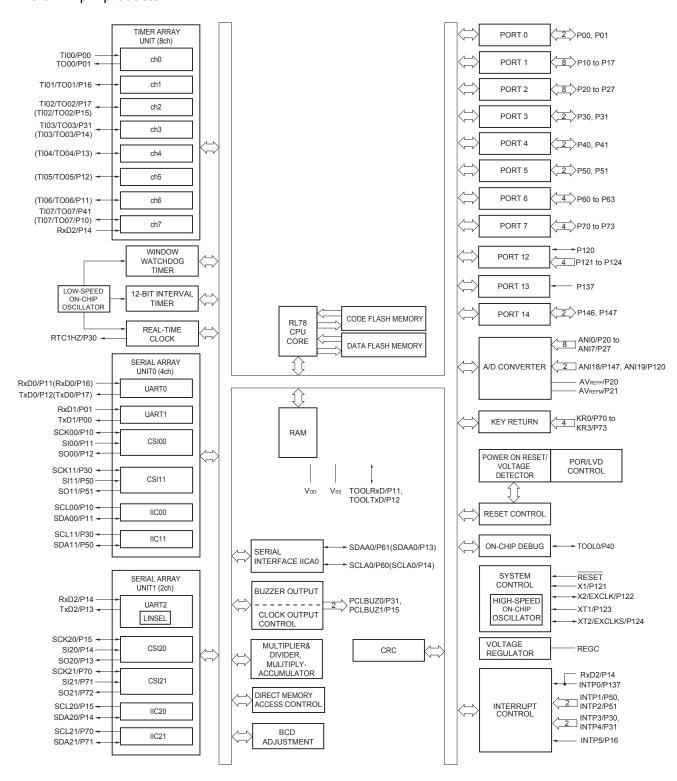
1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.


- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$

1.5.5 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (5/5)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μΑ
	ILIH2	P20 to P27, P1 <u>37,</u> P150 to P156, RESET	$V_I = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	lut1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EVsso				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	R∪	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vı = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	$V_{DD} = 5.0 \text{ V}$		2.1		mA
current Note 1		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.1		mA
			mode		Normal	$V_{DD} = 5.0 \text{ V}$		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				fin = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	fin = 8 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.8	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	fin = 4 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.7	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2}$	Normal	Square wave input		1.1	1.7	mA
			speed main) mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
				$f_{MX} = 8 MHz^{Note 2},$	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μА
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				Note 4 TA = +25°C	operation	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ
				Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μА
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ
				Note 4 TA = +70°C	operation	Resonator connection		4.4	6.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μА
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μА

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

- Notes 1. Total current flowing into V_{DD} and EV_{DDO}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDO} or V_{SS}, EV_{SSO}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$

LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V @ 1 MHz to 4 MHz

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions	·	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main	HS (high-	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	1.6 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
		Subsystem of	clock (fsuв)	1.8 V ≤ V _{DD} ≤ 5.5 V	28.5	30.5	31.3	μS
		operation						
		In the self	HS (high-	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
		programming mode	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
			LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	1.8 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
External system clock	fex	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} <			1.0		16.0	MHz
		1.8 V ≤ V _{DD} <	< 2.4 V		1.0		8.0	MHz
		1.6 V ≤ V _{DD} <			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} <	< 2.7 V		30			ns
		1.8 V ≤ V _{DD} <	< 2.4 V		60			ns
		1.6 V ≤ V _{DD} <	< 1.8 V		120			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
			1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spec	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	age 1.6 V	\leq EV _{DD0} \leq 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
frequency		main) mode		≤ EV _{DD0} < 4.0 V			8	MHz
				\leq EV _{DD0} $<$ 2.7 V			4	MHz
				≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spec		\leq EV _{DD0} \leq 5.5 V			4	MHz
		main) mode	_	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode		\leq EV _{DD0} \leq 5.5 V \leq EV _{DD0} $<$ 1.8 V			2	MHz MHz
Interrupt input high-level width,	tinth,	INTP0		≤ V _{DD} ≤ 5.5 V	1		=	μS
low-level width	tintl	INTP1 to INT		≤ EV _{DD0} ≤ 5.5 V	1			μS
Karrintanının tianın tarınlarınl	tkr	KR0 to KR7		≤ EV _{DD0} ≤ 5.5 V	250			ns
Key interrupt input low-level					1		1	
Key interrupt input low-level width			1.6 V	≤ EV _{DD0} < 1.8 V	1			μS

