Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | FLASH | |--------------------| | 8K x 8 | | 16K x 8 | | 2.4V ~ 5.5V | | A/D 20x8/10b | | Internal | | | | -40°C ~ 105°C (TA) | | Surface Mount | | 100-LQFP | | TOO-LQFY | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong RL78/G13 1. OUTLINE O ROM, RAM capacities | Flash | Data | RAM | | | RL78 | 3/G13 | | | |-------|-------|--------------|----------|----------|----------|----------|----------|----------| | ROM | flash | | 20 pins | 24 pins | 25 pins | 30 pins | 32 pins | 36 pins | | 128 | 8 KB | 12 | - | - | - | R5F100AG | R5F100BG | R5F100CG | | KB | - | KB | - | - | - | R5F101AG | R5F101BG | R5F101CG | | 96 | 8 KB | 8 KB | - | = | - | R5F100AF | R5F100BF | R5F100CF | | KB | _ | | - | - | - | R5F101AF | R5F101BF | R5F101CF | | 64 | 4 KB | 4 KB | R5F1006E | R5F1007E | R5F1008E | R5F100AE | R5F100BE | R5F100CE | | KB | = | Note | R5F1016E | R5F1017E | R5F1018E | R5F101AE | R5F101BE | R5F101CE | | 48 | 4 KB | 3 KB
Note | R5F1006D | R5F1007D | R5F1008D | R5F100AD | R5F100BD | R5F100CD | | KB | _ | 11010 | R5F1016D | R5F1017D | R5F1018D | R5F101AD | R5F101BD | R5F101CD | | 32 | 4 KB | 2 KB | R5F1006C | R5F1007C | R5F1008C | R5F100AC | R5F100BC | R5F100CC | | KB | = | | R5F1016C | R5F1017C | R5F1018C | R5F101AC | R5F101BC | R5F101CC | | 16 | 4 KB | 2 KB | R5F1006A | R5F1007A | R5F1008A | R5F100AA | R5F100BA | R5F100CA | | KB | _ | | R5F1016A | R5F1017A | R5F1018A | R5F101AA | R5F101BA | R5F101CA | | Flash | Data | RAM | | | | RL78 | 3/G13 | | | | |-------|-------|---------------|----------|----------|----------|----------|----------|----------|----------|----------| | ROM | flash | | 40 pins | 44 pins | 48 pins | 52 pins | 64 pins | 80 pins | 100 pins | 128 pins | | 512 | 8 KB | 32 KB
Note | = | R5F100FL | R5F100GL | R5F100JL | R5F100LL | R5F100ML | R5F100PL | R5F100SL | | KB | _ | Note | - | R5F101FL | R5F101GL | R5F101JL | R5F101LL | R5F101ML | R5F101PL | R5F101SL | | 384 | 8 KB | 24 KB | - | R5F100FK | R5F100GK | R5F100JK | R5F100LK | R5F100MK | R5F100PK | R5F100SK | | KB | = | | = | R5F101FK | R5F101GK | R5F101JK | R5F101LK | R5F101MK | R5F101PK | R5F101SK | | 256 | 8 KB | 20 KB
Note | = | R5F100FJ | R5F100GJ | R5F100JJ | R5F100LJ | R5F100MJ | R5F100PJ | R5F100SJ | | KB | _ | Note | П | R5F101FJ | R5F101GJ | R5F101JJ | R5F101LJ | R5F101MJ | R5F101PJ | R5F101SJ | | 192 | 8 KB | 16 KB | R5F100EH | R5F100FH | R5F100GH | R5F100JH | R5F100LH | R5F100MH | R5F100PH | R5F100SH | | KB | _ | | R5F101EH | R5F101FH | R5F101GH | R5F101JH | R5F101LH | R5F101MH | R5F101PH | R5F101SH | | 128 | 8 KB | 12 KB | R5F100EG | R5F100FG | R5F100GG | R5F100JG | R5F100LG | R5F100MG | R5F100PG | - | | KB | = | | R5F101EG | R5F101FG | R5F101GG | R5F101JG | R5F101LG | R5F101MG | R5F101PG | - | | 96 | 8 KB | 8 KB | R5F100EF | R5F100FF | R5F100GF | R5F100JF | R5F100LF | R5F100MF | R5F100PF | - | | KB | _ | | R5F101EF | R5F101FF | R5F101GF | R5F101JF | R5F101LF | R5F101MF | R5F101PF | - | | 64 | 4 KB | 4 KB
Note | R5F100EE | R5F100FE | R5F100GE | R5F100JE | R5F100LE | - | - | - | | KB | _ | Note | R5F101EE | R5F101FE | R5F101GE | R5F101JE | R5F101LE | - | - | _ | | 48 | 4 KB | 3 KB Note | R5F100ED | R5F100FD | R5F100GD | R5F100JD | R5F100LD | - | _ | - | | KB | _ | | R5F101ED | R5F101FD | R5F101GD | R5F101JD | R5F101LD | - | = | - | | 32 | 4 KB | 2 KB | R5F100EC | R5F100FC | R5F100GC | R5F100JC | R5F100LC | = | = | - | | KB | _ | | R5F101EC | R5F101FC | R5F101GC | R5F101JC | R5F101LC | - | = | - | | 16 | 4 KB | 2 KB | R5F100EA | R5F100FA | R5F100GA | = | = | = | = | - | | KB | - | | R5F101EA | R5F101FA | R5F101GA | - | - | - | - | - | **Note** The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below. R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L, M, P): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L, M, P, S): Start address F7F00H For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**. RL78/G13 1. OUTLINE ## 1.5.9 48-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. #### 2.3 DC Characteristics #### 2.3.1 Pin characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$ | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |---|--------|---|---------------------------------------|------|------|------------------|------| | Output current,
