

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 20x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100pggfa-v0

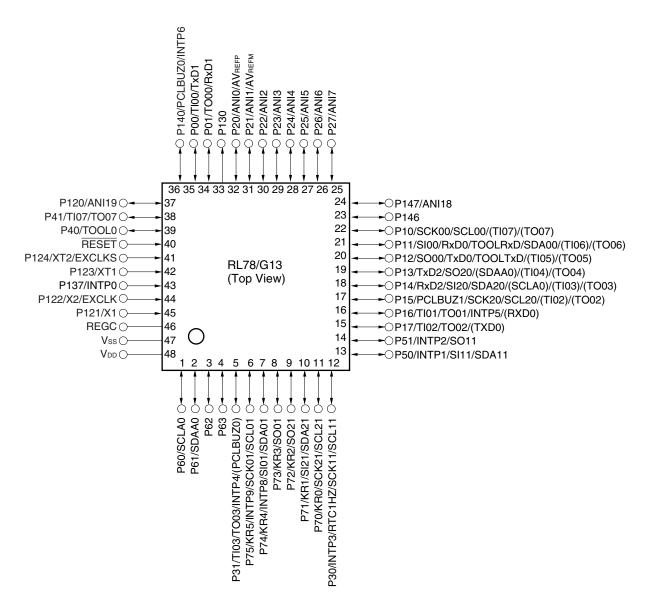
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(4/12)

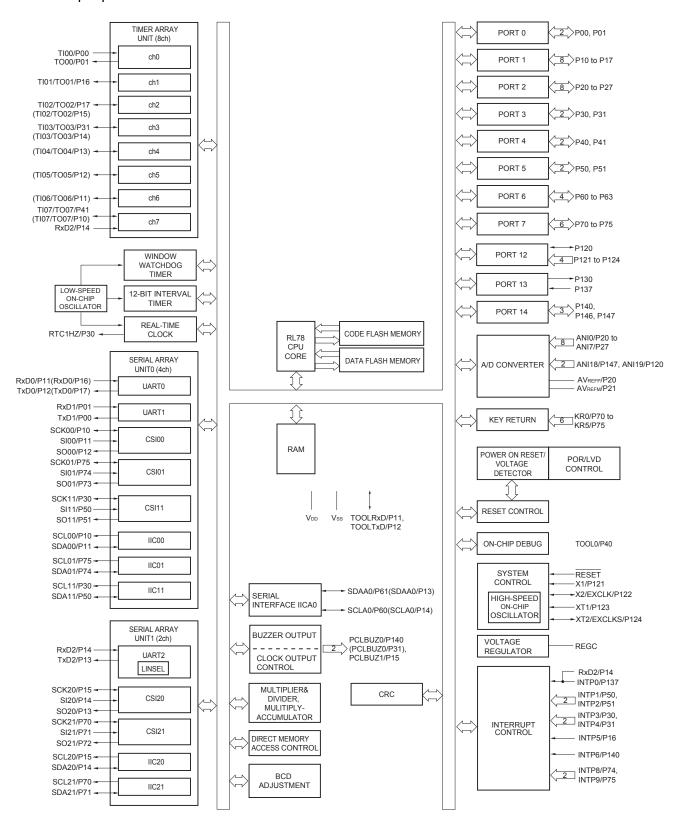
Pin count	Package	Data flash	Fields of Application	Ordering Part Number
44 pins	44-pin plastic LQFP (10 × 10 mm, 0.8 mm	Mounted	А	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0, R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
	,			R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not	Α	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
		mounted		R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.9 48-pin products

• 48-pin plastic LFQFP (7 x 7 mm, 0.5 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.9 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

(2/2)

							(2/2)		
Ite	m	80-	pin	100	-pin	128	3-pin		
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx		
Clock output/buzz	er output		2	1	2		2		
		• 2.44 kHz, 4.8	8 kHz, 9.76 kHz,	1.25 MHz, 2.5 M	Hz, 5 MHz, 10 M	ИНz			
		· ·	clock: fmain = 20						
			• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation)						
0/40 1 "	A /D								
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels			
Serial interface			, 128-pin product						
			•	2 channels/UAR					
			•	2 channels/UAR		tina I IN-hus): 1 (channel		
		 CSI: 2 channels/simplified l²C: 2 channels/UART (UART supporting LIN-bus): 1 channel CSI: 2 channels/simplified l²C: 2 channels/UART: 1 channel 							
	I ² C bus	2 channels	·	2 channels		2 channels			
Multiplier and divid	der/multiply-	• 16 bits × 16 bi	ts = 32 bits (Uns	igned or signed)					
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)							
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)							
DMA controller		4 channels	4 channels						
Vectored	Internal		37	3	37		41		
interrupt sources	External		13	1	3	13			
Key interrupt			8	1	8		8		
Reset		Reset by RES							
			by watchdog tim						
			by power-on-res by voltage detec						
				tion execution Note					
			by RAM parity e						
			by illegal-memor						
Power-on-reset cir	rcuit	Power-on-res	et: 1.51 V (TY	P.)					
		Power-down-	reset: 1.50 V (TY	P.)					
Voltage detector		Rising edge :		.06 V (14 stages))				
		Falling edge:	1.63 V to 3	3.98 V (14 stages)	1				
On-chip debug fur	nction	Provided							
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5$	$V (T_A = -40 \text{ to } +8$	5°C)					
		$V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$							
Operating ambien	t temperature	T _A = 40 to +85°C (A: Consumer applications, D: Industrial applications)							
		$T_A = 40 \text{ to } +105$	°C (G: Industrial	applications)					
		1							