(Note and Remark are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	(Conditions H			LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
						MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t KCY1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{DD0} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	tксү1/2 — 7		tксү1/2 – 50		tксү1/2 — 50		ns
		2.7 V ≤ EV _{DI}	2.7 V ≤ EV _{DD0} ≤ 5.5 V			tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑)	tsıĸı	4.0 V ≤ EV _{DI}	4.0 V ≤ EV _{DD0} ≤ 5.5 V			110		110		ns
Note 1		2.7 V ≤ EV _{DI}	2.7 V ≤ EV _{DD0} ≤ 5.5 V			110		110		ns
SIp hold time (from SCKp [↑]) Note 2	tksı1	$2.7~V \leq EV_{DD0} \leq 5.5~V$		10		10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF No	te 4		10		10		10	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (hig	h-speed Mode	LS (low	r-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{split} 4.0 \ V & \le EV_{DD0} \le 5.5 \ V, \\ 2.7 \ V & \le V_b \le 4.0 \ V, \\ C_b & = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{split}$	300		1150		1150		ns
			$\begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		1150		1150		ns
			$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{Note}, \end{aligned}$	1150		1150		1150		ns
SCKp high-level width	tкн1	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	4.0 V,	tксү1/2 – 75		tксү1/2 – 75		tксу1/2 — 75		ns
		$2.7 \text{ V} \le \text{EV}_{DD}$ $2.3 \text{ V} \le \text{V}_{b} \le$ $C_{b} = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксу1/2 — 170		tксу1/2 — 170		tксу1/2 — 170		ns
		$1.8 \text{ V} \le \text{EV}_{DD}$ $1.6 \text{ V} \le \text{V}_{b} \le \text{C}_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	t _{KL1}	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$	00 ≤ 5.5 V, 4.0 V,	tксу1/2 — 12		tксү1/2 — 50		tксү1/2 — 50		ns
		$C_b = 30 \text{ pF},$ $2.7 \text{ V} \leq \text{EVor}$ $2.3 \text{ V} \leq \text{V}_b \leq$ $C_b = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		$1.8 \text{ V} \leq \text{EV}_{DD}$ $1.6 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 — 50		tксү1/2 – 50		tксу1/2 — 50		ns

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/2)

Parameter	Symbol	Conditions	HS (high- main) ode	LS (low		`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$ 4.0 \ V \le EV_{DD0} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V $	tксу2/2 - 12		tксүз/2 - 50		tkcy2/2 - 50		ns
		$ 2.7 \ V \le EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \le V_b \le 2.7 \ V $	tксу2/2 - 18		tксу2/2 - 50		tксү2/2 - 50		ns
		$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{aligned}$	tkcy2/2 - 50		tксу2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsık2	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V \end{aligned}$	1/fмcк + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{aligned}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output	tkso2	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0$ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \\ \text{V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \ \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	2.4 V ≤ EV _{DD0} ≤ 5.5 V			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA
		P40 to P47, P102 to P106, P120,	$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V}$			-10.0	mA
		P125 to P127, P130, P140 to P145 (When duty ≤ 70% Note 3)	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31,				-30.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80	$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
		to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 $(\mbox{When duty} \leq 70\%^{\mbox{Note 3}})$	2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \le EV_{DD0} \le 5.5~V$			-60.0	mA
	1он2	Per pin for P20 to P27, P150 to P156	$2,4~V \leq V_{DD} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{DD} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OH} = -10.0$ mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (2/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	lo _{L1}	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P37,	$2.7~V \leq EV_{DD0} < 4.0~V$			15.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (When duty ≤ 70% Note 3)	$2.4~\text{V} \leq \text{EV}_{\text{DD0}} < 2.7~\text{V}$			9.0	mA
		Total of P05, P06, P10 to P17, P30,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P31, P50 to P57, P60 to P67,	$2.7~V \leq EV_{DD0} < 4.0~V$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 $ (\text{When duty} \leq 70\%^{\text{Note 3}}) $	$2,4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				80.0	mA
	lo _{L2}	Per pin for P20 to P27, P150 to P156			_	0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.4~V \leq V_{DD} \leq 5.5~V$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