high ^{Note 1} | Іонт | Per pin for P00 to P07, P10 to P17,
P30 to P37, P40 to P47, P50 to P57, P64
to P67, P70 to P77, P80 to P87, P90 to
P97, P100 to P106,
P110 to P117, P120, P125 to P127,
P130, P140 to P147 | $1.6~V \leq EV_{DD0} \leq 5.5~V$ | | | -10.0
Note 2 | mA | | | | Total of P00 to P04, P07, P32 to P37, | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | | | -55.0 | mA | | | | P40 to P47, P102 to P106, P120,
P125 to P127, P130, P140 to P145 | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -10.0 | mA | | | | (When duty ≤ 70% Note 3) Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 | $1.8~V \leq EV_{DD0} < 2.7~V$ | | | -5.0 | mA | | | | | $1.6~V \le EV_{DD0} < 1.8~V$ | | | -2.5 | mA | | | | | | | | -80.0 | mA | | | | | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -19.0 | mA | | | | to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 | $1.8~V \leq EV_{DD0} < 2.7~V$ | | | -10.0 | mA | | | | (When duty ≤ 70% Note 3) | $1.6~V \leq EV_{DD0} < 1.8~V$ | | | -5.0 | mA | | | | Total of all pins (When duty $\leq 70\%$ Note 3) | $1.6~V \leq EV_{DD0} \leq 5.5~V$ | | | -135.0
Note 4 | mA | | | 10н2 | Per pin for P20 to P27, P150 to P156 | $1.6~V \leq V_{DD} \leq 5.5~V$ | | | -0.1 Note 2 | mA | | | | Total of all pins (When duty $\leq 70\%$ Note 3) | $1.6~V \leq V_{\text{DD}} \leq 5.5~V$ | | | -1.5 | mA | - **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin. - 2. However, do not exceed the total current value. - 3. Specification under conditions where the duty factor $\leq 70\%$. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%). • Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and loh = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA. Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5) | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |------------------------|------------------|--|--|----------------------|--------------------|----------------------|------| | Input voltage,
high | V _{IH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | | 0.8EVDDO | | EV _{DD0} | V | | | V _{IH2} | P01, P03, P04, P10, P11,
P13 to P17, P43, P44, P53 to P55, | TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V | 2.2 | | EV _{DD0} | V | | | | P80, P81, P142, P143 | TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$ | 2.0 | | EV _{DD0} | V | | | | | TTL input buffer
1.6 V ≤ EV _{DD0} < 3.3 V | 1.5 | | EV _{DD0} | V | | | V _{IH3} | P20 to P27, P150 to P156 | | 0.7V _{DD} | | V _{DD} | ٧ | | | V _{IH4} | P60 to P63 | | 0.7EV _{DD0} | | 6.0 | ٧ | | | V _{IH5} | P121 to P124, P137, EXCLK, EXCL | 0.8V _{DD} | | V _{DD} | ٧ | | | Input voltage,
low | V _{IL1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | , | 0 | | 0.2EV _{DD0} | V | | | V _{IL2} | P01, P03, P04, P10, P11,
P13 to P17, P43, P44, P53 to P55, | TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V | 0 | | 0.8 | V | | | | P80, P81, P142, P143 | TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V | 0 | | 0.5 | V | | | | | TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V | 0 | | 0.32 | V | | | VIL3 | P20 to P27, P150 to P156 | | 0 | | 0.3V _{DD} | ٧ | | | V _{IL4} | P60 to P63 | | 0 | | 0.3EV _{DD0} | ٧ | | | V _{IL5} | P121 to P124, P137, EXCLK, EXCL | 0 | | 0.2V _{DD} | ٧ | | Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C ## (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products # (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2) | Parameter | Symbol | | | Conditions | | | MIN. | TYP. | MAX. | Unit | |-------------------|------------------|-----------|----------------------------|--|----------------------|---|------|------------|------------|----------| | Supply | I _{DD1} | Operating | HS (high- | fin = 32 MHz ^{Note 3} | Basic | V _{DD} = 5.0 V | | 2.3 | | mA | | Current
Note 1 | | mode | speed main)
