

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

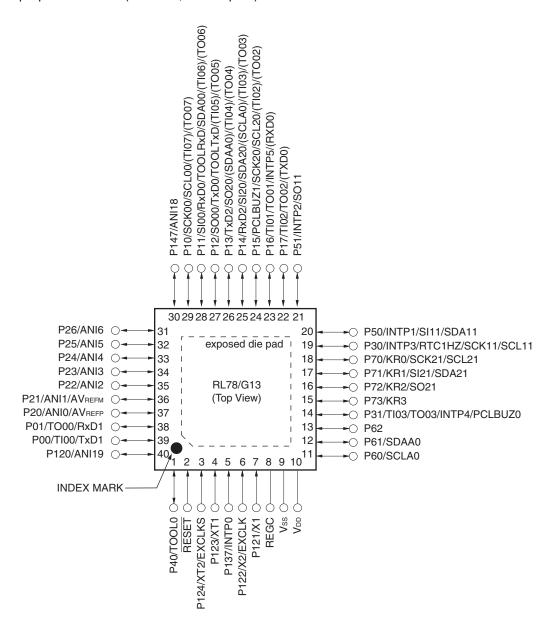
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 20x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100pjdfb-50

O ROM, RAM capacities

Flash	Data	RAM			RL78	/G13		
ROM	flash		20 pins	24 pins	25 pins	30 pins	32 pins	36 pins
128	8 KB	12	-	-	-	R5F100AG	R5F100BG	R5F100CG
KB	=	KB	-	-	-	R5F101AG	R5F101BG	R5F101CG
96	8 KB	8 KB	=	=	=	R5F100AF	R5F100BF	R5F100CF
KB	-		-	-	-	R5F101AF	R5F101BF	R5F101CF
64	4 KB	4 KB	R5F1006E	R5F1007E	R5F1008E	R5F100AE	R5F100BE	R5F100CE
KB	=	Note	R5F1016E	R5F1017E	R5F1018E	R5F101AE	R5F101BE	R5F101CE
48	4 KB	3 KB	R5F1006D	R5F1007D	R5F1008D	R5F100AD	R5F100BD	R5F100CD
KB	_	1.0.0	R5F1016D	R5F1017D	R5F1018D	R5F101AD	R5F101BD	R5F101CD
32	4 KB	2 KB	R5F1006C	R5F1007C	R5F1008C	R5F100AC	R5F100BC	R5F100CC
KB	=		R5F1016C	R5F1017C	R5F1018C	R5F101AC	R5F101BC	R5F101CC
16 KB	4 KB	2 KB	R5F1006A	R5F1007A	R5F1008A	R5F100AA	R5F100BA	R5F100CA
КВ	-		R5F1016A	R5F1017A	R5F1018A	R5F101AA	R5F101BA	R5F101CA

