Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Data Converters Oscillator Type | A/D 20x8/10b Internal | |---------------------------------|---| | Data Converters | A/D 20x8/10b | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | EEPROM Size RAM Size | 12K x 8 | | Program Memory Type | FLASH | | Program Memory Size | 128KB (128K x 8) | | Number of I/O | 82 | | Peripherals | DMA, LVD, POR, PWM, WDT | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Speed | 32MHz | | Core Size | 16-Bit | | Core Processor | RL78 | | Product Status | Obsolete | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (3/12) | Pin
count | Package | Data flash | Fields of
Application | Ordering Part Number | |--------------|---|----------------|--------------------------|---| | | | | Note | | | 36 pins | 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch) | Mounted | A
G | R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CAALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0 R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0 R5F100CAGLA#U0, R5F100CAGLA#W0 R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0 | | | | Not
mounted | A | R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CGALA#U0 R5F101CAALA#W0, R5F101CCALA#W0, R5F101CDALA#W0, | | 40 pins | 40-pin plastic HWQFN
(6 × 6 mm, 0.5 mm
pitch) | Mounted | A | R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0 R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, | | | | | D | R5F100EHANA#W0 R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0 | | | | | G | R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EFGNA#W0, R5F100EHGNA#W0 | | | | Not
mounted | A
D | R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, R5F101EHANA#U0 R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EGANA#W0, R5F101EHANA#W0 R5F101EHANA#W0 R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EEDNA#U0, R5F101EEDNA#U0, R5F101EEDNA#U0, R5F101EHDNA#U0 R5F101EADNA#W0, R5F101ECDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, | Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. RL78/G13 1. OUTLINE ### 1.3.2 24-pin products • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$ - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C # (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbo | Conditions | | HS (high
main) | | LS (low-sp
Mo | , | LV (low-vol | | Unit | | |----------------------------------|-------|--|-----------------------------------|----------------------------------|----------------|---------------------------|----------------|----------------------------|----------------|----------------------------|----| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | | SIp setup time (to SCKp↑) Note 1 | tsık2 | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ $1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ | | 1/fмск+2
0 | | 1/fмск+30 | | 1/fмск+30 | | ns | | | | | | | 1/fмск+3
0 | | 1/fмск+30 | | 1/fмск+30 | | ns | | | | | | | 1/fмск+4
0 | | 1/fмск+40 | | 1/fмск+40 | | ns | | | | | 1.6 V ≤ | EV _{DD0} ≤ 5.5 V | _ | | 1/fмск+40 | | 1/fмск+40 | | ns | | | SIp hold time
(from SCKp↑) | tksi2 | 1.8 V ≤ E | EV _{DD0} ≤ 5.5 V | 1/fмск+3
1 | | 1/fмск+31 | | 1/fмск+31 | | ns | | | Note 2 | | $1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ | | 1/fмск+
250 | | 1/fмск+
250 | | 1/fмск+
250 | | ns | | | | | | | _ | | 1/fмск+
250 | | 1/fмск+
250 | | ns | | | Delay time from SCKp↓ to | tkso2 | | C = 30
pF Note 4 | $2.7~V \leq EV_{DD0} \leq 5.5$ V | | 2/f _{MCK+}
44 | | 2/f _{MCK+}
110 | | 2/f _{MCK+}
110 | ns | | SOp output Note | | | $2.4~V \le EV_{DD0} \le 5.5$ V | | 2/fмск+
75 | | 2/fмск+
110 | | 2/fмск+
110 | ns | | | | | | $1.8~V \le EV_{DD0} \le 5.5$ V | | 2/fмск+
110 | | 2/fмск+
110 | | 2/fмск+
110 | ns | | | | | | 1.7 V ≤ EV _{DD0} ≤ 5.5 V | | 2/fмск+
220 | | 2/fмск+
220 | | 2/fмск+
220 | ns | | | | | | 1.6 V ≤ EV _{DD0} ≤ 5.5 V | | _ | | 2/fмск+
220 | | 2/fмск+