mode Note 5 | | operation | V _{DD} = 3.0 V | | 2.3 | | mA | | | | | modo | | Nomal | V _{DD} = 5.0 V | | 5.2 | 8.5 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 5.2 | 8.5 | mA | | | | | | fin = 24 MHz Note 3 | Nomal | V _{DD} = 5.0 V | | 4.1 | 6.6 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 4.1 | 6.6 | mA | | | | | | fin = 16 MHz ^{Note 3} | Normal | V _{DD} = 5.0 V | | 3.0 | 4.7 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 3.0 | 4.7 | mA | | | | | LS (low- | fin = 8 MHz Note 3 | Normal | V _{DD} = 3.0 V | | 1.3 | 2.1 | mA | | | | | speed main)
mode Note 5 | | operation | V _{DD} = 2.0 V | | 1.3 | 2.1 | mA | | | | | LV (low- | fin = 4 MHz Note 3 | Nomal | V _{DD} = 3.0 V | | 1.3 | 1.8 | mA | | | | | voltage
main) mode | | operation | V _{DD} = 2.0 V | | 1.3 | 1.8 | mA | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Nomal | Square wave input | | 3.4 | 5.5 | mA | | | | | speed main)
mode Note 5 | V _{DD} = 5.0 V | operation | Resonator connection | | 3.6 | 5.7 | mA | | | | | mode | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal | Square wave input | | 3.4 | 5.5 | mA | | | | | | V _{DD} = 3.0 V | operation | Resonator connection | | 3.6 | 5.7 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Normal operation | Square wave input | | 2.1 | 3.2 | mA | | | | 1 | | VDD = 5.0 V | | Resonator connection | | 2.1 | 3.2 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{Note 2},$ | Nomal | Square wave input | | 2.1 | 3.2 | mA | | | | | V _{DD} = 3.0 V | operation | Resonator connection | | 2.1 | 3.2 | mA | | | | | | LS (low- | $f_{MX} = 8 MHz^{Note 2},$ | Normal | Square wave input | | 1.2 | 2.0 | mA | | | | | speed main)
mode Note 5 | V _{DD} = 3.0 V | operation | Resonator connection | | 1.2 | 2.0 | mA | | | | | modo | $f_{MX} = 8 MHz^{Note 2}$ | Normal | Square wave input | | 1.2 | 2.0 | mA | | | | | | V _{DD} = 2.0 V | operation | Resonator connection | | 1.2 | 2.0 | mA | | | | | Subsystem | fsub = 32.768 kHz | Nomal | Square wave input | | 4.8 | 5.9 | μΑ | | | | | clock
operation | T _A = -40°C | operation | Resonator connection | | 4.9 | 6.0 | μΑ | | | | | | fsub = 32.768 kHz | Nomal | Square wave input | | 4.9 | 5.9 | μΑ | | | | | | T _A = +25°C | operation | Resonator connection | | 5.0 | 6.0 | μA | | | | | | fsuB = 32.768 kHz | Nomal | Square wave input | _ | 5.0 | 7.6 | μΑ | | | | | | Note 4 | operation | Resonator connection | | 5.1 | 7.7 | μΑ | | | | | | T _A = +50°C | No. | 0 | | F 0 | 0.0 | | | | | | | fsub = 32.768 kHz | Normal operation | Square wave input Resonator connection | | 5.2
5.3 | 9.3
9.4 | μA
μA | | | | | | T _A = +70°C | | | | 0.0 | 0.4 | par C | | | | fsue | fsub = 32.768 kHz | Normal | Square wave input | | 5.7 | 13.3 | μА | | | | | | | T _A = +85°C | operation | Resonator connection | | 5.8 | 13.4 | μA | | | l |] | 1 | 1 | 1 | l . | | I | ı | l | (Notes and Remarks are listed on the next page.) # (3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products # (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2) | Parameter | Symbol | | | Conditions | | MIN. | TYP. | MAX. | Unit | |-----------|------------------|--------------------------------|----------------------------|--|-------------------------|------|------|-------|------| | Supply | I _{DD2} | HALT | HS (high- | f _{IH} = 32 MHz ^{Note 4} | V _{DD} = 5.0 V | | 0.62 | 1.89 | mA | | current | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.62 | 1.89 | mA | | | | | mode | fih = 24 MHz Note 4 | V _{DD} = 5.0 V | | 0.50 | 1.48 | mA | | | | | | | V _{DD} = 3.0 V | | 0.50 | 1.48 | mA | | | | | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.44 | 1.12 | mA | | | | | | | V _{DD} = 3.0 V | | 0.44 | 1.12 | mA | | | | | LS (low- | fih = 8 MHz Note 4 | V _{DD} = 3.0 V | | 290 | 620 | μΑ | | | | | speed main)
mode Note 7 | | V _{DD} = 2.0 V | | 290 | 620 | μΑ | | | | | LV (low- | fih = 4 MHz Note 4 | V _{DD} = 3.0 V | | 460 | 700 | μΑ | | | | | voltage
