

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 20x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100pjafb-30

Table 1-1. List of Ordering Part Numbers

(1/12)

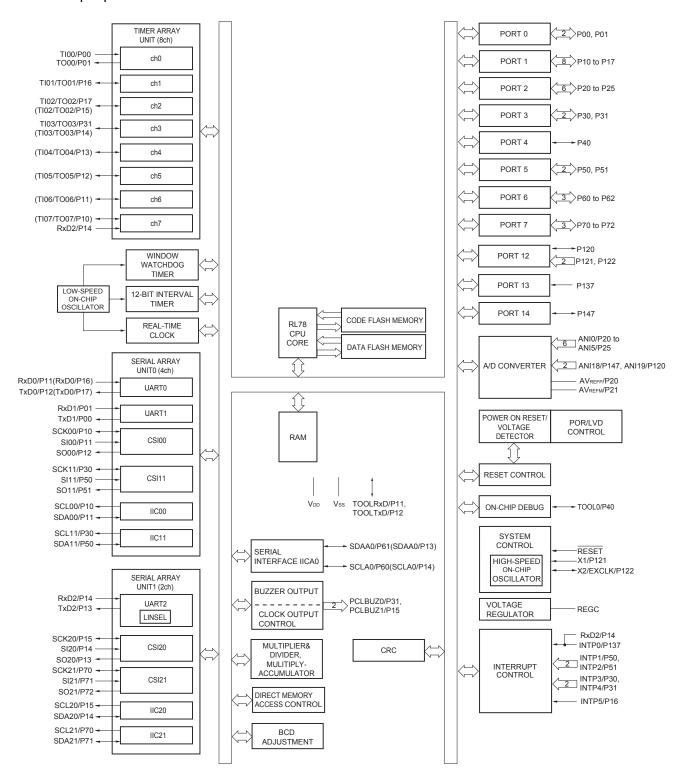
Pin	Package	Data	Fields of	Ordering Part Number
count	. askago	flash	Application Note	S. Golffig Fatt Harrison
20 pins	20-pin plastic LSSOP	Mounted	A	R5F1006AASP#V0, R5F1006CASP#V0, R5F1006DASP#V0,
20 piris	(7.62 mm (300), 0.65	Mounted	A	R5F1006AASF#V0, R5F1006CASF#V0, R5F1006DASF#V0,
	mm pitch)			R5F1006AASP#X0, R5F1006CASP#X0, R5F1006DASP#X0,
	min pitch)			R5F1006EASP#X0
			D	R5F1006ADSP#V0, R5F1006CDSP#V0, R5F1006DDSP#V0,
				R5F1006EDSP#V0
				R5F1006ADSP#X0, R5F1006CDSP#X0, R5F1006DDSP#X0,
				R5F1006EDSP#X0
			G	R5F1006AGSP#V0, R5F1006CGSP#V0, R5F1006DGSP#V0,
				R5F1006EGSP#V0
				R5F1006AGSP#X0, R5F1006CGSP#X0, R5F1006DGSP#X0,
				R5F1006EGSP#X0
		Not	Α	R5F1016AASP#V0, R5F1016CASP#V0, R5F1016DASP#V0,
		mounted		R5F1016EASP#V0
				R5F1016AASP#X0, R5F1016CASP#X0, R5F1016DASP#X0,
				R5F1016EASP#X0
			D	R5F1016ADSP#V0, R5F1016CDSP#V0, R5F1016DDSP#V0,
				R5F1016EDSP#V0
				R5F1016ADSP#X0, R5F1016CDSP#X0, R5F1016DDSP#X0,
				R5F1016EDSP#X0
24 pins	24-pin plastic	Mounted	Α	R5F1007AANA#U0, R5F1007CANA#U0, R5F1007DANA#U0,
	HWQFN (4 × 4mm,			R5F1007EANA#U0
	0.5 mm pitch)			R5F1007AANA#W0, R5F1007CANA#W0, R5F1007DANA#W0,
				R5F1007EANA#W0
			D	R5F1007ADNA#U0, R5F1007CDNA#U0, R5F1007DDNA#U0,
				R5F1007EDNA#U0
				R5F1007ADNA#W0, R5F1007CDNA#W0, R5F1007DDNA#W0,
				R5F1007EDNA#W0
			G	R5F1007AGNA#U0, R5F1007CGNA#U0, R5F1007DGNA#U0,
				R5F1007EGNA#U0
				R5F1007AGNA#W0, R5F1007CGNA#W0, R5F1007DGNA#W0,
				R5F1007EGNA#W0
		Not	Α	R5F1017AANA#U0, R5F1017CANA#U0, R5F1017DANA#U0,
		mounted		R5F1017EANA#U0
				R5F1017AANA#W0, R5F1017CANA#W0, R5F1017DANA#W0,
				R5F1017EANA#W0
			D	R5F1017ADNA#U0, R5F1017CDNA#U0, R5F1017DDNA#U0,
				R5F1017EDNA#U0
				R5F1017ADNA#W0, R5F1017CDNA#W0, R5F1017DDNA#W0,
				R5F1017EDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

