

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 20x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100phdfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(3/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
			Note	
36 pins	36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)	Mounted	A G	R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CAALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0 R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0 R5F100CAGLA#U0, R5F100CAGLA#W0 R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0
		Not mounted	A	R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CGALA#U0 R5F101CAALA#W0, R5F101CAALA#W0, R5F101CDALA#W0,
40 pins	40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)	Mounted	A	R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0 R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0
			D	R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EEDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0
			G	R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EEGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EHGNA#W0
		Not mounted	A D	R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, R5F101EHANA#U0 R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EFANA#W0, R5F101EGANA#W0, R5F101EHANA#W0 R5F101EHANA#W0 R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EDNA#U0, R5F101EDNA#U0, R5F101EDNA#W0, R5F101
				R5F101EDDNA#W0, R5F101EEDNA#W0, R5F101EFDNA#W R5F101EGDNA#W0, R5F101EHDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

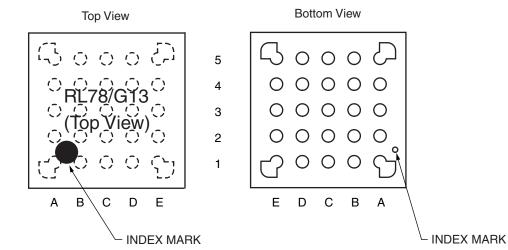
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Table 1-1. List of Ordering Part Numbers

(6/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
48 pins	48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)	Mounted	А	R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0, R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0, R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0,
				R5F100GLANA#U0
				R5F100GAANA#W0, R5F100GCANA#W0,
				R5F100GDANA#W0, R5F100GEANA#W0,
				R5F100GFANA#W0, R5F100GGANA#W0,
				R5F100GHANA#W0, R5F100GJANA#W0,
				R5F100GKANA#W0, R5F100GLANA#W0
			D	R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0,
				R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0,
				R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0,
				R5F100GLDNA#U0
				R5F100GADNA#W0, R5F100GCDNA#W0,
				R5F100GDDNA#W0, R5F100GEDNA#W0, R5F100GFDNA#W0, R5F100GGDNA#W0,
				R5F100GHDNA#W0, R5F100GJDNA#W0,
				R5F100GKDNA#W0, R5F100GLDNA#W0
			G	R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0,
				R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0,
				R5F100GHGNA#U0, R5F100GJGNA#U0
				R5F100GAGNA#W0, R5F100GCGNA#W0,
				R5F100GDGNA#W0, R5F100GEGNA#W0,
				R5F100GFGNA#W0, R5F100GGGNA#W0,
				R5F100GHGNA#W0, R5F100GJGNA#W0
		Not	Α	R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0,
		mounted		R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0,
				R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0,
				R5F101GLANA#U0
				R5F101GAANA#W0, R5F101GCANA#W0,
				R5F101GDANA#W0, R5F101GEANA#W0,
				R5F101GFANA#W0, R5F101GGANA#W0,
				R5F101GHANA#W0, R5F101GJANA#W0,
				R5F101GKANA#W0, R5F101GLANA#W0
			D	R5F101GADNA#U0, R5F101GCDNA#U0, R5F101GDDNA#U0,
				R5F101GEDNA#U0, R5F101GFDNA#U0, R5F101GGDNA#U0,
				R5F101GHDNA#U0, R5F101GJDNA#U0, R5F101GKDNA#U0,
				R5F101GLDNA#U0
				R5F101GADNA#W0, R5F101GCDNA#W0,
				R5F101GDDNA#W0, R5F101GEDNA#W0,
				R5F101GFDNA#W0, R5F101GGDNA#W0,
				R5F101GHDNA#W0, R5F101GJDNA#W0,
				R5F101GKDNA#W0, R5F101GLDNA#W0