main) mode | | V _{DD} = 2.0 V | | 460 | 700 | μΑ | | | | | HS (high- | fmx = 20 MHz ^{Note 3} , | Square wave input | | 0.31 | 1.14 | mA | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.48 | 1.34 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{Note 3},$ | Square wave input | | 0.31 | 1.14 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.48 | 1.34 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.21 | 0.68 | mA | | | | | | V _{DD} = 5.0 V | Resonator connection | | 0.28 | 0.76 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.21 | 0.68 | mA | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.28 | 0.76 | mA | | | | | | LS (low- | $f_{MX} = 8 MHz^{Note 3}$ | Square wave input | | 110 | 390 | μΑ | | | | | speed main)
mode Note 7 | V _{DD} = 3.0 V | Resonator connection | | 160 | 450 | μΑ | | | | | | $f_{MX} = 8 MHz^{Note 3},$ | Square wave input | | 110 | 390 | μΑ | | | | | | V _{DD} = 2.0 V | Resonator connection | | 160 | 450 | μΑ | | | | | Subsystem | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.31 | 0.66 | μΑ | | | | | clock
operation | T _A = -40°C | Resonator connection | | 0.50 | 0.85 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.38 | 0.66 | μΑ | | | | | | T _A = +25°C | Resonator connection | | 0.57 | 0.85 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.47 | 3.49 | μΑ | | | | | | T _A = +50°C | Resonator connection | | 0.66 | 3.68 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.80 | 6.10 | μΑ | | | | | | T _A = +70°C | Resonator connection | | 0.99 | 6.29 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 1.52 | 10.46 | μΑ | | | | | | T _A = +85°C | Resonator connection | | 1.71 | 10.65 | μΑ | | | IDD3 Note 6 | STOP
mode ^{Note 8} | T _A = -40°C | | | 0.19 | 0.54 | μΑ | | | | | mode | T _A = +25°C | | | | 0.26 | 0.54 | μΑ | | | | | T _A = +50°C | | | | 0.35 | 3.37 | μΑ | | | | | T _A = +70°C | | | | 0.68 | 5.98 | μA | | | | | T _A = +85°C | | | | 1.40 | 10.34 | μΑ | (Notes and Remarks are listed on the next page.) #### (5) During communication at same potential (simplified I²C mode) (2/2) (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | , , | h-speed
Mode | , | r-speed
Mode | ` | -voltage
Mode | Unit | |-------------------------------|---------|--|---|-----------------|---|-----------------|---|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Data setup time (reception) | tsu:dat | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$ | 1/f _{MCK}
+ 85
_{Note2} | | 1/fmck
+ 145
Note2 | | 1/f _{MCK}
+ 145
{Note2} | | ns | | | | $1.8~V \leq EV{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$ | 1/f _{MCK}
+ 145
_{Note2} | | 1/f _{MCK}
+ 145
_{Note2} | | 1/f _{MCK}
+ 145
{Note2} | | ns | | | | $1.8~V \leq EV{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 1/fmck
+ 230
Note2 | | 1/fmck
+ 230
Note2 | | 1/fmck
+ 230
Note2 | | ns | | | | $1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | ns | | | | $1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | _ | | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | ns | | Data hold time (transmission) | thd:dat | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$ | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | $1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 0 | 405 | 0 | 405 | 0 | 405 | ns | | | | $1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 0 | 405 | 0 | 405 | 0 | 405 | ns | | | | $1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | _ | _ | 0 | 405 | 0 | 405 | ns | Notes 1. The value must also be equal to or less than fmck/4. 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the normal input buffer and the N-ch open drain output (Vpb tolerance (When 20- to 52-pin products)/EVpb tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh). (Remarks are listed on the next page.) # (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | , 0 | h-speed
Mode | , | /-speed
Mode | , | -voltage
Mode | Unit | |--------------------------------------|---------------|---|------|-----------------|------|-----------------|------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SIp setup time (to SCKp↑) Note 1 | tsıĸı | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $ | 81 | | 479 | | 479 | | ns | | | | $C_b = 30$ pF, $R_b = 1.4$ k Ω | | | | | | | | | | | | 177 | | 479 | | 479 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $ \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $ | 479 | | 479 | | 479 | | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | | SIp hold time