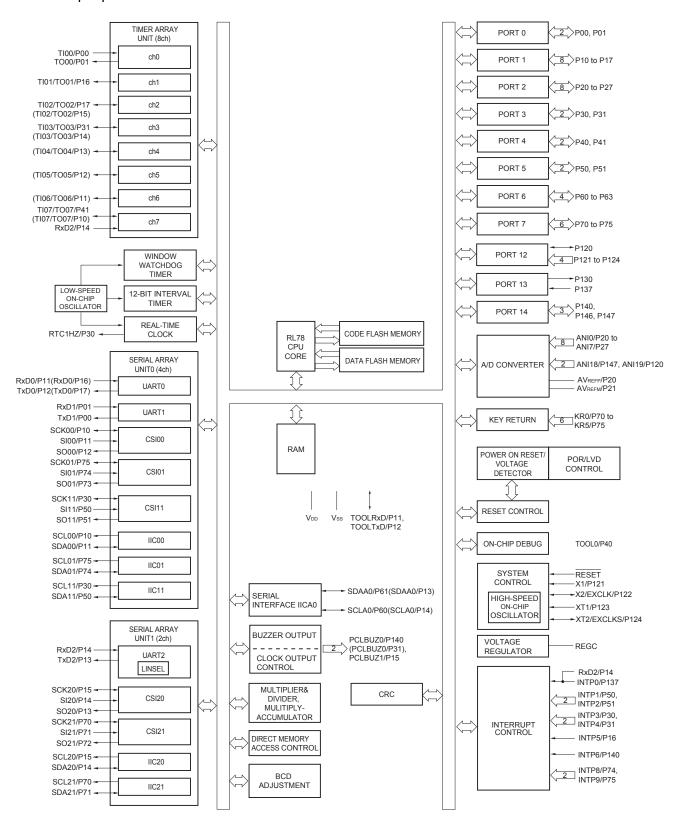
Table 1-1. List of Ordering Part Numbers

(6/12)


Pin count	Package	Data flash	Fields of Application	Ordering Part Number
48 pins	48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)	Mounted	А	R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0, R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0, R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0,
				R5F100GLANA#U0
				R5F100GAANA#W0, R5F100GCANA#W0,
				R5F100GDANA#W0, R5F100GEANA#W0,
				R5F100GFANA#W0, R5F100GGANA#W0,
				R5F100GHANA#W0, R5F100GJANA#W0,
				R5F100GKANA#W0, R5F100GLANA#W0
			D	R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0,
				R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0,
				R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0,
				R5F100GLDNA#U0
				R5F100GADNA#W0, R5F100GCDNA#W0,
				R5F100GDDNA#W0, R5F100GEDNA#W0, R5F100GFDNA#W0, R5F100GGDNA#W0,
				R5F100GHDNA#W0, R5F100GJDNA#W0,
				R5F100GKDNA#W0, R5F100GLDNA#W0
			G	R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0,
				R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0,
				R5F100GHGNA#U0, R5F100GJGNA#U0
				R5F100GAGNA#W0, R5F100GCGNA#W0,
				R5F100GDGNA#W0, R5F100GEGNA#W0,
				R5F100GFGNA#W0, R5F100GGGNA#W0,
				R5F100GHGNA#W0, R5F100GJGNA#W0
		Not	Α	R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0,
		mounted		R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0,
				R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0,
				R5F101GLANA#U0
				R5F101GAANA#W0, R5F101GCANA#W0,
				R5F101GDANA#W0, R5F101GEANA#W0,
				R5F101GFANA#W0, R5F101GGANA#W0,
				R5F101GHANA#W0, R5F101GJANA#W0,
				R5F101GKANA#W0, R5F101GLANA#W0
			D	R5F101GADNA#U0, R5F101GCDNA#U0, R5F101GDDNA#U0,
				R5F101GEDNA#U0, R5F101GFDNA#U0, R5F101GGDNA#U0,
				R5F101GHDNA#U0, R5F101GJDNA#U0, R5F101GKDNA#U0,
				R5F101GLDNA#U0
				R5F101GADNA#W0, R5F101GCDNA#W0,
				R5F101GDDNA#W0, R5F101GEDNA#W0,
				R5F101GFDNA#W0, R5F101GGDNA#W0,
				R5F101GHDNA#W0, R5F101GJDNA#W0,
				R5F101GKDNA#W0, R5F101GLDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