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.54	1.63	mA
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.54	1.63	mA
				$f_{IH} = 24 \text{ MHz}^{\text{Note 4}}$	V _{DD} = 5.0 V		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μА
			speed main) mode Note 7		V _{DD} = 2.0 V		260	530	μА
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
		voltage main) mode		V _{DD} = 2.0 V		420	640	μА	
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
		l T	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA	
			V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA	
			$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.26	0.67	mA	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA	
			$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.26	0.67	mA	
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μΑ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		145	380	μΑ
			mode	$f_{MX} = 8 MHz^{Note 3},$	Square wave input		95	330	μΑ
				$V_{DD} = 2.0 \text{ V}$	Resonator connection		145	380	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μΑ
			clock	T _A = -40°C	Resonator connection		0.44	0.76	μΑ
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μΑ
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.37	1.17	μΑ
				T _A = +50°C	Resonator connection		0.56	1.36	μΑ
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.53	1.97	μΑ
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.82	3.37	μΑ
				T _A = +85°C	Resonator connection		1.01	3.56	μΑ
	IDD3 Note 6	STOP	T _A = -40°C				0.18	0.50	μΑ
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μΑ
			T _A = +50°C				0.30	1.10	μΑ
			T _A = +70°C				0.46	1.90	μА
			T _A = +85°C				0.75	3.30	μΑ

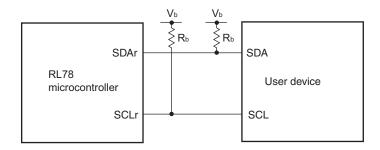
(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

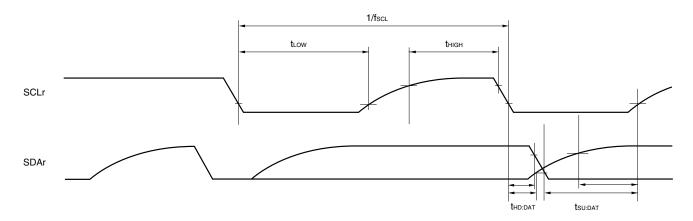
HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz


- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 4 \text{ MHz}$

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 01, 02, 10, 12, 13)

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		V _{LVD1}	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		V _{LVD2}	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		V _{LVD3}	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		V _{LVD4}	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V _{LVD6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		V LVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		V _{LVD8}	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		V _{LVD9}	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		V _{LVD10}	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		V _{LVD11}	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		V _{LVD12}	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		V _{LVD13}	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum p	ulse width	tLW		300			μS
Detection d	elay time					300	μS

LVD Detection Voltage of Interrupt & Reset Mode

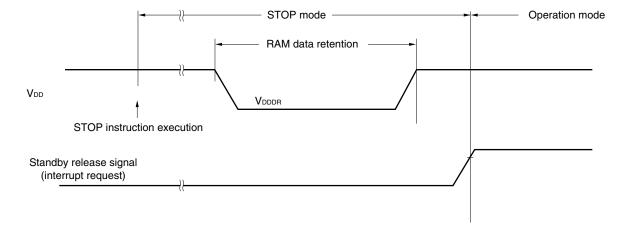
(Ta = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDA0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	٧
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	٧	
	V _{LVDB0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 1	1, VPOC0 = 0, 0, 1, falling reset voltage			1.87	V
	V _{LVDB1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	>
				Falling interrupt voltage	1.90	1.94	1.98	٧
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	٧
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	٧
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	>
				Falling interrupt voltage	2.60	2.65	2.70	V
	V _{LVDC3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	٧
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	/DD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V	
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	Svdd				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.46 ^{Note}		5.5	٧

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$1.8~V \leq V \text{dd} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

- The retaining years are until next rewrite after the rewrite.
- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200	_	1,000,000	bps