220 | ns | | - **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SOp output lines. - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). - **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14) - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) ### CSI mode connection diagram (during communication at different potential) - **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage - **2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. ### Simplified I²C mode connection diagram (during communication at different potential) ### Simplified I²C mode serial transfer timing (during communication at different potential) - **Remarks 1.** $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13) ## 2.5.2 Serial interface IICA ## (1) I2C standard mode (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | С | Conditions | , , | h-speed
Mode | , | /-speed
Mode | , | -voltage
Mode | Unit | |----------------------------------|---------------|-----------------------------------|--|------|-----------------|------|-----------------|------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCLA0 clock frequency | fscL | Standard | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ | 0 | 100 | 0 | 100 | 0 | 100 | kHz | | | | mode: | 1.8 V ≤ EV _{DD0} ≤ 5.5 V | 0 | 100 | 0 | 100 | 0 | 100 | kHz | | | | fc∟k≥ 1 MHz | 1.7 V ≤ EV _{DD0} ≤ 5.5 V | 0 | 100 | 0 | 100 | 0 | 100 | kHz | | | | | 1.6 V ≤ EV _{DD0} ≤ 5.5 V | _ | _ | 0 | 100 | 0 | 100 | kHz | | Setup time of restart | tsu:sta | 2.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.7 | | 4.7 | | 4.7 | | μS | | condition | | 1.8 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.7 | | 4.7 | | 4.7 | | μS | | | | 1.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.7 | | 4.7 | | 4.7 | | μS | | | | 1.6 V ≤ EV _{DD0} ≤ | ≤ 5.5 V | _ | _ | 4.7 | | 4.7 | | μS | | Hold time ^{Note 1} | thd:STA | 2.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.0 | | 4.0 | | 4.0 | | μS | | | | 1.8 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.0 | | 4.0 | | 4.0 | | μS | | | | 1.7 V ≤ EV _{DD0} : | 4.0 | | 4.0 | | 4.0 | | μS | | | | | 1.6 V ≤ EV _{DD0} ≤ | ≤ 5.5 V | _ | _ | 4.0 | | 4.0 | | μS | | Hold time when SCLA0 = | tLOW | 2.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.7 | | 4.7 | | 4.7 | | μS | | " <u>L</u> " | | 1.8 V ≤ EV _{DD0} : | $1.8~V \leq EV_{DD0} \leq 5.5~V$ | | | 4.7 | | 4.7 | | μS | | | | 1.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.7 | | 4.7 | | 4.7 | | μS | | | | 1.6 V ≤ EV _{DD0} ≤ | ≤ 5.5 V | _ | _ | 4.7 | | 4.7 | | μS | | Hold time when SCLA0 = | t HIGH | 2.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.0 | | 4.0 | | 4.0 | | μS | | "H" | | 1.8 V ≤ EV _{DD0} : | 4.0 | | 4.0 | | 4.0 | | μS | | | | | 1.7 V ≤ EV _{DD0} : | 4.0 | | 4.0 | | 4.0 | | μS | | | | | 1.6 V ≤ EV _{DD0} ≤ 5.5 V | | _ | _ | 4.0 | | 4.0 | | μS | | Data setup time | tsu:dat | 2.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 250 | | 250 | | 250 | | ns | | (reception) | | 1.8 V ≤ EV _{DD0} : | ≤ 5.5 V | 250 | | 250 | | 250 | | ns | | | | 1.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 250 | | 250 | | 250 | | ns | | | | 1.6 V ≤ EV _{DD0} ≤ | ≤ 5.5 V | _ | _ | 250 | | 250 | | ns | | Data hold time | thd:dat | 2.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 0 | 3.45 | 0 | 3.45 | 0 | 3.45 | μS | | (transmission) ^{Note 2} | | 1.8 V ≤ EV _{DD0} : | ≤ 5.5 V | 0 | 3.45 | 0 | 3.45 | 0 | 3.45 | μS | | | | 1.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 0 | 3.45 | 0 | 3.45 | 0 | 3.45 | μS | | | | 1.6 V ≤ EV _{DD0} ≤ | ≤ 5.5 V | _ | _ | 0 | 3.45 | 0 | 3.45 | μS | | Setup time of stop | tsu:sto | 2.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.0 | | 4.0 | | 4.0 | | μS | | condition | | 1.8 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.0 | | 4.0 | | 4.0 | | μS | | | | 1.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.0 | | 4.0 | | 4.0 | | μS | | | | 1.6 V ≤ EV _{DD0} ≤ | ≤ 5.5 V | | | 4.0 | | 4.0 | | μS | | Bus-free time | t BUF | 2.