1.5.6 36-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.9 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

(2/2)

				100 nin		(2/2)			
Ite	m	80-	pin	100	-pin	128	3-pin		
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx		
Clock output/buzz	er output		2	1	2		2		
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz							
		· ·	clock: fmain = 20						
				.048 kHz, 4.096 k		16.384 kHz, 32.76	68 kHz		
0/40 1 "	A /D	(Subsystem clock: fsuB = 32.768 kHz operation)							
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels			
Serial interface			, 128-pin product						
			•	2 channels/UAR					
			•	2 channels/UAR 2 channels/UAR		tina I IN-hus): 1 (channel		
			•	2 channels/UAR		ung En v buoj. T c	onamo:		
	I ² C bus	2 channels	·	2 channels		2 channels			
Multiplier and divid	der/multiply-	• 16 bits × 16 bi	ts = 32 bits (Uns	igned or signed)					
accumulator		• 32 bits ÷ 32 bi	ts = 32 bits (Uns	igned)					
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)							
DMA controller		4 channels							
Vectored	Internal		37	3	37		41		
interrupt sources	External		13	1	3		13		
Key interrupt			8	1	8		8		
Reset		Reset by RES							
			by watchdog tim						
			by power-on-res by voltage detec						
				tion execution Note					
			by RAM parity e						
		Internal reset by illegal-memory access							
Power-on-reset cir	rcuit	Power-on-res	et: 1.51 V (TY	P.)					
		Power-down-	reset: 1.50 V (TY	P.)					
Voltage detector		Rising edge :		.06 V (14 stages))				
		• Falling edge : 1.63 V to 3.98 V (14 stages)							
On-chip debug fur	nction	Provided							
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +85^{\circ}\text{C})$							
		$V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$							
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^\circ$	C (A: Consumer	applications, D: Ir	ndustrial applicat	ions)			
		$T_A = 40 \text{ to } +105$	°C (G: Industrial	applications)					
		1							

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (4/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -10.0 mA	EV _{DD0} –			V
		P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	EV _{DD0} – 0.7			V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -2.0 mA	EV _{DD0} – 0.6			V
			$\label{eq:loss_loss} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EV _{DD0} – 0.5			٧
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $I_{\text{OH1}} = -1.0 \text{ mA}$	EV _{DD0} – 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	1.6 V \leq V _{DD} \leq 5.5 V, Іон2 = $-100~\mu$ A	V _{DD} - 0.5			V
Output voltage, low	V _{OL1} P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64		$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 20~mA$			1.3	٧
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\label{eq:loss_loss} \begin{cases} 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ \\ \text{Iol1} = 8.5 \text{ mA} \end{cases}$			0.7	>
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 3.0~\text{mA}$			0.6	>
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$\label{eq:local_decomposition} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OL1}} = 0.6 \ mA \end{array}$			0.4	V
			$1.6~V \leq EV_{DD0} < 5.5~V,$ $I_{OL1} = 0.3~mA$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	1.6 V \leq VDD \leq 5.5 V, lol2 = 400 μ A			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 15.0 \text{ mA}$			2.0	٧
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V
			$2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD0} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 3.0~\textrm{mA}$			0.4	V
			$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $\text{Iol3} = 1.0 \text{ mA}$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit											
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	$V_{DD} = 5.0 \text{ V}$		2.1		mA											
current Note 1		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.1		mA											
			mode		Normal	$V_{DD} = 5.0 \text{ V}$		4.6	7.0	mA											
					operation	V _{DD} = 3.0 V		4.6	7.0	mA											
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.5	mA											
					operation	V _{DD} = 3.0 V		3.7	5.5	mA											
				fin = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		2.7	4.0	mA											
					operation	V _{DD} = 3.0 V		2.7	4.0	mA											
			LS (low-	fin = 8 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.8	mA											
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.8	mA											
			LV (low-	fin = 4 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.7	mA											
			voltage main) mode		operation	V _{DD} = 2.0 V		1.2	1.7	mA											
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA											
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA											
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA											
									V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA						
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA											
				Vi	V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA										
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA											
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA											
			LS (low-	$f_{MX} = 8 MHz^{Note 2},$	Normal	Square wave input		1.1	1.7	mA											
			speed main) mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA											
				$f_{MX} = 8 MHz^{Note 2},$	Normal	Square wave input		1.1	1.7	mA											
						\	,					\	,		V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μА											
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μА											
				fsuB = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA											
				Note 4 TA = +25°C	operation	Resonator connection		4.2	5.0	μА											
				fsuB = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ											
		Note 4		Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μА											
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ											
			Note 4 $T_A = +70^{\circ}C$		operation	Resonator connection		4.4	6.4	μΑ											
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μА											
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μА											

(Notes and Remarks are listed on the next page.)

