

Renesas Electronics America Inc - R5F100PJDFB#V0 Datasheet

Welcome to **E-XFL.COM**

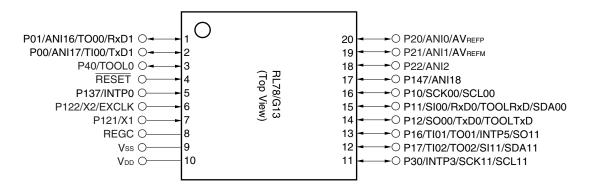
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 20x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100pjdfb-v0

Email: info@E-XFL.COM

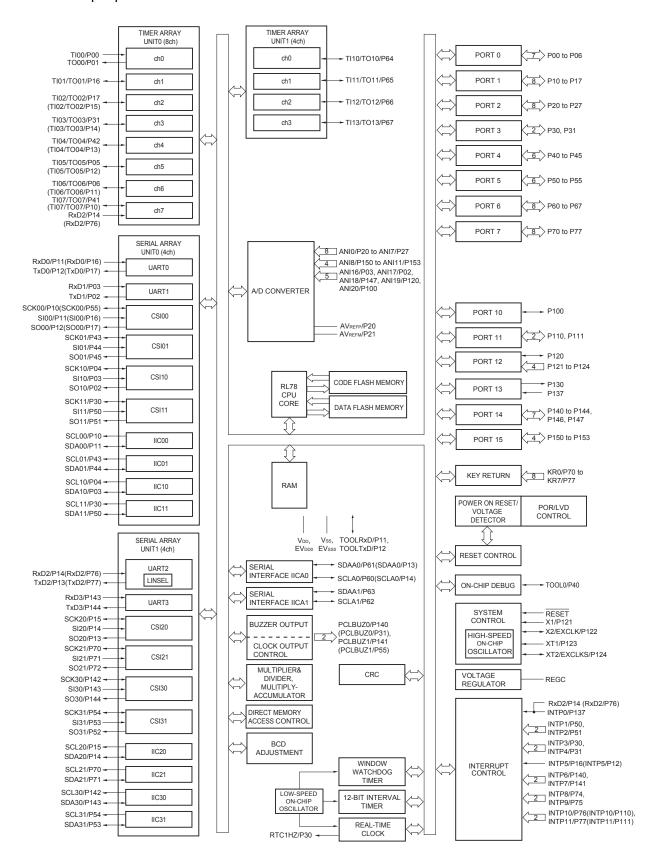

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G13 1. OUTLINE

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

RL78/G13 1. OUTLINE

1.5.12 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F100xxAxx, R5F101xxAxx

D: Industrial applications T_A = −40 to +85°C

R5F100xxDxx, R5F101xxDxx

G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$

R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high		P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0.8EVDDO		EV _{DD0}	V
		P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EV _{DD0}	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	1.5		EV _{DD0}	V
	V _{IH3}	P20 to P27, P150 to P156		0.7V _{DD}		V _{DD}	٧
	V _{IH4} P60 to P63			0.7EV _{DD0}		6.0	٧
	V _{IH5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0.8V _{DD}		V _{DD}	٧
Input voltage, low	V _{IL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	,	0		0.2EV _{DD0}	V
	V _{IL2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156	0		0.3V _{DD}	٧	
	V _{IL4}	P60 to P63		0		0.3EV _{DD0}	٧
	V _{IL5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0		0.2V _{DD}	٧

Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit														
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	$V_{DD} = 5.0 \text{ V}$		2.1		mA														
current Note 1		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.1		mA														
			mode		Normal	$V_{DD} = 5.0 \text{ V}$		4.6	7.0	mA														
					operation	V _{DD} = 3.0 V		4.6	7.0	mA														
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.5	mA														
					operation	V _{DD} = 3.0 V		3.7	5.5	mA														
				fin = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		2.7	4.0	mA														
					operation	V _{DD} = 3.0 V		2.7	4.0	mA														
			LS (low-	fin = 8 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.8	mA														
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.8	mA														
			LV (low-	fin = 4 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.7	mA														
			voltage main) mode		operation	V _{DD} = 2.0 V		1.2	1.7	mA														
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA														
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA														
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA														
			V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA															
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA														
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA														
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA														
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA														
			LS (low-	$f_{MX} = 8 MHz^{Note 2},$	Normal	Square wave input		1.1	1.7	mA														
			speed main) mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA														
				$f_{MX} = 8 MHz^{Note 2},$	Normal	Square wave input		1.1	1.7	mA														
				\	\				V	V	V	V		\	V	,	,	V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μА														
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μА														
				fsuB = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA														
				Note 4 TA = +25°C	operation	Resonator connection		4.2	5.0	μА														
				fsuB = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ														
				Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μА														
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ														
				operation	Resonator connection		4.4	6.4	μА															
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μА														
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μА														

(Notes and Remarks are listed on the next page.)

