

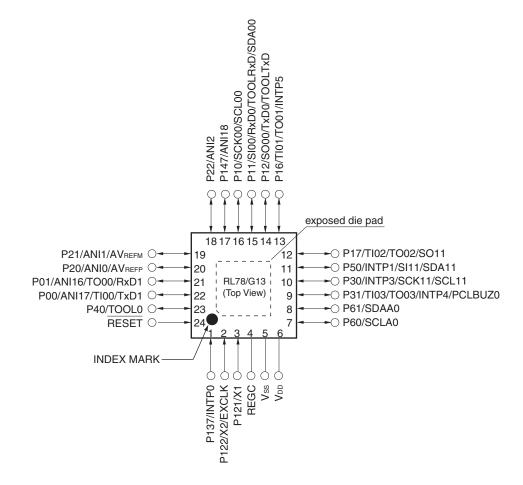
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

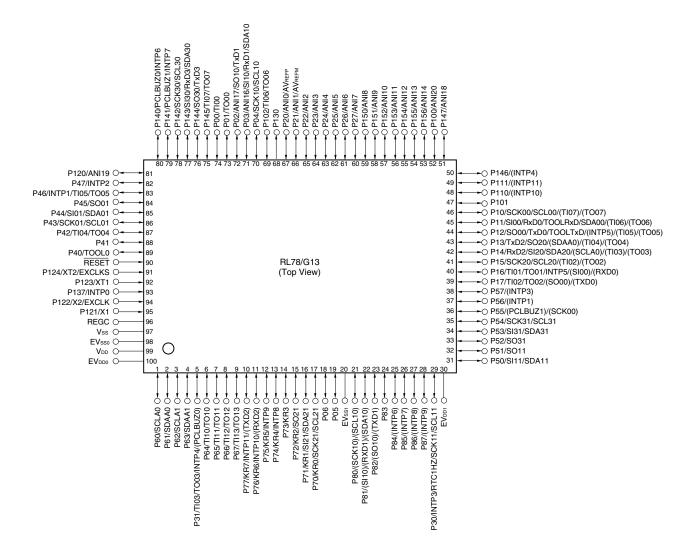
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 20x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100phafb-30

Email: info@E-XFL.COM

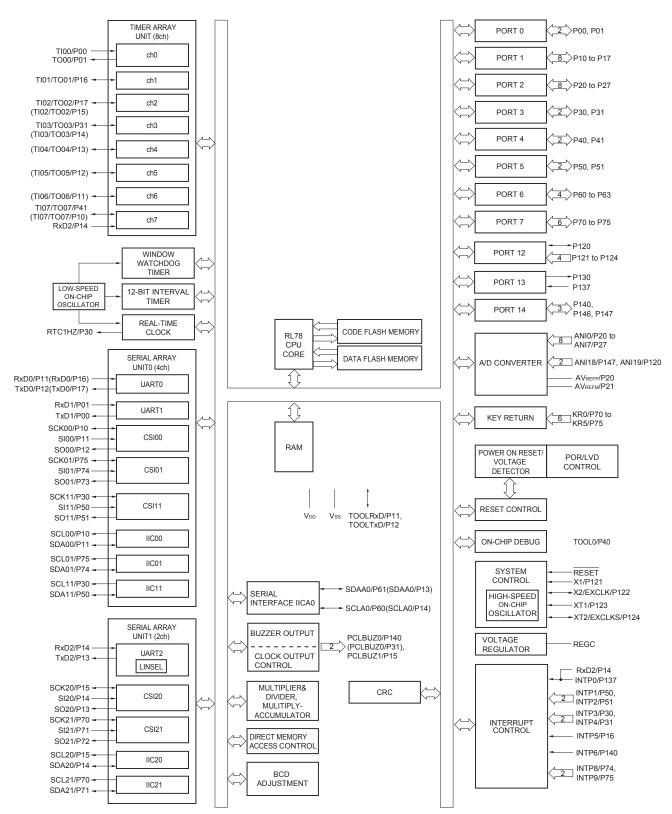
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.3.2 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

- Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. It is recommended to connect an exposed die pad to Vss.

Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.


- 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

1.5.9 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

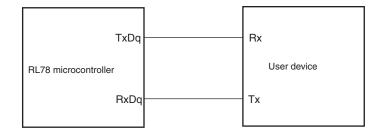
 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

						1	(2/2)		
Ite	m	80-pin		100			3-pin		
		R5F100Mx R5	F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx		
Clock output/buzz	er output	2		:	2		2		
		 2.44 kHz, 4.88 kHz (Main system clock) 256 Hz, 512 Hz, 1.0 (Subsystem clock): 	: fmain = 20 024 kHz, 2.	MHz operation) .048 kHz, 4.096 k	Hz, 8.192 kHz, 1		68 kHz		
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels			
Serial interface		[80-pin, 100-pin, 128-	pin product	ts]					
		 CSI: 2 channels/sin 	nplified I ² C: nplified I ² C:	2 channels/UAR 2 channels/UAR	T: 1 channel T (UART suppor	ting LIN-bus): 1 c	channel		
	l ² C bus	2 channels		2 channels		2 channels			
Multiplier and divid	der/multiply-	• 16 bits × 16 bits = 32	2 bits (Unsi	igned or signed)					
accumulator		• 32 bits ÷ 32 bits = 32	2 bits (Unsi	igned)					
		• 16 bits × 16 bits + 32	2 bits = 32	bits (Unsigned or	signed)				
DMA controller		4 channels							
Vectored	Internal	37		3	37	2	41		
interrupt sources	External	13		1	3	-	13		
Key interrupt	I	8		4	8		8		
Reset		Reset by RESET pi Internal reset by wa Internal reset by po Internal reset by vo Internal reset by ille Internal reset by RA Internal reset by ille	ttchdog tim wer-on-res Itage detec gal instruct	et tor tion execution ^{№te} rror					
Power-on-reset ci	rcuit	Power-on-reset:Power-down-reset:	1.51 V (TY 1.50 V (TY	,					
Voltage detector		0 0		.06 V (14 stages) 8.98 V (14 stages)					
On-chip debug fur	nction	Provided							
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (T_{A} = V_{DD} = 2.4 \text{ to } 5.5 \text{ V} (T_{A} = 0.25 \text{ V})$							
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^{\circ}\text{C}$ (A: C $T_A = 40 \text{ to } +105^{\circ}\text{C}$ (G:			ndustrial applicat	ions)			

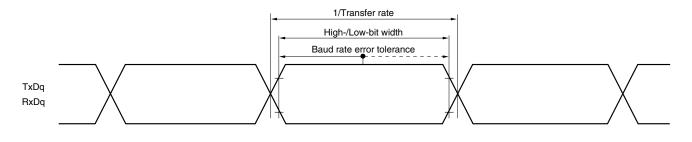
<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.


Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Юн1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Io∟1 Per pin		P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins] [5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)


- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	(Conditions	、 U	h-speed Mode	``	/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 \geq 2/fclк	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$4.0 V \le EV_{DI}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _D	$500 \leq 5.5 \text{ V}$	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp [↑])	tsik1	$4.0 \ V \le EV_{DI}$	$00 \leq 5.5 \text{ V}$	23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	33		110		110		ns
Slp hold time (from SCKp↑) ^{Note 2}	tksii	$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF ^{Not}	te 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

Parameter	Symbol	Conditions	HS (higl main)		``	r-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:V} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
			1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $	1/f _{MCK} + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:VDD} \begin{split} & 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than f_MCK/4.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	۷
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum p	ulse width	t∟w		300			μS
Detection d	elay time					300	μS

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)


Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2,	$V_{POC1}, V_{POC0} = 0, 0, 0$, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	Vlvda3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	Vpoc2,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
-				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	Vpoc2,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
-	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.10 Timing of Entry to Flash Memory Programming Modes