Flash	Data	RAM				RL78	3/G13			
ROM	flash		40 pins	44 pins	48 pins	52 pins	64 pins	80 pins	100 pins	128 pins
512	8 KB	32 KB Note	=	R5F100FL	R5F100GL	R5F100JL	R5F100LL	R5F100ML	R5F100PL	R5F100SL
KB	-	Note	-	R5F101FL	R5F101GL	R5F101JL	R5F101LL	R5F101ML	R5F101PL	R5F101SL
384	8 KB	24 KB	1	R5F100FK	R5F100GK	R5F100JK	R5F100LK	R5F100MK	R5F100PK	R5F100SK
KB	-		-	R5F101FK	R5F101GK	R5F101JK	R5F101LK	R5F101MK	R5F101PK	R5F101SK
256	8 KB	20 KB Note	-	R5F100FJ	R5F100GJ	R5F100JJ	R5F100LJ	R5F100MJ	R5F100PJ	R5F100SJ
KB	_	Note	-	R5F101FJ	R5F101GJ	R5F101JJ	R5F101LJ	R5F101MJ	R5F101PJ	R5F101SJ
192	8 KB	16 KB	R5F100EH	R5F100FH	R5F100GH	R5F100JH	R5F100LH	R5F100MH	R5F100PH	R5F100SH
KB	=		R5F101EH	R5F101FH	R5F101GH	R5F101JH	R5F101LH	R5F101MH	R5F101PH	R5F101SH
128	8 KB	12 KB	R5F100EG	R5F100FG	R5F100GG	R5F100JG	R5F100LG	R5F100MG	R5F100PG	-
KB	-		R5F101EG	R5F101FG	R5F101GG	R5F101JG	R5F101LG	R5F101MG	R5F101PG	-
96	8 KB	8 KB	R5F100EF	R5F100FF	R5F100GF	R5F100JF	R5F100LF	R5F100MF	R5F100PF	=
KB	_		R5F101EF	R5F101FF	R5F101GF	R5F101JF	R5F101LF	R5F101MF	R5F101PF	-
64	4 KB	4 KB Note	R5F100EE	R5F100FE	R5F100GE	R5F100JE	R5F100LE	=	=	=
KB	_	Note	R5F101EE	R5F101FE	R5F101GE	R5F101JE	R5F101LE	-	=	-
48	4 KB	3 KB Note	R5F100ED	R5F100FD	R5F100GD	R5F100JD	R5F100LD	=	=	=
KB	-		R5F101ED	R5F101FD	R5F101GD	R5F101JD	R5F101LD	=	=	=
32	4 KB	2 KB	R5F100EC	R5F100FC	R5F100GC	R5F100JC	R5F100LC	-	=	-
KB	_	1	R5F101EC	R5F101FC	R5F101GC	R5F101JC	R5F101LC	-	-	-
16	4 KB	2 KB	R5F100EA	R5F100FA	R5F100GA	=	=	=	=	=
KB	_	1	R5F101EA	R5F101FA	R5F101GA	-	-	-	-	=

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.

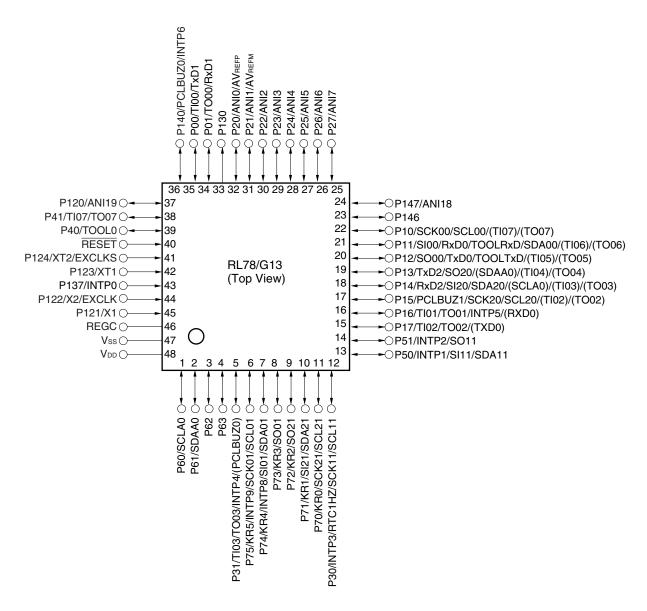

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L, M, P): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L, M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

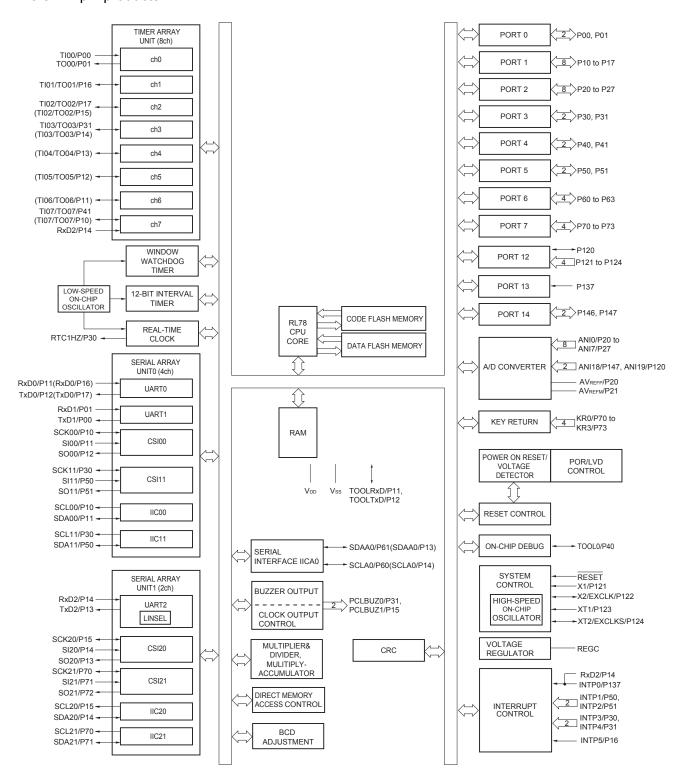

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to Vss.