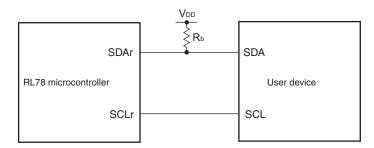
(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

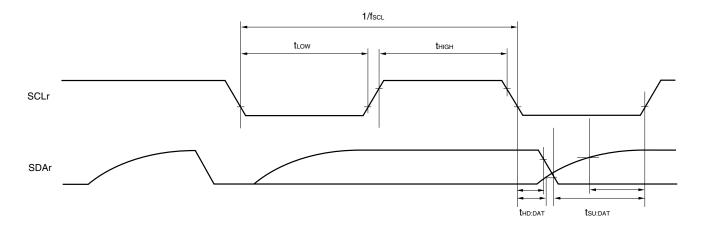
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	V _{DD} = 5.0 V		0.54	1.63	mA	
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.54	1.63	mA
				$f_{IH} = 24 \text{ MHz}^{\text{Note 4}}$	V _{DD} = 5.0 V		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μА
			speed main) mode Note 7		V _{DD} = 2.0 V		260	530	μА
		LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA	
		voltage main) mode		V _{DD} = 2.0 V		420	640	μА	
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.26	0.67	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.26	0.67	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μΑ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		145	380	μΑ
			mode	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μΑ
				$V_{DD} = 2.0 \text{ V}$	Resonator connection		145	380	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μΑ
			clock	T _A = -40°C	Resonator connection		0.44	0.76	μΑ
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μΑ
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μΑ
				T _A = +50°C	Resonator connection		0.56	1.36	μΑ
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.53	1.97	μΑ
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.82	3.37	μΑ
				T _A = +85°C	Resonator connection		1.01	3.56	μΑ
	IDD3 Note 6	STOP	T _A = -40°C				0.18	0.50	μΑ
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μА
			T _A = +50°C			0.30	1.10	μА	
			T _A = +70°C				0.46	1.90	μА
			T _A = +85°C				0.75	3.30	μΑ

(Notes and Remarks are listed on the next page.)

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products


(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions	,	_	MIN.	TYP.	MAX.	Unit		
Supply current Note 1	I _{DD1}	Operating	HS (high-	fih = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.6		mA		
current		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.6		mA		
					Normal	$V_{DD} = 5.0 \text{ V}$		6.1	9.5	mA		
					operation	$V_{DD} = 3.0 \text{ V}$		6.1	9.5	mA		
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		4.8	7.4	mA		
					operation	$V_{DD} = 3.0 \text{ V}$		4.8	7.4	mA		
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		3.5	5.3	mA		
					operation	$V_{DD} = 3.0 \text{ V}$		3.5	5.3	mA		
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Nomal	$V_{DD} = 3.0 \text{ V}$		1.5	2.3	mA		
	speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.3	mA				
		LV (low-	$f_{IH} = 4 \text{ MHz}^{\text{Note 3}}$	Normal	V _{DD} = 3.0 V		1.5	2.0	mA			
			voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA		
	`	HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA			
	speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA				
			$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA			
		$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA				
		$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	3.7	mA				
		$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA				
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.5	3.7	mA		
			LS (low- speed main) mode Note 5	$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA		
				, , , , , , , , , , , , , , , , , , ,	Nomal	Square wave input		1.4	2.2	mA		
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA		
				$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA		
				$V_{DD} = 2.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA		
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		5.4	6.5	μΑ		
			clock operation	T _A = -40°C	operation	Resonator connection		5.5	6.6	μΑ		
				fsub = 32.768 kHz	Nomal	Square wave input		5.5	6.5	μΑ		
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μΑ		
				fsub = 32.768 kHz	Nomal	Square wave input		5.6	9.4	μΑ		
				TA = +50°C	operation	Resonator connection		5.7	9.5	μΑ		
				fsuB = 32.768 kHz	Normal	Square wave input		5.9	12.0	μΑ		
						Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μΑ		
			ľ	Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μΑ		


(Notes and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

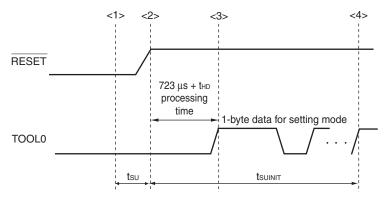
Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),
 - n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		V _{DD}	٧
		ANI16 to ANI26		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (hi		V _{BGR} Note 4		V	
		Temperature sensor output (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	-		VTMPS25 Note 4	1	V


Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuіліт	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

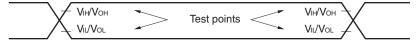
Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy		–40 to −20 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3.5 Peripheral Functions Characteristics

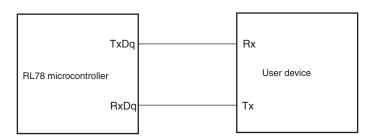
AC Timing Test Points

3.5.1 Serial array unit

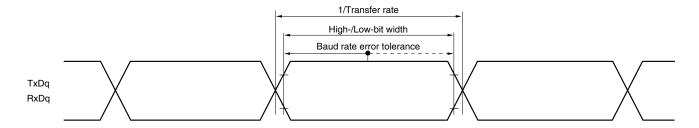
(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Symbol Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
Transfer rate Note 1					fmck/12 Note 2	bps
			Theoretical value of the maximum transfer rate fclk = 32 MHz, fMck = fclk		2.6	Mbps


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when EVDDO < VDD.