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.7 | | 4.7 | | 4.7 | | μS | | | | 1.8 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.7 | | 4.7 | | 4.7 | | μS | | | | 1.7 V ≤ EV _{DD0} : | ≤ 5.5 V | 4.7 | | 4.7 | | 4.7 | | μS | | | | 1.6 V ≤ EV _{DD0} ≤ | ≤ 5.5 V | _ | | 4.7 | | 4.7 | | μS | (Notes, Caution and Remark are listed on the next page.) # 2.6 Analog Characteristics #### 2.6.1 A/D converter characteristics Classification of A/D converter characteristics | | | Reference Voltage | | |----------------------------|--------------------------------|-----------------------------|--| | | Reference voltage (+) = AVREFP | Reference voltage (+) = VDD | Reference voltage (+) = V _{BGR} | | Input channel | Reference voltage (-) = AVREFM | Reference voltage (-) = Vss | Reference voltage (–) = AVREFM | | ANI0 to ANI14 | Refer to 2.6.1 (1) . | Refer to 2.6.1 (3) . | Refer to 2.6.1 (4) . | | ANI16 to ANI26 | Refer to 2.6.1 (2) . | | | | Internal reference voltage | Refer to 2.6.1 (1) . | | _ | | Temperature sensor output | | | | | voltage | | | | (1) When reference voltage (+)= AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage (TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V) | Parameter | Symbol | Con | ditions | MIN. | TYP. | MAX. | Unit | |--|-----------------|--|--|--------|-------------------------|--------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution | 1.8 V ≤ AV _{REFP} ≤ 5.5 V | | 1.2 | ±3.5 | LSB | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$ | | 1.2 | ±7.0 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μS | | | | Target pin: ANI2 to
ANI14 | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875 | | 39 | μS | | | | | $1.8~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ | 57 | | 95 | μS | | | | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375 | | 39 | μS | | | | Target pin: Internal | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625 | | 39 | μS | | | | reference voltage, and
temperature sensor
output voltage
(HS (high-speed main)
mode) | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μs | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution | 1.8 V ≤ AV _{REFP} ≤ 5.5 V | | | ±0.25 | %FSR | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$ | | | ±0.50 | %FSR | | Full-scale error Notes 1, 2 | E _{FS} | 10-bit resolution | $1.8~V \leq AV_{REFP} \leq 5.5~V$ | | | ±0.25 | %FSR | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$ | | | ±0.50 | %FSR | | Integral linearity error ^{Note 1} | ILE | 10-bit resolution | $1.8~V \leq AV_{REFP} \leq 5.5~V$ | | | ±2.5 | LSB | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$ | | | ±5.0 | LSB | | Differential linearity error Note 1 | DLE | 10-bit resolution | $1.8~V \leq AV_{REFP} \leq 5.5~V$ | | | ±1.5 | LSB | | | | $AV_{REFP} = V_{DD}^{Note 3}$ | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$ | | | ±2.0 | LSB | | Analog input voltage | VAIN | ANI2 to ANI14 | | 0 | | AVREFP | V | | | | Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS | | | V _{BGR} Note 5 | | V | | | | Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS | • | \ | /TMPS25 Note | 5 | V | (Notes are listed on the next page.) # LVD Detection Voltage of Interrupt & Reset Mode (Ta = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V) | Parameter | Symbol | | Conc | litions | MIN. | TYP. | MAX. | Unit | |---------------------|--------------------|---------------------|--------------------------------|------------------------------|------|------|------|------| | Interrupt and reset | V _{LVDA0} | V _{POC2} , | $V_{POC1}, V_{POC0} = 0, 0, 0$ | , falling reset voltage | 1.60 | 1.63 | 1.66 | V | | mode | VLVDA1 | | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage | 1.74 | 1.77 | 1.81 | V | | | | | | Falling interrupt voltage | 1.70 | 1.73 | 1.77 | V | | | VLVDA2 | | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage | 1.84 | 1.88 | 1.91 | V | | | | | | Falling interrupt voltage | 1.80 | 1.84 | 1.87 | V | | | VLVDA3 | | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V | | | | | | Falling interrupt voltage | 2.80 | 2.86 | 