1.3.9 48-pin products

• 48-pin plastic LFQFP (7 x 7 mm, 0.5 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	Itam	90	nin	100	nin	100	nin		
	Item	80- R5F100Mx	R5F101Mx	R5F100Px	-pin R5F101Px	128 R5F100Sx	R5F101Sx		
Code flash me	emory (KB)		512		o 512		o 512		
Data flash me	- , ,	8	=	8	=	8	=		
RAM (KB)		8 to 3	2 Note 1	8 to 3	2 Note 1	16 to 3	32 Note 1		
Address spac	е	1 MB		1					
Main system clock	High-speed system clock	HS (High-speed HS (High-speed LS (Low-speed	I main) mode: 1 I main) mode: 1 main) mode: 1	external main sys to 20 MHz (V _{DD} = to 16 MHz (V _{DD} = to 8 MHz (V _{DD} = to 4 MHz (V _{DD} =	= 2.7 to 5.5 V), = 2.4 to 5.5 V), 1.8 to 5.5 V),	(EXCLK)			
	High-speed on-chip oscillator	HS (High-speed LS (Low-speed	HS (High-speed main) mode: 1 to 32 MHz (V _{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V)						
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	KT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz						
Low-speed or	n-chip oscillator	15 kHz (TYP.)							
General-purpo	ose register	(8-bit register ×	8) × 4 banks						
Minimum insti	ruction execution time	0.03125 μs (Hig	h-speed on-chip	oscillator: fiн = 3	2 MHz operation)			
		0.05 <i>μ</i> s (High-s _l	peed system clo	ck: f _M x = 20 MHz	operation)				
		30.5 <i>μ</i> s (Subsys	stem clock: fsub =	= 32.768 kHz ope	ration)				
Instruction se	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	7	'4	9	92	1	20		
	CMOS I/O	(N-ch O.D. I/O	64 [EV _{DD} withstand e]: 21)	(N-ch O.D. I/O	32 [EV _{DD} withstand je]: 24)	(N-ch O.D. I/O	10 [EV _{DD} withstand e]: 25)		
	CMOS input	!	5		5		5		
	CMOS output		1		1		1		
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4		
Timer	16-bit timer	12 cha	annels	12 cha	annels	16 cha	annels		
	Watchdog timer	1 cha	ınnel	1 cha	annel	1 cha	annel		
	Real-time clock (RTC)	1 cha	nnel	1 cha	annel	1 cha	annel		
	12-bit interval timer (IT)	1 cha	nnel	1 cha	annel	1 cha	annel		
	Timer output	12 channels (PWM outputs:	10 Note 2)	12 channels (PWM outputs:	10 Note 2)	16 channels (PWM outputs:	14 ^{Note 2})		
	RTC output	1 channel • 1 Hz (subsyst	em clock: fsub =	32.768 kHz)					

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0.8EVDDO		EV _{DD0}	V
	V _{IH2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EV _{DD0}	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	1.5		EV _{DD0}	V
	V _{IH3}	P20 to P27, P150 to P156		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60 to P63		0.7EV _{DD0}		6.0	٧
	V _{IH5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0.8V _{DD}		V _{DD}	٧
Input voltage, low	V _{IL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	,	0		0.2EV _{DD0}	V
	V _{IL2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3V _{DD}	٧
	V _{IL4}	P60 to P63		0		0.3EV _{DD0}	٧
	V _{IL5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0		0.2V _{DD}	٧

Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$

LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions		speed	high- I main) ode		/-speed Mode	voltage	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate folk Note 4		5.3		1.3		0.6	Mbps
			$1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. Use it with EVDD0≥Vb.
- 3. The following conditions are required for low voltage interface when $E_{VDDO} < V_{DD}$.

