Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Data ila | | |----------------------------|---| | Details | | | Product Status | Active | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 82 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 8K x 8 | | RAM Size | 12K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 20x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LQFP | | Supplier Device Package | 100-LQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100pgafb-50 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Table 1-1. List of Ordering Part Numbers (1/12) | Pin | Package | Data | Fields of | Ordering Part Number | |---------|----------------------|---------|------------------|---| | count | - | flash | Application Note | | | 20 pins | 20-pin plastic LSSOP | Mounted | Α | R5F1006AASP#V0, R5F1006CASP#V0, R5F1006DASP#V0, | | | (7.62 mm (300), 0.65 | | | R5F1006EASP#V0 | | | mm pitch) | | | R5F1006AASP#X0, R5F1006CASP#X0, R5F1006DASP#X0, | | | | | | R5F1006EASP#X0 | | | | | D | R5F1006ADSP#V0, R5F1006CDSP#V0, R5F1006DDSP#V0, | | | | | | R5F1006EDSP#V0 | | | | | | R5F1006ADSP#X0, R5F1006CDSP#X0, R5F1006DDSP#X0, | | | | | | R5F1006EDSP#X0 | | | | | G | R5F1006AGSP#V0, R5F1006CGSP#V0, R5F1006DGSP#V0, | | | | | | R5F1006EGSP#V0 | | | | | | R5F1006AGSP#X0, R5F1006CGSP#X0, R5F1006DGSP#X0, | | | | | | R5F1006EGSP#X0 | | | | Not | Α | R5F1016AASP#V0, R5F1016CASP#V0, R5F1016DASP#V0, | | | | mounted | | R5F1016EASP#V0 | | | | | | R5F1016AASP#X0, R5F1016CASP#X0, R5F1016DASP#X0, | | | | | | R5F1016EASP#X0 | | | | | D | R5F1016ADSP#V0, R5F1016CDSP#V0, R5F1016DDSP#V0, | | | | | | R5F1016EDSP#V0 | | | | | | R5F1016ADSP#X0, R5F1016CDSP#X0, R5F1016DDSP#X0, | | | | | | R5F1016EDSP#X0 | | 24 pins | 24-pin plastic | Mounted | Α | R5F1007AANA#U0, R5F1007CANA#U0, R5F1007DANA#U0, | | | HWQFN (4 × 4mm, | | | R5F1007EANA#U0 | | | 0.5 mm pitch) | | | R5F1007AANA#W0, R5F1007CANA#W0, R5F1007DANA#W0, | | | | | | R5F1007EANA#W0 | | | | | D | R5F1007ADNA#U0, R5F1007CDNA#U0, R5F1007DDNA#U0, | | | | | | R5F1007EDNA#U0 | | | | | | R5F1007ADNA#W0, R5F1007CDNA#W0, R5F1007DDNA#W0, | | | | | G | R5F1007EDNA#W0
R5F1007AGNA#U0, R5F1007CGNA#U0, R5F1007DGNA#U0, | | | | | G | R5F1007AGNA#00, R5F1007CGNA#00, R5F1007DGNA#00, | | | | | | R5F1007AGNA#W0, R5F1007CGNA#W0, R5F1007DGNA#W0, | | | | | | R5F1007EGNA#W0 | | | | Not | Α | R5F1017AANA#U0, R5F1017CANA#U0, R5F1017DANA#U0. | | | | mounted | | R5F1017EANA#U0 | | | | mounted | | R5F1017AANA#W0, R5F1017CANA#W0, R5F1017DANA#W0, | | | | | | R5F1017EANA#W0 | | | | | D | R5F1017ADNA#U0, R5F1017CDNA#U0, R5F1017DDNA#U0, | | | | | | R5F1017EDNA#U0 | | | | | | R5F1017ADNA#W0, R5F1017CDNA#W0, R5F1017DDNA#W0, | | | | | | R5F1017EDNA#W0 | Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. ## 1.5.4 30-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ## 1.5.5 32-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ## 1.5.10 52-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual). 3. When setting to PIOR = 1 (2/2) | | | 1 | | 1 | | | | ı | | _ | 12) | |-------------------------------------|---|---|--|--|---|--------------------------|-----------------|-------------|----------------|-----------|----------------| | Ite | m | 40- | pin | 44 | -pin | 48 | -pin | 52 | -pin | 64 | -pin | | | | R5F100Ex | R5F101Ex | R5F100Fx | R5F101Fx | R5F100Gx | R5F101Gx | R5F100Jx | R5F101Jx | R5F100Lx | R5F101Lx | | Clock output/buzz | er output | | 2 | | 2 | | 2 | | 2 | | 2 | | | | (Main s | system cloz, 512 Hz, | ock: fмаіn =
1.024 kH: | :Hz, 1.25 N
: 20 MHz c
z, 2.048 kH
2.768 kHz | peration)
Iz, 4.096 k | Hz, 8.192 | | | 2.768 kHz | | | 8/10-bit resolution | A/D converter | 9 channels 10 channels 10 channels 12 channels 12 channels | | | | | | | | | | | Serial interface | CSI: 1CSI: 2[48-pin, 5 | channel/s
channel/s
channels
channels | simplified I
simplified I
simplified
ducts] | ² C: 1 chanı
² C: 1 chanı
I ² C: 2 char | nel/UART:
nnels/UAR | 1 channe
T (UART | l
supporting | LIN-bus): | 1 channe | I | | | | | CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel | | | | | | | | | | | | CSI: 2 channels/simplified I ² C: 2 channel I ² C bus 1 channel 1 channel | | | | | | | T | | 1 | | | NAC description and all of | | 1 channe | | 1 channe | | 1 channe | 3 1 | 1 channe | 3 1 | 1 chann | 2 I | | Multiplier and divid