(4) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL ^{Note 1}				0.20		μΑ
RTC operating current	RTC Notes 1, 2, 3				0.02		μА
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	IWDT Notes 1, 2, 5	fıL = 15 kHz			0.22		μА
A/D converter	IADC Notes 1, 6	When	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current		conversion at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μА
Temperature sensor operating current	ITMPS Note 1				75.0		μΑ
LVD operating current	LVI Notes 1, 7				0.08		μА
Self- programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{\text{REFP}} = V_{\text{DD}} = 3.0 \text{ V}$		1.20	1.44	mA
		CSI/UART opera	tion		0.70	0.84	mA

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		,	r-speed Mode	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t KCY1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{DD0} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	tксү1/2 — 7		tксү1/2 – 50		tксү1/2 — 50		ns
		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑)	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	23		110		110		ns
Note 1		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp [↑]) Note 2	tksı1	2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF No	te 4		10		10		10	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		, ,	h-speed Mode	,	/-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	20 MHz < fмск	8/fмск		_		_		ns
Note 5		V	fмск ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5$	16 MHz < fмск	8/fмск		_		_		ns
		V	fмск ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.4~V \le EV_{DD0} \le 5.5~V$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V}$ $1.7 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
				6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tkH2, tkL2	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 7		tксү2/2 - 7		tkcy2/2 -7		ns
		$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксу2/2 — 8		tксу2/2 - 8		tkcy2/2 -8		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 18		tксу2/2 - 18		tксу2/2 - 18		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 — 66		tксү2/2 - 66		tkcy2/2 - 66		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		tксү2/2 - 66		tkcy2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

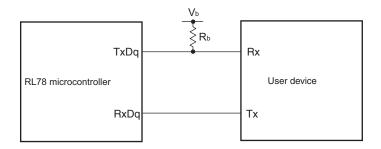
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \ln{(1-\frac{2.0}{V_b})}\} \times 3} \text{ [bps]}$$

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD0} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln \ (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

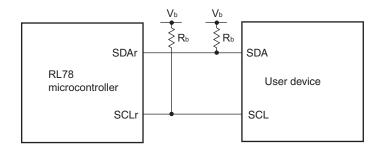
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

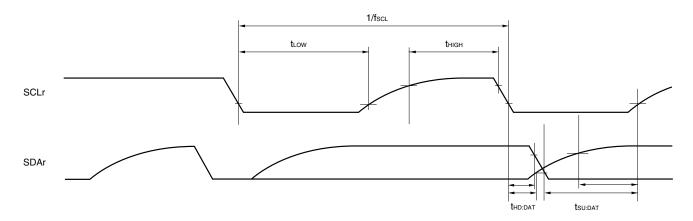
UART mode connection diagram (during communication at different potential)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol		Conditions	HS (high-speed main) Mode		LS (low	r-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{split} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 & \ pF, \ R_b = 1.4 \ k\Omega \end{split}$	300		1150		1150		ns
			$\begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		1150		1150		ns
			$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{Note}, \end{aligned}$	1150		1150		1150		ns
SCKp high-level width	tкн1	$C_b = 30 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega$ $4.0 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 30 \text{ pF}, \ R_b = 1.4 \text{ k}\Omega$		tксү1/2 – 75		tксү1/2 – 75		tксу1/2 — 75		ns
		$2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксу1/2 — 170		tксу1/2 — 170		tксу1/2 — 170		ns
		$1.8 \text{ V} \le \text{EV}_{DD}$ $1.6 \text{ V} \le \text{V}_{b} \le \text{C}_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	t _{KL1}	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V, $		tксу1/2 — 12		tксү1/2 — 50		tксү1/2 — 50		ns
		$C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega$ $2.7 \; V \leq EV_{DD0} < 4.0 \; V,$ $2.3 \; V \leq V_b \leq 2.7 \; V,$ $C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega$		tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		$\begin{aligned} &C_b = 30 \text{ pF, } R_b = 2.7 \text{ K}\Omega \\ &1.8 \text{ V} \leq \text{EV}_{DDO} < 3.3 \text{ V,} \\ &1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}^{\text{Note}}, \\ &C_b = 30 \text{ pF, } R_b = 5.5 \text{ k}\Omega \end{aligned}$		tксү1/2 — 50		tксү1/2 – 50		tксу1/2 — 50		ns