 $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. $V_b[V]$: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (hig	h-speed Mode	LS (low	r-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{split} 4.0 \ V & \le EV_{DD0} \le 5.5 \ V, \\ 2.7 \ V & \le V_b \le 4.0 \ V, \\ C_b & = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{split}$	300		1150		1150		ns
			$\begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		1150		1150		ns
			$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{Note}, \end{aligned}$	1150		1150		1150		ns
SCKp high-level width	tкн1	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	4.0 V,	tксү1/2 – 75		tксү1/2 – 75		tксу1/2 — 75		ns
		$2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксу1/2 — 170		tксу1/2 — 170		tксу1/2 — 170		ns
		$1.8 \text{ V} \le \text{EV}_{DD}$ $1.6 \text{ V} \le \text{V}_{b} \le \text{C}_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	t _{KL1}	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$	00 ≤ 5.5 V, 4.0 V,	tксу1/2 — 12		tксү1/2 — 50		tксү1/2 — 50		ns
		$C_b = 30 \text{ pF},$ $2.7 \text{ V} \leq \text{EVor}$ $2.3 \text{ V} \leq \text{V}_b \leq$ $C_b = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		$1.8 \text{ V} \leq \text{EV}_{DD}$ $1.6 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 — 50		tксү1/2 – 50		tксу1/2 — 50		ns

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

(Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high main)	•	,	/-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{split} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ &1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ &C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{aligned} $	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
Data hold time (transmission)	thd:dat	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$\label{eq:section} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	0	355	0	355	0	355	ns
		$\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	0	405	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$1.8~V \leq V \text{dd} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

- The retaining years are until next rewrite after the rewrite.
- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200	_	1,000,000	bps

(3) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1				0.20		μΑ
RTC operating current	RTC Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μА
Watchdog timer operating current	WDT Notes 1, 2, 5	fıL = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 6	When conversion	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
operating current	110100 1,0	at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVD Notes 1, 7				0.08		μА
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz	ADC operation	The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, Loe voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	mA
		CSI/UART operation	on		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Items	Symbol		Conditions	3	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main	HS (high-speed	$1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
instruction execution time)		system clock (fmain) operation	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		Subsystem of operation	clock (fsua)	$2.4~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μS
		In the self	HS (high-speed	$1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
		programming mode	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
External system clock frequency	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	≤ 5.5 V		1.0		20.0	MHz
		2.4 V ≤ V _{DD} <	< 2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-	texh, texl	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		24			ns
level width, low-level width		2.4 V ≤ V _{DD} <	< 2.7 V		30			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	f то	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INT	TP11 2.4 V	$\leq EV_{DD0} \leq 5.5 V$	1			μS
Key interrupt input low-level width	t KR	KR0 to KR7	2.4 V	$\leq EV_{DD0} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsL		•		10			μS

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Conditions		HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate		Reception	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$			fmck/12 Note 1	bps
			V , $2.7 \ V \le V_b \le 4.0 \ V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps
	2.7 V ≤ EV _{DD0} < 4.0			fmck/12 Note 1	bps		
	$V,$ $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps		
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < \text{V},$	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$			fMCK/12 Notes 1,2	bps
		$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps	

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when EVDDO < VDD.

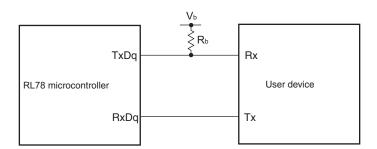
 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

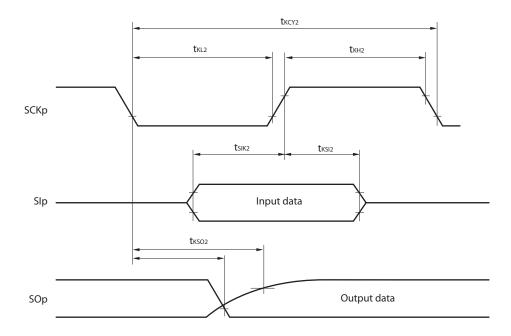
- Remarks 1. V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