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	am ratal reconstan	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
		$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy		–20 to +85 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
		–40 to −20 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	I _{DD1}	Operating mode	HS (high- speed main) mode Note 5	f _{IH} = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
					operatio n	V _{DD} = 3.0 V		2.3		mA
					Normal	V _{DD} = 5.0 V		5.2	9.2	mA
					operatio n	V _{DD} = 3.0 V		5.2	9.2	mA
				f _{IH} = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	7.0	mA
					operatio n	V _{DD} = 3.0 V		4.1	7.0	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 5.0 V		3.0	5.0	mA
					operatio n	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high- speed main) mode Note 5	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
				V _{DD} = 5.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal operatio n	Square wave input		3.4	5.9	mA
				V DD - 0.0 V		Resonator connection		3.6	6.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
				V _{DD} = 5.0 V operatio n	Resonator connection		2.1	3.5	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
				V DD - 0.0 V	operatio n	Resonator connection		2.1	3.5	mA
			Subsystem clock operation	fsub = 32.768 kHz Normal	Square wave input		4.8	5.9	μΑ	
				$T_A = -40^{\circ}C$	operatio n	Resonator connection		4.9	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μΑ
				T _A = +25°C	operatio n	Resonator connection		5.0	6.0	μΑ
				fsub = 32.768 kHz	Normal operation	Square wave input		5.0	7.6	μΑ
				T _A = +50°C		Resonator connection		5.1	7.7	μΑ
				fsuB = 32.768 kHz	operatio n n 768 kHz Normal	Square wave input		5.2	9.3	μΑ
				Note 4 $T_A = +70^{\circ}C$		Resonator connection		5.3	9.4	μА
				fsuB = 32.768 kHz		Square wave input		5.7	13.3	μΑ
				Note 4 $T_A = +85^{\circ}C$	operatio n	Resonator connection		5.8	13.4	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		10.0	46.0	μΑ
				Note 4 TA = +10	Note 4 TA = +105°C	operatio n	Resonator connection		10.0	46.0

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 \geq 4/fclk $ $ 2.7 V \leq EVdd0 \leq 5.5 V		250		ns
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	500		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ EV _{DD}	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			ns
	t KL1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tkcy1/2 - 36		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) Note 1 tsiK1 4.0		$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		66		ns
		2.7 V ≤ EV _{DD}	₀₀ ≤ 5.5 V	66		ns
$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		₀₀ ≤ 5.5 V	113		ns	
SIp hold time (from SCKp↑) Note 2	t KSI1			38		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note 4			50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3).
 - g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions		HS (high-speed main) Mode		Unit	
					MIN.	MAX.		
Transfer rate		Transmission	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$			Note 1	bps	
			$V,$ $2.7~V \leq V_b \leq 4.0~V$	•	Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \ V_b = 2.7 \ V$		2.6 Note 2	Mbps
			2.7 V ≤ EV _{DD0} < 4.0			Note 3	bps	
			$V,$ $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$		1.2 Note 4	Mbps	
			2.4 V ≤ EV _{DD0} < 3.3			Note 5	bps	
			$V,$ $1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 V$		0.43 Note 6	Mbps	

Notes 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DDO} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

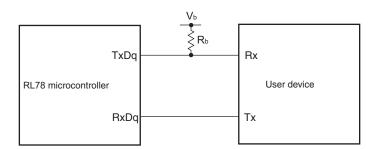
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

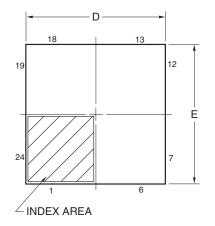
UART mode connection diagram (during communication at different potential)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

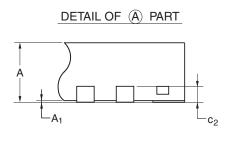
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

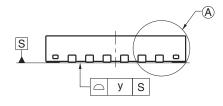
Parameter	Symbol	Conditions	HS (high-spe	Unit	
			MIN.	MAX.	
SIp setup time	tsıĸı	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	88		ns
(to SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	88		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	220		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	38		ns
(from SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↑ to	<pre>⟨p↑ to tκso1</pre>	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		50	ns
SOp output Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$		50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_b=30~pF,~R_b=5.5~k\Omega$			

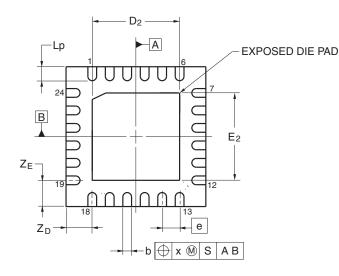
Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)


4.2 24-pin Products


R5F1007AANA, R5F1007CANA, R5F1007DANA, R5F1007EANA R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04

Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	3.95	4.00	4.05		
Е	3.95	4.00	4.05		
Α		_	0.80		
A ₁	0.00				
b	0.18	0.25	0.30		
е	_	0.50			
Lp	0.30	0.40	0.50		
х	_	_	0.05		
у		-	0.05		
Z _D		0.75			
Z _E		0.75			
C ₂	0.15	0.20	0.25		
D ₂		2.50			
E ₂	_	2.50			

4.11 64-pin Products

R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA

Previous Code

MASS (TYP.) [g]

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

RENESAS Code

JEITA Package Code