Note Use it with $EV_{DD0} \ge V_b$.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 01, 02, 10, 12, 13)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		V _{DD}	٧
		ANI16 to ANI26		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 4		V
		Temperature sensor output (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	-		VTMPS25 Note 4	1	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to +105°C R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Aŗ	oplication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 16 \text{ MHz}$ $LS \text{ (low-speed main) mode:}$ $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 8 \text{ MHz}$ $LV \text{ (low-voltage main) mode:}$ $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 4 \text{ MHz}$	HS (high-speed main) mode only: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~32~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$
High-speed on-chip oscillator clock accuracy	1.8 V \leq V _{DD} \leq 5.5 V \pm 1.0%@ T _A = -20 to +85°C \pm 1.5%@ T _A = -40 to -20°C 1.6 V \leq V _{DD} $<$ 1.8 V \pm 5.0%@ T _A = -20 to +85°C \pm 5.5%@ T _A = -40 to -20°C	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $\pm 2.0\%$ \bigcirc T _A = +85 to +105°C $\pm 1.0\%$ \bigcirc T _A = -20 to +85°C $\pm 1.5\%$ \bigcirc T _A = -40 to -20°C
Serial array unit	UART CSI: fclk/2 (supporting 16 Mbps), fclk/4 Simplified I ² C communication	UART CSI: fclk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels)	Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels)

(Remark is listed on the next page.)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (5/5)$

Items	Symbol	Conditions				TYP.	MAX.	Unit
Input leakage current, high	Ілн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μΑ
	ILIH2	P20 to P27, P137, P150 to P156, RESET	$V_I = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_{I} = V_{DD}$ In input port or external clock input				1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	Luli	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EV _{SS0}				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	Ішз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (2/2)

Parameter	Symbol		Conditions				TYP.	MAX.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	HS (high- speed main) mode Note 7	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	3.40	mA
					V _{DD} = 3.0 V		0.62	3.40	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	2.70	mA
					V _{DD} = 3.0 V		0.50	2.70	mA
				fin = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high- speed main) mode Note 7	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
				V _{DD} = 5.0 V	Resonator connection		0.48	2.20	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	2.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	1.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	1.20	mA
			Subsystem clock operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μΑ
				T _A = -40°C	Resonator connection		0.47	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
				T _A = +25°C	Resonator connection		0.53	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μΑ
				T _A = +50°C	Resonator connection		0.60	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μΑ
				T _A = +70°C	Resonator connection		0.83	4.22	μΑ
				fsub = 32.768 kHz ^{Note 5} T _A = +85°C	Square wave input		1.09	8.04	μΑ
					Resonator connection		1.28	8.23	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μΑ
				T _A = +105°C	Resonator connection		5.50	41.00	μΑ
	IDD3 ^{Note 6}	STOP mode Note 8	$T_A = -40^{\circ}C$ $T_A = +25^{\circ}C$ $T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$				0.19	0.52	μΑ
							0.25	0.52	μΑ
							0.32	2.21	μΑ
							0.55	3.94	μΑ
			T _A = +85°C				1.00	7.95	μΑ
			T _A = +105°C				5.00	40.00	μΑ

(Notes and Remarks are listed on the next page.)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions		HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate		Transmission	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$			Note 1	bps
			V, $2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \ V_b = 2.7 \ V$		2.6 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$	' V ≤ EV _{DD0} < 4.0		Note 3	bps
			$V,$ $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$		1.2 Note 4	Mbps
		2.4 V ≤ EV _{DD0} < 3.3			Note 5	bps	
		$V,$ $1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 V$		0.43 Note 6	Mbps	

Notes 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DDO} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .

Zero-scale error/Full-scale error: Add $\pm 0.05\% FSR$ to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	163	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)	
		164, 165	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		166	Modification of table in 3.5.2 Serial interface IICA	
		166	Modification of IICA serial transfer timing	
		167	Addition of table in 3.6.1 A/D converter characteristics	
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)	
		169	Modification of description in 3.6.1 (2)	
		170	Modification of description and note 3 in 3.6.1 (3)	
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)	
		172	Modification of table and note in 3.6.3 POR circuit characteristics	
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics	
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)	
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
3.10	Nov 15, 2013	123	Caution 4 added.	
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
3.30	Mar 31, 2016		Modification of the position of the index mark in 25-pin plastic WFLGA (3 \times 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products	
			Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products]	
			ACK corrected to ACK	
			ACK corrected to ACK	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.