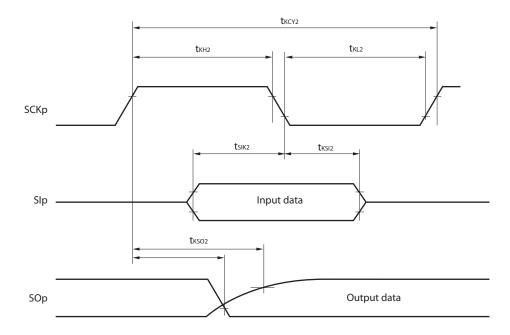
Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


UART mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage				
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = V _{BGR}		
Input channel	Reference voltage (–) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AVREFM		
ANI0 to ANI14	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .		
ANI16 to ANI26	Refer to 3.6.1 (2) .				
Internal reference voltage	Refer to 3.6.1 (1) .		_		
Temperature sensor output					
voltage					

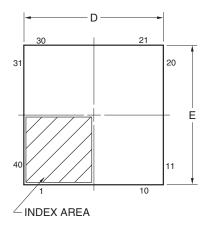
(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

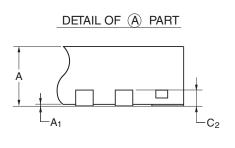
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
voltage, and temperature sensor output voltage (HS (high-speed main) mode)		$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs	
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AVREFP = VDD Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
	Internal reference voltage output (2.4 $V \le V_{DD} \le 5.5 V$, HS (high-speed main) mode)			V _{BGR} Note 4		V	
		Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 4		V	

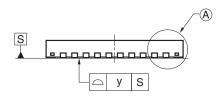
(Notes are listed on the next page.)

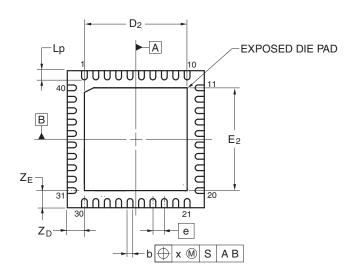
4.7 40-pin Products


R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA R5F101EAANA, R5F101ECANA, R5F101EDANA, R5F101EEANA, R5F101EFANA, R5F101EGANA, R5F101EHANA R5F100EADNA, R5F100ECDNA, R5F100EDNA, R5F100EDNA, R5F100EFDNA, R5F100EGDNA,

R5F100EHDNA


R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA


R5F100EAGNA, R5F100ECGNA, R5F100EDGNA, R5F100EEGNA, R5F100EFGNA, R5F100EGGNA, R5F100EHGNA

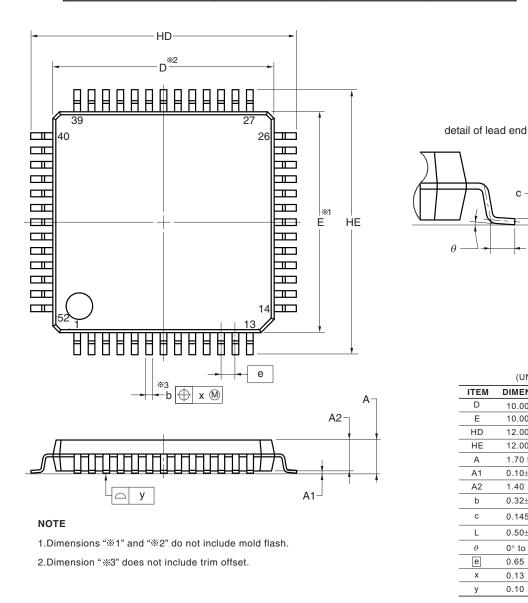

JEITA Package code	RENESAS code	Previous code	MASS (TYP.) [g]	
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-5	0.09	

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	5.95	6.00	6.05	
Е	5.95	6.00	6.05	
А			0.80	
A ₁	0.00	_		
b	0.18	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
х	_		0.05	
у			0.05	
Z _D		0.75		
Z _E		0.75		
C ₂	0.15	0.20	0.25	
D ₂		4.50		
E ₂		4.50		

©2013 Renesas Electronics Corporation. All rights reserved.

4.10 52-pin Products

R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA


R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JJAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA

R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA

R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA

R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

(UNIT:mm)

DIMENSIONS

10.00±0.10

10.00±0.10

12.00±0.20

12.00±0.20 1.70 MAX.

 0.10 ± 0.05 1.40

0.32±0.05

 $0.50 {\pm} 0.15$

 0° to 8° 0.65

0.13 0.10

0.145±0.055