2.91 | V | | | V _{LVDB0} | VPOC2, | VPOC1, VPOC0 = 0, 0, 1 | , falling reset voltage | 1.80 | 1.84 | 1.87 | V | | | V _{LVDB1} | | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage | 1.94 | 1.98 | 2.02 | V | | | | | | Falling interrupt voltage | 1.90 | 1.94 | 1.98 | V | | | V _{LVDB2} | | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage | 2.05 | 2.09 | 2.13 | V | | | | | | Falling interrupt voltage | 2.00 | 2.04 | 2.08 | V | | | V _{LVDB3} | | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage | 3.07 | 3.13 | 3.19 | V | | | | | | Falling interrupt voltage | 3.00 | 3.06 | 3.12 | V | | | V _{LVDC0} | V _{POC2} , | VPOC1, VPOC0 = 0, 1, 0 | , falling reset voltage | 2.40 | 2.45 | 2.50 | V | | | VLVDC1 | | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage | 2.56 | 2.61 | 2.66 | V | | | | | | Falling interrupt voltage | 2.50 | 2.55 | 2.60 | V | | | VLVDC2 | | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage | 2.66 | 2.71 | 2.76 | V | | | | | | Falling interrupt voltage | 2.60 | 2.65 | 2.70 | V | | | VLVDC3 | | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage | 3.68 | 3.75 | 3.82 | V | | | | | | Falling interrupt voltage | 3.60 | 3.67 | 3.74 | V | | | V _{LVDD0} | V _{POC2} , | VPOC1, VPOC0 = 0, 1, 1 | , falling reset voltage | 2.70 | 2.75 | 2.81 | V | | | VLVDD1 | | LVIS1, LVIS0 = 1, 0 | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V | | | | | | Falling interrupt voltage | 2.80 | 2.86 | 2.91 | V | | | VLVDD2 | | LVIS1, LVIS0 = 0, 1 | Rising release reset voltage | 2.96 | 3.02 | 3.08 | V | | | | | _ | Falling interrupt voltage | 2.90 | 2.96 | 3.02 | V | | | V _{LVDD3} | | LVIS1, LVIS0 = 0, 0 | Rising release reset voltage | 3.98 | 4.06 | 4.14 | V | | | | | | Falling interrupt voltage | 3.90 | 3.98 | 4.06 | V | Absolute Maximum Ratings (TA = 25°C) (2/2) | Parameter | Symbols | | Conditions | Ratings | Unit | |-------------------------------|------------------|------------------------------|--|-----------------|------| | Output current, high | Іон1 | Per pin | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | -40 | mA | | | | Total of all pins
-170 mA | P00 to P04, P07, P32 to P37,
P40 to P47, P102 to P106, P120,
P125 to P127, P130, P140 to
P145 | - 70 | mA | | | | | P05, P06, P10 to P17, P30, P31,
P50 to P57, P64 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100, P101,
P110 to P117, P146, P147 | -100 | mA | | | Іон2 | Per pin | P20 to P27, P150 to P156 | -0.5 | mA | | | | Total of all pins | | -2 | mA | | Output current, low | lo _{L1} | Per pin | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | 40 | mA | | | | Total of all pins
170 mA | P00 to P04, P07, P32 to P37,
P40 to P47, P102 to P106, P120,
P125 to P127, P130, P140 to
P145 | 70 | mA | | | | | P05, P06, P10 to P17, P30, P31,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100, P101,
P110 to P117, P146, P147 | 100 | mA | | | lo _{L2} | Per pin | P20 to P27, P150 to P156 | 1 | mA | | | | Total of all pins | | 5 | mA | | Operating ambient temperature | TA | In normal operati | on mode programming mode | -40 to +105 | °C | | | l | | | | | Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}. \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5) | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------------|------------------|---|---|-------------------------|------|------|------| | Output voltage,
high | V _{OH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA | EV _{DD0} – 0.7 | | | V | | | | P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | $\label{eq:loss_problem} \begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$ | EV _{DD0} – 0.6 | | | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OH1} = -1.5~mA$ | EV _{DD0} – 0.5 | | | V | | | V _{OH2} | P20 to P27, P150 to P156 | 2.4 V \leq V _{DD} \leq 5.5 V, I _{OH2} = $-100~\mu$ A | V _{DD} – 0.5 | | | V | | Output voltage, low | V _{OL1} | P37, P40 to P47, P50 to P57, P64
to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P106, P110 to
P117, P120, P125 to P127, P130,