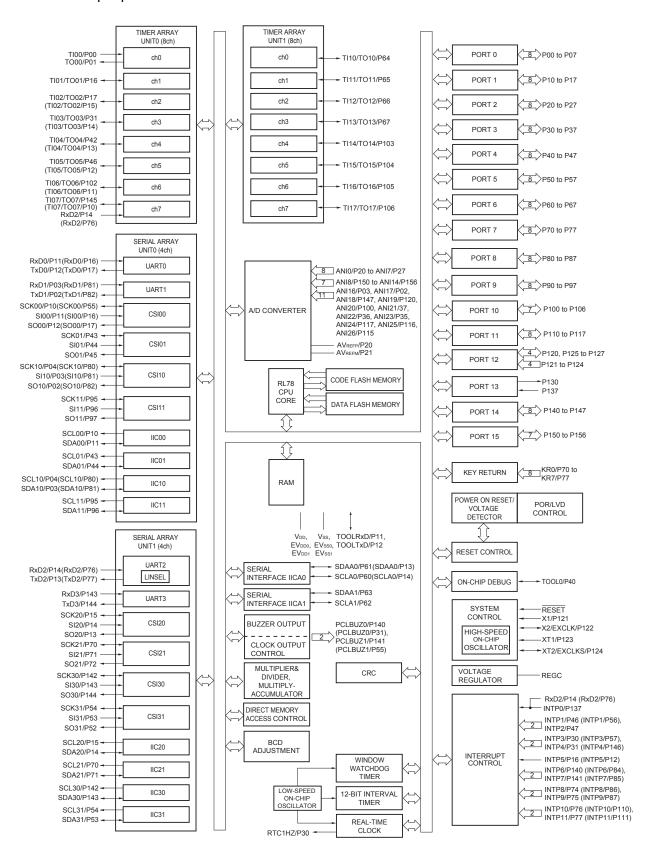
Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.3 25-pin products

<R>

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)



	Α	В	С	D	E	
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AVREFM	P10/SCK00/ SCL00	4
3	P121/X1	V _{DD}	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/Tl02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	A	В	С	D	E	

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

1.5.14 128-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

												(1/2)
	Item	20-	pin	24-	pin	25	-pin	30-	pin	32-	pin	36-	pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	o 64	16 t	o 64	16 t	o 64	16 to	128	16 to	128	16 to	128
Data flash me	mory (KB)	4	_	4	-	4	=	4 to 8	=	4 to 8	-	4 to 8	=
RAM (KB)		2 to	2 to 4 ^{Note1} 2 to 4 ^{Note1} 2 to 4 ^{Note1} 2 to 12 ^{Note1} 2 to 12 ^{Note1} 2 to 12							2 ^{Note1}			
Address space	е	1 MB											
Main system clock	High-speed system clock	HS (Hig HS (Hig LS (Lov	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)										
	High-speed on-chip oscillator	hip HS (High-speed main) mode: 1 to 32 MHz (V _{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)											
Subsystem clo	ock		-										
Low-speed on	n-chip oscillator	15 kHz (TYP.)											
General-purpo	ose registers	(8-bit register × 8) × 4 banks											
Minimum instr	ruction execution time	0.03125	5 μs (Hig	h-speed	on-chip	oscillato	r: fін = 3	2 MHz op	peration)			
		0.05 µs (High-speed system clock: f _{MX} = 20 MHz operation)											
Instruction set	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 											
I/O port	Total	1	6	2	0	2	21	2	6	2	8	3	2
	CMOS I/O	1 (N-ch C [Vpp wit voltag	D.D. I/O thstand	(N-ch C	5 D.D. I/O thstand ge]: 6)	(N-ch (5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V _{DD} wit voltag	D.D. I/O thstand	2 (N-ch ([V _{DD} wi voltag	thstand	(N-ch C [V _{DD} with voltage	thstand
	CMOS input	3	3	;	3	;	3	3	3	;	3	3	3
	CMOS output	-	-	-	-		1	_	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	=	_	2	2	:	2	2	2	(3	3	3
Timer	16-bit timer						8 cha	nnels					
	Watchdog timer						1 cha	annel					
	Real-time clock (RTC)	1 channel Note 2											
	12-bit interval timer (IT)						1 cha	annel					
	Timer output	3 chann (PWM c 2 Note 3)		4 chanr (PWM	nels outputs:	3 Note 3)				M output M output			
	RTC output						=	=					
· · · · · · · · · · · · · · · · · · ·													