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{su:}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	·	0.8EV _{DD0}		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq EV_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDDO	V
	VIH3	P20 to P27, P150 to P156		0.7V _{DD}		VDD	V
	VIH4	P60 to P63		0.7EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

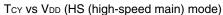
3.3.2 Supply current characteristics

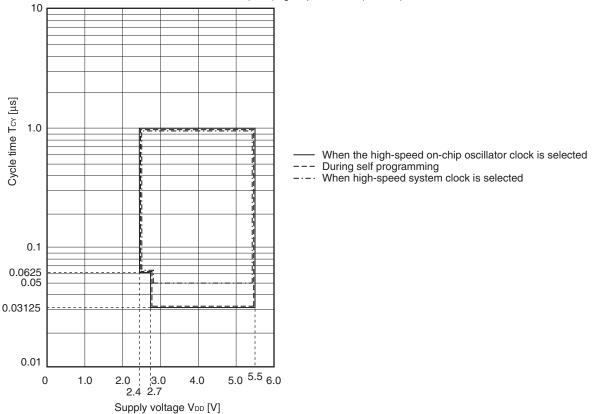
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit	
Supply	IDD1	Operating	HS (high-	$f_{IH}=32~MHz^{Note~3}$	Basic	$V_{DD} = 5.0 V$		2.1		mA	
Current Note 1		mode	speed main) mode ^{Note 5}		operatio n	Vdd = 3.0 V		2.1		mA	
					Normal	$V_{DD} = 5.0 V$		4.6	7.5	mA	
					operatio n	$V_{DD} = 3.0 V$		4.6	7.5	mA	
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		3.7	5.8	mA	
					operatio n	$V_{DD} = 3.0 V$		3.7	5.8	mA	
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		2.7	4.2	mA	
					operatio n	V _{DD} = 3.0 V		2.7	4.2	mA	
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.9	mA	
			speed main) mode ^{№ote 5}	$V_{DD} = 5.0 V$	operatio n	Resonator connection		3.2	5.0	mA	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.9	mA	
				$V_{DD} = 3.0 V$	operatio n	Resonator connection		3.2	5.0	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.9	mA	
					$V_{DD} = 5.0 V$	operatio n	Resonator connection		1.9	2.9	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.9	mA	
			$V_{DD} = 3.0 V$	$V_{DD} = 3.0 V$	operatio n	Resonator connection		1.9	2.9	mA	
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA	
			clock operation	OCK Note 4	operatio n	Resonator connection		4.2	5.0	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA	
				Note 4 $T_A = +25^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA	
				Note 4 $T_A = +50^{\circ}C$	operatio n	Resonator connection		4.3	5.6	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA	
				Note 4	operatio n	Resonator connection		4.4	6.4	μA	
				$T_A = +70^{\circ}C$	Newsel			4.0	~ ~		
				fsub = 32.768 kHz Note 4	Normal operation	Square wave input		4.6	7.7	μA	
			T _A = +85°C	sportuoli	Resonator connection		4.7	7.8	μA		
				fsuв = 32.768 kHz	Normal	Square wave input		6.9	19.7	μA	
				_{Note 4} T _A = +105°C	operation	Resonator connection		7.0	19.8	μA	

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = -40 to $+105^{\circ}$ C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 5.5$ V, Vss = EVss₀ = 0 V) (1/2)

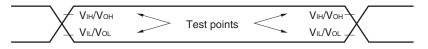
(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

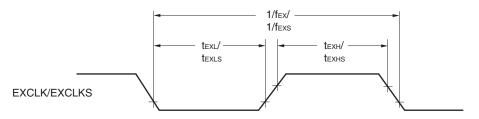

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

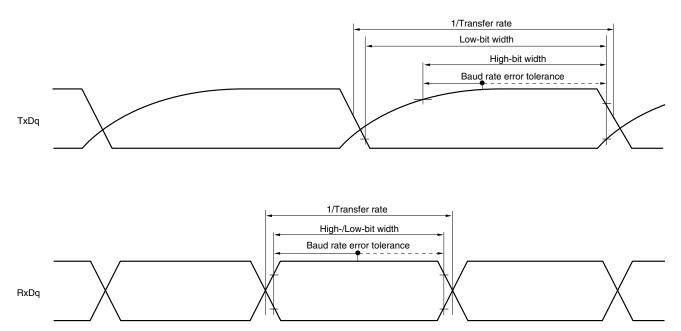

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C



Minimum Instruction Execution Time during Main System Clock Operation




AC Timing Test Points

External System Clock Timing

UART mode bit width (during communication at different potential) (reference)