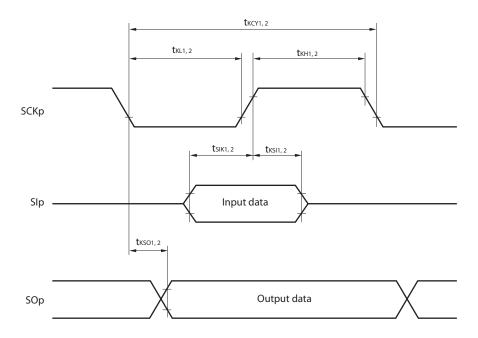
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

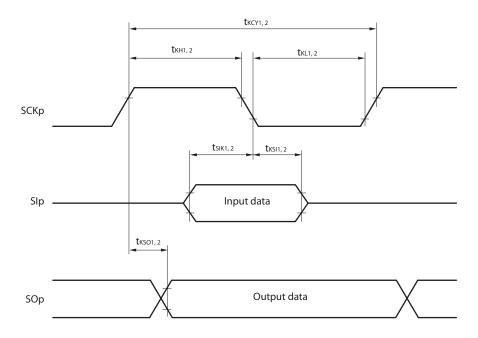
3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Items	Symbol		Conditions	3	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main	HS (high-speed	$1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
instruction execution time)		system clock (fmain) operation	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		Subsystem of operation	clock (fsua)	$2.4~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μS
		In the self	HS (high-speed	$1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
		programming mode	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
External system clock frequency	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	≤ 5.5 V		1.0		20.0	MHz
		2.4 V ≤ V _{DD} <	< 2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-	texh, texl	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		24			ns
level width, low-level width		2.4 V ≤ V _{DD} <	< 2.7 V		30			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	f то	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INT	TP11 2.4 V	$\leq EV_{DD0} \leq 5.5 V$	1			μS
Key interrupt input low-level width	t kr	KR0 to KR7	2.4 V	$\leq EV_{DD0} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsL		•		10			μS


Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

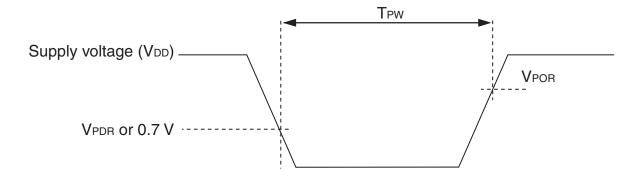
2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0$ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$	600		ns
			$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7$ $V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$	1000		ns
			$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0$ $V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$	2300		ns
SCKp high-level width	tкн1	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$		tксу1/2 - 150		ns
		$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$		tkcy1/2 - 340		ns
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$		tксу1/2 - 916		ns
SCKp low-level width	t _{KL1}	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$		tkcy1/2 - 24		ns
		$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$		tkcy1/2 - 36		ns
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$		tkcy1/2 - 100		ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vpd tolerance (for the 20- to 52-pin products)/EVpd tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed two pages after the next page.)

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	T _{PW}		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- nt may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc.

4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2016 Renesas Electronics Corporation. All rights reserved.