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	Itam	80-pin		100	nin	128-pin				
	Item	R5F100Mx	R5F101Mx	R5F100Px	-pin R5F101Px	R5F100Sx	R5F101Sx			
Code flash me	emory (KB)		512		o 512		o 512			
Data flash me	- , ,	8	=	8	=	8	=			
RAM (KB)		8 to 3	2 Note 1	8 to 3	2 Note 1	16 to 3	32 Note 1			
Address spac	е	1 MB		1						
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)								
	High-speed on-chip oscillator	HS (High-speed LS (Low-speed	(High-speed main) mode: 1 to 32 MHz (V _{DD} = 2.7 to 5.5 V), (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V) (crystal) oscillation, external subsystem clock input (EXCLKS)							
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	l subsystem cloc	k input (EXCLKS	5)				
Low-speed or	n-chip oscillator	15 kHz (TYP.)								
General-purpo	ose register	$(8-bit register \times 8) \times 4 banks$								
Minimum insti	ruction execution time	0.03125 $μ$ s (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)								
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)								
		30.5 μ s (Subsystem clock: fsuB = 32.768 kHz operation)								
Instruction se	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 								
I/O port	Total	7	'4	9	92	1	20			
	CMOS I/O	(N-ch O.D. I/O	64 [EV _{DD} withstand e]: 21)	(N-ch O.D. I/O	32 [EV _{DD} withstand je]: 24)	(N-ch O.D. I/O	10 [EV _{DD} withstand e]: 25)			
	CMOS input	!	5		5		5			
	CMOS output		1		1		1			
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4			
Timer	16-bit timer	12 cha	annels	12 cha	annels	16 cha	annels			
	Watchdog timer	1 cha	ınnel	1 cha	annel	1 cha	annel			
	Real-time clock (RTC)	1 cha	nnel	1 cha	annel	1 cha	annel			
	12-bit interval timer (IT)	1 cha	nnel	1 cha	annel	1 cha	annel			
	Timer output	12 channels (PWM outputs:	12 channels 12 channels 16 channels (PWM outputs: 10 Note 2) (PWM outputs: 10 Note 2) (PWM outputs: 14 Note 2)							
	RTC output	1 channel • 1 Hz (subsyst	em clock: fsub =	32.768 kHz)						

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0.8EV _{DD0}		EV _{DD0}	V
	V _{IH2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EV _{DD0}	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	1.5		EV _{DD0}	V
	V _{IH3}	P20 to P27, P150 to P156	to P27, P150 to P156			V _{DD}	٧
	V _{IH4}	P60 to P63		0.7EV _{DD0}		6.0	٧
	V _{IH5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0.8V _{DD}		V _{DD}	٧
Input voltage, low	V _{IL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	,	0		0.2EV _{DD0}	V
	V _{IL2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3V _{DD}	٧
	V _{IL4}	P60 to P63		0		0.3EV _{DD0}	٧
	V _{IL5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0		0.2V _{DD}	٧

Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (high-	fin = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	1.86	mA
Current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.11	mA
					V _{DD} = 3.0 V		0.44	1.11	mA
			LS (low-	fin = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μA
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μΑ
			voltage main) mode		VDD = 2.0 V		440	680	μΑ
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.08	mA
			V _{DD} = 3.0 V	Resonator connection		0.48	1.28	mA	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.63	mA	
			V _{DD} = 5.0 V	Resonator connection		0.28	0.71	mA	
			f _M x = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA	
			V _{DD} = 3.0 V	Resonator connection		0.28	0.71	mA	
			LS (low-	f _M x = 8 MHz ^{Note 3} ,	Square wave input		110	360	μА
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	420	μΑ
				fmx = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ
				V _{DD} = 2.0 V	Resonator connection		160	420	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
				T _A = +25°C	Resonator connection		0.53	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μΑ
				T _A = +50°C	Resonator connection		0.60	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μΑ
				T _A = +70°C	Resonator connection		0.83	4.22	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μΑ
				T _A = +85°C	Resonator connection		1.28	8.23	μА
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.19	0.52	μΑ
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μΑ
			T _A = +70°C				0.55	3.94	μΑ
			T _A = +85°C				1.00	7.95	μA

(Notes and Remarks are listed on the next page.)

220

220

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ Parameter Symbo Conditions HS (high-speed LS (low-speed main) LV (low-voltage main) Unit main) Mode ı Mode Mode MIN. MIN. MAX. MIN. MAX. MAX. Slp setup time tsik2 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ $1/f_{MCK}+2$ 1/fmck+30 1/fmck+30 ns (to SCKp↑) Note 1 n $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмск+30 1/fмcк+30 ns 0 $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+4 $1/f_{MCK}+40$ $1/f_{MCK}+40$ ns 0 1/fмск+40 1/fмск+40 $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ ns Slp hold time tks12 $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмcк+31 1/fмcк+31 ns (from SCKp↑) 1 $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмcк+ 1/fмск+ 1/fмcк+ ns 250 250 250 $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ 1/fmck+ 1/fмcк+ ns 250 250 2/f_{MCK+} 2/f_{MCK+} Delay time tks02 C = 30 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ ns pF Note 4 from SCKp↓ to 44 110 110 SOp output Note $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fмcк+ 2/fmck+ ns 110 75 110 2/fмск+ $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns 110 110 110 $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fmck+ 2/fмск+ ns 220 220 220 $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10 to 13))

(5) During communication at same potential (simplified I²C mode) (2/2)