 Remarks 1.
 Rb[Ω]:Communication line (TxDq) pull-up resistance,

 Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclĸ	$2.4~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1,2,3	Cerwr	Retained for 20 years TA = 85° C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1,2,3		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85° C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

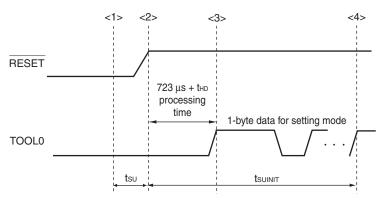
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library.
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{\text{A}} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

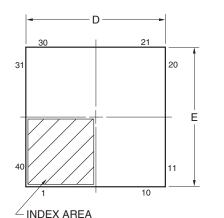

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.10 Timing of Entry to Flash Memory Programming Modes

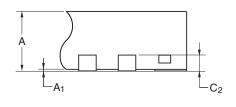
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

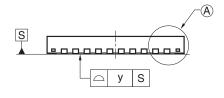
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

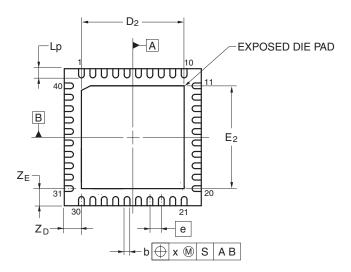
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)


4.7 40-pin Products

R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA R5F101EAANA, R5F101ECANA, R5F101EDANA, R5F101EEANA, R5F101EFANA, R5F101EGANA, R5F101EHANA R5F100EADNA, R5F100ECDNA, R5F100EDDNA, R5F100EEDNA, R5F100EFDNA, R5F100EGDNA, R5F100EHDNA


R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA


R5F100EAGNA, R5F100ECGNA, R5F100EDGNA, R5F100EEGNA, R5F100EFGNA, R5F100EGGNA, R5F100EHGNA


JEITA Package code	RENESAS code	Previous code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-5	0.09

Detail of (A) Part

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	5.95	6.00	6.05	
E	5.95	6.00	6.05	
A			0.80	
A ₁	0.00			
b	0.18	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
х			0.05	
у			0.05	
ZD		0.75	—	
Z _E		0.75	—	
C ₂	0.15	0.20	0.25	
D ₂		4.50		
E ₂		4.50		

©2013 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/G13 Data Sheet

		Description		
Rev.	Date	Page	Summary	
1.00	Feb 29, 2012	-	First Edition issued	
2.00	Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.	
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.	
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.	
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.	
		59, 63, 67	Descriptions of Note 8 in a table corrected.	
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.	
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.	
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.	
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.	
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.	
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.	
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.	
3.00	Aug 02, 2013	1	Modification of 1.1 Features	
		3	Modification of 1.2 List of Part Numbers	
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution	
		16 to 32	Modification of package type in 1.3.1 to 1.3.14	
		33	Modification of description in 1.4 Pin Identification	
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions	
		55	Modification of description in table of Absolute Maximum Ratings ($T_A = 25^{\circ}C$)	
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics	
		57	Modification of table in 2.2.2 On-chip oscillator characteristics	
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics	
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics	
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products	
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products	
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100- pin products	
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products	
		75	Modification of (4) Peripheral Functions (Common to all products)	
		77	Modification of table in 2.4 AC Characteristics	
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		80	Modification of figures of AC Timing Test Points and External System Clock Timing	