accumulator | dei/multiply- | 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) | | | | | | | | | | | DMA controller | 1 | 2 channe | ls | | | 1 | | | | | | | Vectored | Internal | | 27 | | 27 | | 27 | | 27 | | 27 | | interrupt sources | External | | 7 | | 7 | | 10 | | 12 | | 13 | | Key interrupt Reset | | 4 4 6 8 8 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access | | | | | | | | | | | Power-on-reset ci | rcuit | • Power- | on-reset: | | (TYP.) | | | | | | | | Voltage detector | | • Rising edge: 1.67 V to 4.06 V (14 stages) • Falling edge: 1.63 V to 3.98 V (14 stages) | | | | | | | | | | | On-chip debug fur | nction | Provided | | | | | | | | | | | Power supply volt | age | $V_{DD} = 1.6 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +85^{\circ}\text{C})$ | | | | | | | | | | | | | $V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$ | | | | | | | | | | | Operating ambien | t temperature | T _A = 40 to | +85°C (| A: Consun | ner applica | | ndustrial a | pplications | 5) | | | Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. <R> (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (5/5) | Items | Symbol | Conditio | ns | | MIN. | TYP. | MAX. | Unit | |--------------------------------|--------|--|---------------------------------------|---------------------------------------|------|------|------|------| | Input leakage
current, high | Іинт | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | VI = EVDDO | | | | 1 | μΑ | | | ILIH2 | P20 to P27, P1 <u>37,</u>
P150 to P156, RESET | $V_{I} = V_{DD}$ | | | | 1 | μΑ | | | | | In input port or external clock input | | | 1 | μΑ | | | | | | | In resonator connection | | | 10 | μΑ | | Input leakage
current, low | lut1 | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | VI = EVSS0 | | | | -1 | μΑ | | | ILIL2 | P20 to P27, P137,
P150 to P156, RESET | Vı = Vss | | | | -1 | μΑ | | | Ішз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | Vı = Vss | In input port or external clock input | | | -1 | μΑ | | | | | | In resonator connection | | | -10 | μΑ | | On-chip pll-up resistance | R∪ | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P64 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vı = EVsso | , In input port | 10 | 20 | 100 | kΩ | **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. # (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | | HS (high-speed main) Mode | | LS (low-speed main) Mode | | LV (low-voltage main) Mode | | Unit | |--|---------------|--|----------------------------------|---------------------------|------|--------------------------|------|----------------------------|------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time | t KCY1 | tkcy1 ≥ 2/fclk | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | 62.5 | | 250 | | 500 | | ns | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V$ | 83.3 | | 250 | | 500 | | ns | | SCKp high-/low-level width | tкн1,
tкL1 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ t | | tксү1/2 —
7 | | tксү1/2 –
50 | | tксү1/2 —
50 | | ns | | | | 2.7 V ≤ EV _{DI} | oo ≤ 5.5 V | tксү1/2 –
10 | | tксү1/2 –
50 | | tксү1/2 —
50 | | ns | | SIp setup time (to SCKp↑) | tsıĸı | 4.0 V ≤ EV _{DI} | 00 ≤ 5.5 V | 23 | | 110 | | 110 | | ns | | Note 1 | | 2.7 V ≤ EV _{DI} | 00 ≤ 5.5 V | 33 | | 110 | | 110 | | ns | | SIp hold time (from SCKp↑) Note 2 | tksı1 | 2.7 V ≤ EV _{DI} | ₀₀ ≤ 5.5 V | 10 | | 10 | | 10 | | ns | | Delay time from SCKp↓ to SOp output Note 3 | tkso1 | C = 20 pF No | te 4 | | 10 | | 10 | | 10 | ns | - **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). - Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used. - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)) ### CSI mode connection diagram (during communication at same potential) # CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13) (3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$ | Parameter | Symbol | Conditio | ns | MIN. | TYP. | MAX. | Unit | |--|--------|---|---------------------------------------|----------------------------|------|-------------------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | 1.2 | ±7.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | 1.2 | ±10.5 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μS | | | | Target pin: ANI0 to ANI14, | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875 | | 39 | μS | | | | ANI16 to ANI26 | $1.8~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ | 57 | | 95 | μS | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375 | | 39 | μS | | | | Target pin: Internal | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625 | | 39 | μS | | | | reference voltage, and