P140 to P147 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$ | | | 0.7 | V | | | | | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$ | | | 0.6 | V | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$ | | | 0.4 | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$ | | | 0.4 | V | | | V _{OL2} | P20 to P27, P150 to P156 | 2.4 V \leq V _{DD} \leq 5.5 V, I _{DL2} = 400 μ A | | | 0.4 | V | | | Vоьз | P60 to P63 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$ | | | 2.0 | V | | | | | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$ | | | 0.4 | V | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 3.0~mA$ | | | 0.4 | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$ | | | 0.4 | V | Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. # (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2) | Parameter | Symbol | | Conditions | | | MIN. | TYP. | MAX. | Unit | |-----------|------------------------|------------------------|-------------------------------------|--|-------------------------|------|------|-------|------| | Supply | I _{DD2} | HALT | HS (high- | fih = 32 MHz Note 4 | V _{DD} = 5.0 V | | 0.54 | 2.90 | mA | | current | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.54 | 2.90 | mA | | | | | | fih = 24 MHz Note 4 | V _{DD} = 5.0 V | | 0.44 | 2.30 | mA | | | | | | | V _{DD} = 3.0 V | | 0.44 | 2.30 | mA | | | | | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.40 | 1.70 | mA | | | | | | | V _{DD} = 3.0 V | | 0.40 | 1.70 | mA | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.28 | 1.90 | mA | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.45 | 2.00 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.28 | 1.90 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.45 | 2.00 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.19 | 1.02 | mA | | | | | | V _{DD} = 5.0 V | Resonator connection | | 0.26 | 1.10 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.19 | 1.02 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.26 | 1.10 | mA | | | | Subsystem | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.25 | 0.57 | μА | | | | | | clock | T _A = -40°C | Resonator connection | | 0.44 | 0.76 | μА | | | | | operation | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.30 | 0.57 | μА | | | | | | T _A = +25°C | Resonator connection | | 0.49 | 0.76 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.37 | 1.17 | μА | | | | | | T _A = +50°C | Resonator connection | | 0.56 | 1.36 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.53 | 1.97 | μА | | | | | | T _A = +70°C | Resonator connection | | 0.72 | 2.16 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.82 | 3.37 | μА | | | | | | T _A = +85°C | Resonator connection | | 1.01 | 3.56 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 3.01 | 15.37 | μА | | | | | | T _A = +105°C | Resonator connection | | 3.20 | 15.56 | μА | | | IDD3 ^{Note 6} | STOP | T _A = -40°C | | | | 0.18 | 0.50 | μА | | | | mode ^{Note 8} | T _A = +25°C | | | | 0.23 | 0.50 | μА | | | | | T _A = +50°C | | | | 0.30 | 1.10 | μА | | | | | T _A = +70°C | | | | 0.46 | 1.90 | μА | | | | | T _A = +85°C | | | | 0.75 | 3.30 | μА | | | | | T _A = +105°C | | | | 2.94 | 15.30 | μА | (Notes and Remarks are listed on the next page.) #### (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Condit | ions | HS (high-spee | ed main) Mode | Unit | |---------------|--------|--------------|--|---|---------------|----------------|------| | | | | | | MIN. | MAX. | | | Transfer rate | | Transmission | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ | | | Note 1 | bps | | | | | $V,$ $2.7~V \leq V_b \leq 4.0~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$ | | 2.6 Note 2 | Mbps | | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$ | | | Note 3 | bps | | | | | $V,$ $2.3~V \leq V_b \leq 2.7~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$ | | 1.2 Note 4 | Mbps | | | | | 2.4 V ≤ EV _{DD0} < 3.3 | | | Note 5 | bps | | | | | $V,$ $1.6~V \leq V_b \leq 2.0~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 V$ | | 0.43