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	` `	h-speed Mode	`	r-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1/f _{MCK} + 85 _{Note2}		1/fmck + 145 Note2		1/f _{MCK} + 145 _{Note2}		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$	1/fmck + 145 Note2		1/f _{MCK} + 145 _{Note2}		1/f _{MCK} + 145 _{Note2}		ns
		$1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1/fmck + 230 Note2		1/fmck + 230 Note2		1/fmck + 230 Note2		ns
		$1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1/fmck + 290 Note2		1/fmck + 290 Note2		1/fmck + 290 Note2		ns
		$1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	_		1/fmck + 290 Note2		1/fmck + 290 Note2		ns
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	0	305	0	305	0	305	ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 3 \text{ k}\Omega$	0	355	0	355	0	355	ns
		1.8 V \leq EV _{DD0} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	0	405	0	405	0	405	ns
		$1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	_	_	0	405	0	405	ns

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (Vpb tolerance (When 20- to 52-pin products)/EVpb tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		V _{DD}	٧
		ANI16 to ANI26		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	gh-speed main) mode)		V _{BGR} Note 4		V
		Temperature sensor output (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	-		VTMPS25 Note 4	1	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(3) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1				0.20		μΑ
RTC operating current	RTC Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μА
Watchdog timer operating current	WDT Notes 1, 2, 5	fıL = 15 kHz			0.22		μΑ
A/D converter	ADC Notes 1, 6	When conversion	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
operating current	110100 1,0	at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μΑ
LVD operating current	LVD Notes 1, 7				0.08		μА
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz	ADC operation	The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, Loe voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	mA
		CSI/UART operation	on		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.

- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- **9.** Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(4) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-sp Mo	,	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$		400 Note1	kHz
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{DD0} \leq 5.5~V,$		100 Note1	kHz
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "L"	tLOW	$2.7~V \leq EV_{DD0} \leq 5.5~V,$	1200		ns
		$C_b = 50$ pF, $R_b = 2.7$ k Ω			
		$2.4~V \leq EV_{DD0} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{DD0} \leq 5.5~V,$	1200		ns
		$C_b = 50$ pF, $R_b = 2.7$ k Ω			
		$2.4~V \leq EV_{DD0} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$	1/fмск + 220		ns
		$C_b = 50$ pF, $R_b = 2.7$ k Ω	Note2		
		$2.4~V \leq EV_{DD} \leq 5.5~V,$	1/fмск + 580		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note2		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$	0	770	ns
		$C_b = 50$ pF, $R_b = 2.7$ k Ω			
		$2.4~V \leq EV_{DD0} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			

Notes 1. The value must also be equal to or less than fmck/4.

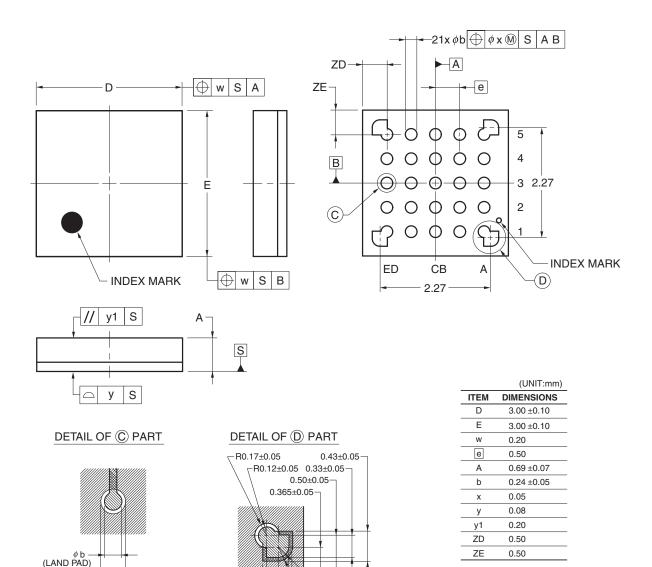
2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	24 MHz < fмск	28/fмск		ns
		$V,$ $2.7V \leq V_b \leq 4.0V$	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
			8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмck ≤ 4 MHz	12/fмск		ns
		2.7 V ≤ EV _{DD0} < 4.0 V,	24 MHz < fмск	40/fмск		ns
			20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		2.4 V ≤ EV _{DD0} < 3.3	24 MHz < fмск	96/fмск		ns
		V,	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \ V \leq V_b \leq 2.0 \ V$	16 MHz < fмcк ≤ 20 MHz	64/ƒмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$ 4.0 \ V \le EV_{DD0} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V $		tkcy2/2 - 24		ns
		$ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V} $		txcy2/2 - 36		ns
		$ 2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note 2}} $		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note2	tsik2 $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.0 \text{ V} \leq 1.0 \text$		*	1/fмск + 40		ns
	2.4	$2.7 \ V \le EV_{DD0} < 4.0 \ V,$ $2.3 \ V \le V_b \le 2.7 \ V$		1/fмск + 40		ns
		$ 2.4 \ V \le EV_{DD0} < 3.3 \ V, $ $ 1.6 \ V \le V_b \le 2.0 \ V $		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to SOp output Note 4	tks02	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $			2/fмск + 240	ns
		$ 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $			2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.$ $C_b = 30 \text{ pF}, R_b = 5$	3 V, 1.6 V ≤ V _b ≤ 2.0 V 5.5 kΩ		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