temperature sensor output
voltage (HS (high-speed
main) mode) | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±0.85 | %FSR | | Full-scale error ^{Notes 1, 2} | Ers | | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±0.85 | %FSR | | Integral linearity errorNote 1 | ILE | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±4.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±6.5 | LSB | | Differential linearity error Note 1 | DLE | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±2.5 | LSB | | Analog input voltage | VAIN | ANI0 to ANI14 | • | 0 | | V _{DD} | V | | | | ANI16 to ANI26 | | 0 | | EV _{DD0} | ٧ | | | | Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (hi | | VBGR Note 4 | | V | | | | | Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (hi | • | V _{TMPS25} Note 4 | | | V | Notes 1. Excludes quantization error (±1/2 LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.). - 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics. #### 3.2 Oscillator Characteristics ### 3.2.1 X1, XT1 oscillator characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ | Parameter | Resonator | Conditions | MIN. | TYP. | MAX. | Unit | |--|--------------------|---------------------------------------|------|--------|------|------| | X1 clock oscillation | Ceramic resonator/ | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 1.0 | | 20.0 | MHz | | frequency (fx) ^{Note} | crystal resonator | $2.4~V \leq V_{DD} < 2.7~V$ | 1.0 | | 16.0 | MHz | | XT1 clock oscillation frequency (fx) ^{Note} | Crystal resonator | | 32 | 32.768 | 35 | kHz | **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics. Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used. Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator. #### 3.2.2 On-chip oscillator characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ | Oscillators | Parameters | | Conditions | | | MAX. | Unit | |--|------------|----------------|--------------------------------|------|----|------|------| | High-speed on-chip oscillator clock frequency Notes 1, 2 | fін | | | 1 | | 32 | MHz | | High-speed on-chip oscillator clock frequency accuracy | | –20 to +85 °C | $2.4~V \leq V_{DD} \leq 5.5~V$ | -1.0 | | +1.0 | % | | | | –40 to −20 °C | $2.4~V \leq V_{DD} \leq 5.5~V$ | -1.5 | | +1.5 | % | | | | +85 to +105 °C | $2.4~V \leq V_{DD} \leq 5.5~V$ | -2.0 | | +2.0 | % | | Low-speed on-chip oscillator clock frequency | fı∟ | | | | 15 | | kHz | | Low-speed on-chip oscillator clock frequency accuracy | | | | -15 | | +15 | % | **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register. 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time. # CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13) ### (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | | Conditions HS (high-speed main) Mode | | . , | Unit | |---------------|--------|-----------|--|---|---|----------------------|------|------| | | | | | | MIN. | MAX. | | | | Transfer rate | | Reception | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ | | | fmck/12 Note 1 | bps | | | | | | V , $2.7 \ V \le V_b \le 4.0 \ V$ | Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk | | 2.6 | Mbps | | | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$ | | | fmck/12 Note 1 | bps | | | | | | V , $2.3 \ V \le V_b \le 2.7 \ V$ | | Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk | | 2.6 | Mbps | | | | | $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ | | | fMCK/12