(from SCKp↑) Note 1 | t KSI1 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | | Delay time from SCKp↓ to | tkso1 | $ \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $ | | 100 | | 100 | | 100 | ns | | SOp output Note 1 | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | $ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $ | | 195 | | 195 | | 195 | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | | 483 | | 483 | | 483 | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | Notes - 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. - 2. Use it with $EV_{DD0} \ge V_b$. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the page after the next page.) # (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | , 0 | h-speed
Mode | , | /-speed
Mode | , | -voltage
Mode | Unit | |--------------------------------------|---------------|---|------|-----------------|------|-----------------|------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SIp setup time
(to SCKp↓) Note 1 | tsıĸı | $\begin{array}{l} 4.0~V \leq EV_{DD0} \leq 5.5~V, \\ 2.7~V \leq V_b \leq 4.0~V, \end{array} \label{eq:pdd_pdd}$ | 44 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 44 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $ \begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $ | 110 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | | | | | SIp hold time
(from SCKp↓) Note 1 | t KSI1 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | | | | | Delay time from SCKp↑ to | tkso1 | $ \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $ | | 25 | | 25 | | 25 | ns | | SOp output Note 1 | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | $ \begin{array}{c} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \end{array} $ | | 25 | | 25 | | 25 | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | | 25 | | 25 | | 25 | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | Notes - 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. Use it with $EV_{DD0} \ge V_b$. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (3/5)$ | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |------------------------|------------------|--|--|----------------------|----------------------|--------------------|------| | Input voltage,
high | V _{IH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | Normal input buffer | 0.8EV _{DD0} | | EV _{DD0} | V | | | V _{IH2} | P01, P03, P04, P10, P11,
P13 to P17, P43, P44, P53 to P55, | TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V | 2.2 | | EV _{DD0} | V | | | | P80, P81, P142, P143 | TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V | 2.0 | | EV _{DD0} | V | | | | | TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V | 1.5 | | EV _{DD0} | V | | | V _{IH3} | P20 to P27, P150 to P156 | | 0.7V _{DD} | | V_{DD} | ٧ | | | V _{IH4} | P60 to P63 | 0.7EV _{DD0} | | 6.0 | ٧ | | | | V _{IH5} | P121 to P124, P137, EXCLK, EXCL | P124, P137, EXCLK, EXCLKS, RESET | | | V_{DD} | ٧ | | Input voltage,
low | VIL1 | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | Normal input buffer | 0 | | 0.2EVDDO | V | | | V _{IL2} | P01, P03, P04, P10, P11,
P13 to P17, P43, P44, P53 to P55, | TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V | 0 | | 0.8 | V | | | | P80, P81, P142, P143 | TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V | 0 | | 0.5 | V | | | | | TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V | 0 | | 0.32 | V | | | VIL3 | P20 to P27, P150 to P156 | | 0 | | 0.3V _{DD} | V | | | V _{IL4} | P60 to P63 | 0 | | 0.3EV _{DD0} | ٧ | | | | V _{IL5} | P121 to P124, P137, EXCLK, EXCLK | KS, RESET | 0 | | 0.2V _{DD} | V | Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. During HALT instruction execution by flash memory. - 3. When high-speed on-chip oscillator and subsystem clock are stopped. - 4. When high-speed system clock and subsystem clock are stopped. - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. - **8.** Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$ - Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz $2.4~V \leq$ VDD \leq 5.5 V@1 MHz to 16 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C ### 3.4 AC Characteristics ### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Items | Symbol | | MIN. | TYP. | MAX. | Unit | | | |--|-----------------|--|----------------|--|-----------|------|------|--------------------| | Instruction cycle (minimum | Tcy | Main | HS (high-speed | $1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | 0.03125 | | 1 | μS | | instruction execution time) | | system
clock (fmain)
operation | main) mode | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$ | 0.0625 | | 1 | μS | | | | Subsystem of operation | clock (fsua) | $2.4~V \le V_{DD} \le 5.5~V$ | 28.5 | 30.5 | 31.3 | μS | | | | In the self | HS (high-speed | $1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | 0.03125 | | 1 | μS | | | | programming mode | main) mode | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$ | 0.0625 | | 1 | μS | | External system clock frequency | fex | $2.7 \text{ V} \leq \text{V}_{DD} \leq$ | ≤ 5.5 V | | 1.0 | | 20.0 | MHz | | | | 2.4 V ≤ V _{DD} < | < 2.7 V | | 1.0 | | 16.0 | MHz | | | fexs | | 32 | | 35 | kHz | | | | External system clock input high- | texh, texl | H, texl $2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ | | | 24 | | | ns | | evel width, low-level width | | 2.4 V ≤ V _{DD} < | < 2.7 V | | 30 | | | ns | | | texhs,
texhs | | | | 13.7 | | | μS | | TI00 to TI07, TI10 to TI17 input high-level width, low-level width | tтін,
tтіL | | | | 1/fмск+10 | | | ns ^{Note} | | TO00 to TO07, TO10 to TO17 | f то | HS (high-spe | eed 4.0 V | ≤ EV _{DD0} ≤ 5.5 V | | | 16 | MHz | | output frequency | | main) mode | 2.7 V | ≤ EV _{DD0} < 4.0 V | | | 8 | MHz | | | | | 2.4 V | ≤ EV _{DD0} < 2.7 V | | | 4 | MHz | | PCLBUZ0, PCLBUZ1 output | fpcL | HS (high-spe | eed 4.0 V | ≤ EV _{DD0} ≤ 5.5 V | | | 16 | MHz | | frequency | | main) mode | 2.7 V | ≤ EV _{DD0} < 4.0 V | | | 8 | MHz | | | | | 2.4 V | ≤ EV _{DD0} < 2.7 V | | | 4 | MHz | | Interrupt input high-level width, | tinth, | INTP0 | 2.4 V | $\leq V_{DD} \leq 5.5 \text{ V}$ | 1 | | | μS | | low-level width | tintl | INTP1 to INT | TP11 2.4 V | $\leq EV_{DD0} \leq 5.5 V$ | 1 | | | μS | | Key interrupt input low-level width | t KR | KR0 to KR7 | 2.4 V | $\leq EV_{DD0} \leq 5.5 \text{ V}$ | 250 | | | ns | | RESET low-level width | trsL | | • | | 10 | | | μS | **Note** The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns Remark fmck: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)) ### Simplified I²C mode mode connection diagram (during communication at same potential) ### Simplified I²C mode serial transfer timing (during communication at same potential) Remarks 1. $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance - **2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13) 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$ [bps] Baud rate error (theoretical value) = $$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer. Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. **UART** mode connection diagram (during communication at different potential) - Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. #### CSI mode connection diagram (during communication at different potential) - **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, - 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$ | Parameter | Symbol | Cond | MIN. | TYP. | MAX. | Unit | | |--|--------|------------------|--------------------------------|------|------|-------------------------|------| | Resolution | RES | | | | 8 | | bit | | Conversion time | tconv | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | Zero-scale error ^{Notes 1, 2} | Ezs | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | Integral linearity