Note 6 | Mbps | **Notes 1.** The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer. - 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq EV_{DDO} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer. # (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | C | Conditions | HS (high-spe | ed main) Mode | Unit | |---|---------------|--|--|---------------|---------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time Note 1 | tkCY2 | $4.0~V \leq EV_{DD0} \leq 5.5$ | 24 MHz < fмск | 28/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 24/fмск | | ns | | | | $2.7~V \leq V_b \leq 4.0~V$ | 8 MHz < fмcк ≤ 20 MHz | 20/fмск | | ns | | | | | 4 MHz < fmck ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | $2.7 \text{ V} \le EV_{DD0} < 4.0$ | 24 MHz < fмск | 40/fмск | | ns | | | | V, | $20~\text{MHz} < \text{fmck} \le 24~\text{MHz}$ | 32/fмск | | ns | | | | $2.3~V \leq V_b \leq 2.7~V$ | 16 MHz < fмcк ≤ 20 MHz | 28/fмск | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 24/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | | 24 MHz < fмск | 96/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 72/fмск | | ns | | | | $1.6 \ V \leq V_b \leq 2.0 \ V$ | 16 MHz < fмcк ≤ 20 MHz | 64/fмск | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 52/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 32/fмск | | ns | | | | | fмcк ≤ 4 MHz | 20/fмск | | ns | | SCKp high-/low-level width | tкн2,
tкL2 | $4.0 \ V \le EV_{DD0} \le 5.$ $2.7 \ V \le V_b \le 4.0 \ V$ | $\begin{split} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{split}$ | | | ns | | | | $ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V} $ | | tkcy2/2 - 36 | | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$ | | tkcy2/2 - 100 | | ns | | SIp setup time (to SCKp↑) Note2 | tsık2 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $ | 5 V, | 1/fмск + 40 | | ns | | | | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$ | 0 V, | 1/fмск + 40 | | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$ | 3 V, | 1/fмск + 60 | | ns | | Slp hold time
(from SCKp [↑]) Note 3 | tksi2 | | | 1/fmck + 62 | | ns | | Delay time from SCKp↓
to SOp output Note 4 | tkso2 | $4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$ | 5 V, 2.7 V \leq V _b \leq 4.0 V, .4 k Ω | | 2/fмск + 240 | ns | | to cop output | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2$ | 0 V, 2.3 V \leq V _b \leq 2.7 V, .7 kΩ | | 2/fмск + 428 | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $C_b = 30 \ pF, \ R_b = 5$ | 3 V, 1.6 V ≤ V _b ≤ 2.0 V
.5 kΩ | | 2/fмск + 1146 | ns | (Notes, Caution and Remarks are listed on the next page.) (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$ | Parameter | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |--|--------|------------------|--------------------------------|------|------|-------------------------|------| | Resolution | RES | | | | 8 | | bit | | Conversion time | tconv | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | Zero-scale error ^{Notes 1, 2} | Ezs | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | Integral linearity error ^{Note 1} | ILE | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | Differential linearity error Note 1 | DLE | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±1.0 | LSB | | Analog input voltage | Vain | | | 0 | | V _{BGR} Note 3 | V | - **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. - 4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM. ### 3.6.2 Temperature sensor/internal reference voltage characteristics (TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode) | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------------------|--|----------------------------|------|------|------|-------| | Temperature sensor output voltage | nperature sensor output voltage V _{TMPS25} Setting ADS register = 80H, T _A = +25°C | | | 1.05 | | V | | Internal reference voltage | V _{BGR} | Setting ADS register = 81H | 1.38 | 1.45 | 1.5 | ٧ | | Temperature coefficient | emperature coefficient FVTMPS Temperature sensor that depends on the temperature | | | -3.6 | | mV/°C | | Operation stabilization wait time | tamp | | 5 | | | μS | ### 4.5 32-pin Products R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F100BGGNA, R5F100BGNA, R5F100BGN | JEITA Package code | RENESAS code | Previous code | MASS (TYP.)