Notes 1,2 | bps | | | | | | $1.6~V \leq V_b \leq 2.0~V$ | Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk | | 2.6 | Mbps | | - Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only. - 2. The following conditions are required for low voltage interface when EVDDO < VDD. $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. - Remarks 1. V_b[V]: Communication line voltage - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. ### UART mode bit width (during communication at different potential) (reference) - $\begin{array}{lll} \textbf{Remarks 1.} & R_b[\Omega]: Communication line (TxDq) \ pull-up \ resistance, \\ & C_b[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ V_b[V]: \ Communication \ line \ voltage \\ \end{array}$ - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. ### CSI mode connection diagram (during communication at different potential) - Remarks 1. $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. # (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | C | Conditions | HS (high-spe | ed main) Mode | Unit | |---|---------------|---|--|---------------|---------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time Note 1 | tkCY2 | $4.0~V \leq EV_{DD0} \leq 5.5$ | 24 MHz < fмск | 28/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 24/fмск | | ns | | | | $2.7~V \leq V_b \leq 4.0~V$ | 8 MHz < fмcк ≤ 20 MHz | 20/fмск | | ns | | | | | 4 MHz < fmck ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | $2.7 \text{ V} \le EV_{DD0} < 4.0$ | 24 MHz < fмск | 40/fмск | | ns | | | | V, | $20~\text{MHz} < \text{fmck} \le 24~\text{MHz}$ | 32/fмск | | ns | | | | $2.3~V \leq V_b \leq 2.7~V$ | 16 MHz < fмcк ≤ 20 MHz | 28/fмск | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 24/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | $2.4~V \leq EV_{DD0} < 3.3$ | 24 MHz < fмск | 96/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 72/fмск | | ns | | | | $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$ | 16 MHz < fмcк ≤ 20 MHz | 64/fмск | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 52/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 32/fмск | | ns | | | | | fмcк ≤ 4 MHz | 20/fмск | | ns | | SCKp high-/low-level width | tкн2,
tкL2 | $4.0 \ V \le EV_{DD0} \le 5.$ $2.7 \ V \le V_b \le 4.0 \ V$ | 5 V, | tkcy2/2 - 24 | | ns | | | | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$ | | tkcy2/2 - 36 | | ns | | | | $ 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 2}} $ | | tkcy2/2 - 100 | | ns | | SIp setup time (to SCKp↑) Note2 | tsık2 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $ | 5 V, | 1/fмск + 40 | | ns | | | | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$ | 0 V, | 1/fмск + 40 | | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$ | 3 V, | 1/fмск + 60 | | ns | | Slp hold time
(from SCKp [↑]) Note 3 | tksi2 | | | 1/fmck + 62 | | ns | | Delay time from SCKp↓
to SOp output Note 4 | tkso2 | $4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$ | 5 V, 2.7 V \leq V _b \leq 4.0 V, .4 k Ω | | 2/fмск + 240 | ns | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2$ | 0 V, 2.3 V \leq V _b \leq 2.7 V, .7 kΩ | | 2/fмск + 428 | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $C_b = 30 \ pF, \ R_b = 5$ | 3 V, 1.6 V ≤ V _b ≤ 2.0 V
.5 kΩ | | 2/fмск + 1146 | ns | (Notes, Caution and Remarks are listed on the next page.) - Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. #### CSI mode connection diagram (during communication at different potential) - **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, - 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. (3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss) | Parameter | Symbol | Conditions | S | MIN. | TYP. | MAX. | Unit | |--|--------|---|--------------------------------|-------------------------|------|-------------------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | 1.2 | ±7.0 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μS | | | | Target pin: ANI0 to ANI14,
ANI16 to ANI26 | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875 | | 39 | μS | | | | | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | | | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375 | | 39 | μS | | | | | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625 | | 39 | μS | | | | voltage, and temperature sensor output voltage (HS | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | | | (high-speed main) mode) | | | | | | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | Full-scale errorNotes 1, 2 | Ers | 10-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | Integral linearity error ^{Note 1} | ILE | 10-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±4.0 | LSB | | Differential linearity error | DLE | 10-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | Analog input voltage | Vain | ANI0 to ANI14 | | 0 | | V _{DD} | ٧ | | | | ANI16 to ANI26 | | 0 | | EV _{DD0} | ٧ | | | | Internal reference voltage outproduction (2.4 V ≤ VDD ≤ 5.5 V, HS (high- | | V _{BGR} Note 3 | | V | | | | | Temperature sensor output vo $(2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, HS (high-$ | , | VTMPS25 Note: | 3 | V | | Notes 1. Excludes quantization error (±1/2 LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. ### 4.4 30-pin Products R5F100AAASP, R5F100ACASP, R5F100ADASP, R5F100AEASP, R5F100AFASP, R5F100AGASP R5F101AAASP, R5F101ACASP, R5F101ADASP, R5F101AEASP, R5F101AFASP, R5F101AGASP R5F100AADSP, R5F100ACDSP, R5F100ADDSP, R5F100AEDSP, R5F100AFDSP, R5F100AGDSP R5F101AADSP, R5F101ACDSP, R5F101ADDSP, R5F101AEDSP, R5F101AFDSP, R5F101AGDSP R5F100AAGSP, R5F100ACGSP, R5F100ADGSP,R5F100AEGSP, R5F100AFGSP, R5F100AGGSP | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LSSOP30-0300-0.65 | PLSP0030JB-B | S30MC-65-5A4-3 | 0.18 | #### NOTE Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition. | ITEM | MILLIMETERS | |------|------------------------| | Α | 9.85±0.15 | | В | 0.45 MAX. | | С | 0.65 (T.P.) | | D | $0.24^{+0.08}_{-0.07}$ | | Е | 0.1±0.05 | | F | 1.3±0.1 | | G | 1.2 | | Н | 8.1±0.2 | | I | 6.1±0.2 | | J | 1.0±0.2 | | K | 0.17±0.03 | | L | 0.5 | | М | 0.13 | | N | 0.10 | | Р | 3°+5° | | Т | 0.25 | | U | 0.6±0.15 | | | · | ©2012 Renesas Electronics Corporation. All rights reserved. ### 4.13 100-pin Products R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F101PGDFB, R5F101PGDFB, R5F101PJDFB, R5F101PJDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |-----------------------|--------------|-----------------|-----------------| | P-LFQFP100-14x14-0.50 | PLQP0100KE-A | P100GC-50-GBR-1 | 0.69 | ©2012 Renesas Electronics Corporation. All rights reserved. | | Description | | | |------|--------------|---------------|--| | Rev. | Date | Page | Summary | | 3.00 | Aug 02, 2013 | 118 | Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics | | | | 118 | Modification of table and note in 2.6.3 POR circuit characteristics | | | | 119 | Modification of table in 2.6.4 LVD circuit characteristics | | | | 120 | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode | | | | 120 | Renamed to 2.6.5 Power supply voltage rising slope characteristics | | | | 122 | Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes | | | | 123 | Modification of caution 1 and description | | | | 124 | Modification of table and remark 3 in Absolute Maximum Ratings (T _A = 25°C) | | | | 126 | Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics | | | | 126 | Modification of table in 3.2.2 On-chip oscillator characteristics | | | | 127 | Modification of note 3 in 3.3.1 Pin characteristics (1/5) | | | | 128 | Modification of note 3 in 3.3.1 Pin characteristics (2/5) | | | | 133 | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2) | | | | 135 | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2) | | | | 137 | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2) | | | | 139 | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2) | | | | 140 | Modification of (3) Peripheral Functions (Common to all products) | | | | 142 | Modification of table in 3.4 AC Characteristics | | | | 143 | Addition of Minimum Instruction Execution Time during Main System Clock Operation | | | | 143 | Modification of figure of AC Timing Test Points | | | | 143 | Modification of figure of External System Clock Timing | | | | 145 | Modification of figure of AC Timing Test Points | | | | 145 | Modification of description, note 1, and caution in (1) During communication at same potential (UART mode) | | | | 146 | Modification of description in (2) During communication at same potential (CSI mode) | | | | 147 | Modification of description in (3) During communication at same potential (CSI mode) | | | | 149 | Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode) | | | | 151 | Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) | | | | 152 to
154 | Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 155 | Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) | | | | 156 | Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) | | | | 157, 158 | Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | 160, 161 | Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) |