error ^{Note 1} | ILE | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | Differential linearity error Note 1 | DLE | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | | | ±1.0 | LSB | | Analog input voltage | Vain | | | 0 | | V _{BGR} Note 3 | V | - **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. - 4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM. ### 3.6.2 Temperature sensor/internal reference voltage characteristics (TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode) | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------------------|---------------------|--|------|------|------|-------| | Temperature sensor output voltage | V _{TMPS25} | Setting ADS register = 80H, Ta = +25°C | | 1.05 | | V | | Internal reference voltage | V _{BGR} | Setting ADS register = 81H | 1.38 | 1.45 | 1.5 | ٧ | | Temperature coefficient | Fvтмps | Temperature sensor that depends on the temperature | | -3.6 | | mV/°C | | Operation stabilization wait time | tamp | | 5 | | | μS | ## 3.6.5 Power supply voltage rising slope characteristics #### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------------------|--------|------------|------|------|------|------| | Power supply voltage rising slope | SVDD | | | | 54 | V/ms | Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics. #### 3.7 RAM Data Retention Characteristics #### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-------------------------------|--------|------------|----------------------|------|------|------| | Data retention supply voltage | VDDDR | | 1.44 ^{Note} | | 5.5 | V | **Note** This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated. | | | Description | | | | |------|--------------|-------------|--|--|--| | Rev. | Date | Page | Summary | | | | 3.00 | Aug 02, 2013 | 81 | Modification of figure of AC Timing Test Points | | | | | | 81 | Modification of description and note 3 in (1) During communication at same potential (UART mode) | | | | | | 83 | Modification of description in (2) During communication at same potential (CSI mode) | | | | | | 84 | Modification of description in (3) During communication at same potential (CSI mode) | | | | | | 85 | Modification of description in (4) During communication at same potential (CSI mode) (1/2) | | | | | | 86 | Modification of description in (4) During communication at same potential (CSI mode) (2/2) | | | | | | 88 | Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2) | | | | | | 89 | Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2) | | | | | | 91 | Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) | | | | | | 92, 93 | Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | | | 94 | Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | | | 95 | Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2) | | | | | | 96 | Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2) | | | | | | 97 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) | | | | | | 98 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) | | | | | | 99 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | | | 100 | Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | | | 102 | Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2) | | | | | | 103 | Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2) | | | | | | 106 | Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | | | 107 | Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | | | 109 | Addition of (1) I ² C standard mode | | | | | | 111 | Addition of (2) I ² C fast mode | | | | | | 112 | Addition of (3) I ² C fast mode plus | | | | | | 112 | Modification of IICA serial transfer timing | | | | | | 113 | Addition of table in 2.6.1 A/D converter characteristics | | | | | | 113 | Modification of description in 2.6.1 (1) | | | | | | 114 | Modification of notes 3 to 5 in 2.6.1 (1) | | | | | | 115 | Modification of description and notes 2, 4, and 5 in 2.6.1 (2) | | | | | | 116 | Modification of description and notes 3 and 4 in 2.6.1 (3) | | | | | | 117 | Modification of description and notes 3 and 4 in 2.6.1 (4) | | |