[g] | |--------------------|--------------|----------------|----------------| | P-HWQFN32-5x5-0.50 | PWQN0032KB-A | P32K8-50-3B4-5 | 0.06 | | Referance | Dimens | Dimension in Millimeters | | | |----------------|--------|--------------------------|------|--| | Symbol | Min | Nom | Max | | | D | 4.95 | 5.00 | 5.05 | | | E | 4.95 | 5.00 | 5.05 | | | Α | | | 0.80 | | | A ₁ | 0.00 | | | | | b | 0.18 | 0.25 | 0.30 | | | е | | 0.50 | | | | Lp | 0.30 | 0.40 | 0.50 | | | х | | | 0.05 | | | у | | | 0.05 | | | Z _D | | 0.75 | | | | Z _E | | 0.75 | | | | C ₂ | 0.15 | 0.20 | 0.25 | | | D ₂ | | 3.50 | _ | | | E ₂ | | 3.50 | | | \bigcirc 2013 Renesas Electronics Corporation. All rights reserved. ### 4.6 36-pin Products R5F100CAALA, R5F100CCALA, R5F100CDALA, R5F100CEALA, R5F100CFALA, R5F100CGALA R5F101CAALA, R5F101CCALA, R5F101CDALA, R5F101CEALA, R5F101CFALA, R5F101CGALA R5F100CAGLA, R5F100CCGLA, R5F100CDGLA, R5F100CEGLA, R5F100CFGLA, R5F100CGGLA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |--------------------|--------------|----------------|-----------------| | P-WFLGA36-4x4-0.50 | PWLG0036KA-A | P36FC-50-AA4-2 | 0.023 | ©2012 Renesas Electronics Corporation. All rights reserved. | | | Description | | | | |------|--------------|---|--|--|--| | Rev. | Date | Page | Summary | | | | 3.00 | Aug 02, 2013 | 81 | Modification of figure of AC Timing Test Points | | | | | | 81 | Modification of description and note 3 in (1) During communication at same potential (UART mode) | | | | | | 83 | Modification of description in (2) During communication at same potential (CSI mode) | | | | | | 84 | Modification of description in (3) During communication at same potential (CSI mode) | | | | | | 85 | Modification of description in (4) During communication at same potential (CSI mode) (1/2) | | | | | | 86 | Modification of description in (4) During communication at same potential (CSI mode) (2/2) | | | | | | 88 | Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2) | | | | | | 89 | Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2) | | | | | | 91 | Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) | | | | | | 92, 93 | Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | | | 94 | Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | | | 95 | Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2) | | | | | | 96 Modification of table and caution in (7) Communication at differ (2.5 V, 3 V) (CSI mode) (2/2) | | | | | | | 97 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) | | | | | | 98 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) | | | | | | 99 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | | | 100 | Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | | | 102 | Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2) | | | | | | 103 | Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2) | | | | | | 106 | Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | | | 107 | Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | | | 109 | Addition of (1) I ² C standard mode | | | | | | 111 | Addition of (2) I ² C fast mode | | | | | | 112 | Addition of (3) I ² C fast mode plus | | | | | | 112 | Modification of IICA serial transfer timing | | | | | | 113 | Addition of table in 2.6.1 A/D converter characteristics | | | | | | 113 | Modification of description in 2.6.1 (1) | | | | | | 114 | Modification of notes 3 to 5 in 2.6.1 (1) | | | | | | 115 | Modification of description and notes 2, 4, and 5 in 2.6.1 (2) | | | | | | 116 | Modification of description and notes 3 and 4 in 2.6.1 (3) | | | | | | 117 | Modification of description and notes 3 and 4 in 2.6.1 (4) | | |