4.3 25-pin Products

R5F1008AALA, R5F1008CALA, R5F1008DALA, R5F1008EALA R5F1018AALA, R5F1018CALA, R5F1018DALA, R5F1018EALA R5F1008AGLA, R5F1008CGLA, R5F1008DGLA, R5F1008EGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01

©2012 Renesas Electronics Corporation. All rights reserved.

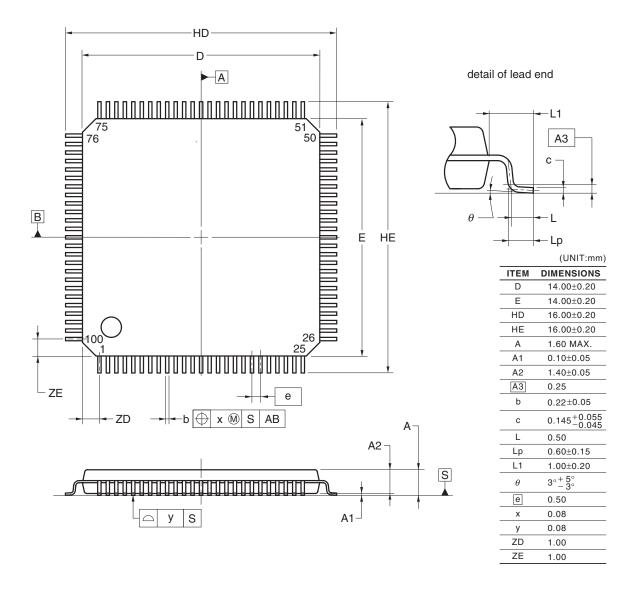
R0.165±0.05

R0.215±0.05

0.365±0.05

0.50±0.05

0.43±0.05

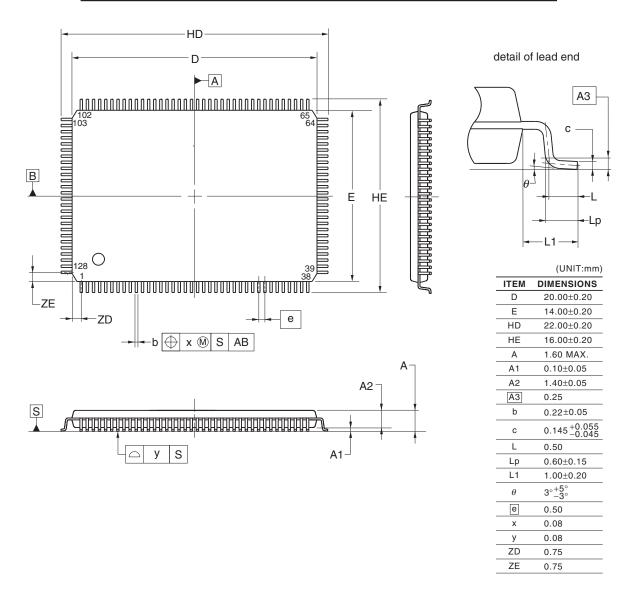

φ0.34±0.05 → (APERTURE OF

SOLDER RESIST)

4.13 100-pin Products

R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F101PGDFB, R5F101PGDFB, R5F101PJDFB, R5F101PJDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69



 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP128-14x20-0.50	PLQP0128KD-A	P128GF-50-GBP-1	0.92

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

		Description	
Rev.	Date	Page	Summary
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)
		83	Modification of description in (2) During communication at same potential (CSI mode)
		84	Modification of description in (3) During communication at same potential (CSI mode)
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)
		109	Addition of (1) I ² C standard mode
		111	Addition of (2) I ² C fast mode
		112	Addition of (3) I ² C fast mode plus
		112	Modification of IICA serial transfer timing
		113	Addition of table in 2.6.1 A/D converter characteristics
		113	Modification of description in 2.6.1 (1)
		114	Modification of notes 3 to 5 in 2.6.1 (1)
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.