 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

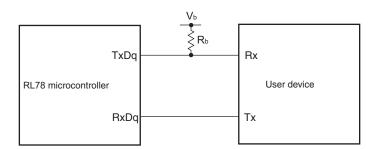
UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n: Channel number (mn = 00 to 03, 10 to 13))

5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spe	eed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsıĸı	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	88		ns
(to SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	88		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	220		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	38		ns
(from SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		50	ns
SOp output Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$		50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_b=30~pF,~R_b=5.5~k\Omega$			

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

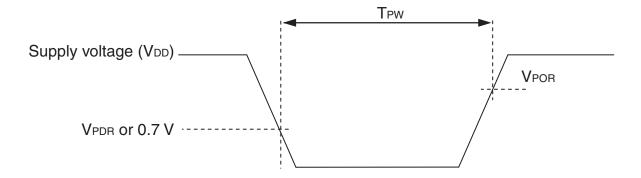
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

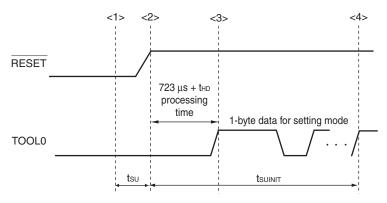
Parameter	Symbol		Conditions		ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	24 MHz < fмск	28/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7 \ V \leq V_b \leq 4.0 \ V$	8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fmck ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0$	24 MHz < fмск	40/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		2.4 V ≤ EV _{DD0} < 3.3	24 MHz < fмск	96/fмск		ns
		V,	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \ V \leq V_b \leq 2.0 \ V$	16 MHz < fмcк ≤ 20 MHz	64/ƒмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fmck ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkH2,	$4.0~V \leq EV_{DD0} \leq 5.$ $2.7~V \leq V_b \leq 4.0~V$		tксу2/2 — 24		ns
		$2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$		tkcy2/2 - 36		ns
		$2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note2	tsık2	$ 4.0 \ V \leq EV_{DD0} \leq 5. $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $	•	1/fмск + 40		ns
		$2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$		1/fмск + 40		ns
		$2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to SOp output Note 4	t KSO2	$4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$	$0.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $0.4 \text{ k}Ω$		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.$ $C_b = 30 \text{ pF}, R_b = 2$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5$	3 V, 1.6 V ≤ V _b ≤ 2.0 V 5.5 kΩ		2/fмск + 1146	ns


(Notes, Caution and Remarks are listed on the next page.)

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time		1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	T _{PW}		300			μS


Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

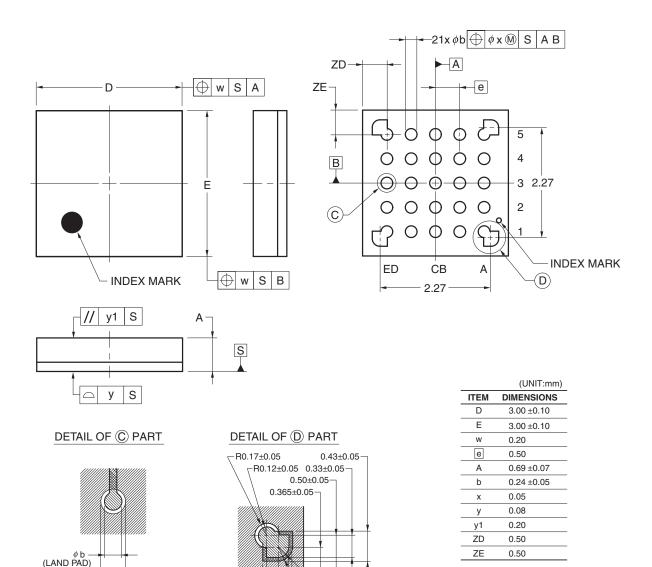
3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)		POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.


 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.3 25-pin Products

R5F1008AALA, R5F1008CALA, R5F1008DALA, R5F1008EALA R5F1018AALA, R5F1018CALA, R5F1018DALA, R5F1018EALA R5F1008AGLA, R5F1008CGLA, R5F1008DGLA, R5F1008EGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01

©2012 Renesas Electronics Corporation. All rights reserved.

R0.165±0.05

R0.215±0.05

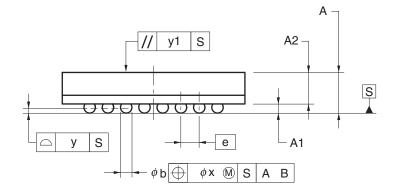
0.365±0.05

0.50±0.05

0.43±0.05

φ0.34±0.05 → (APERTURE OF

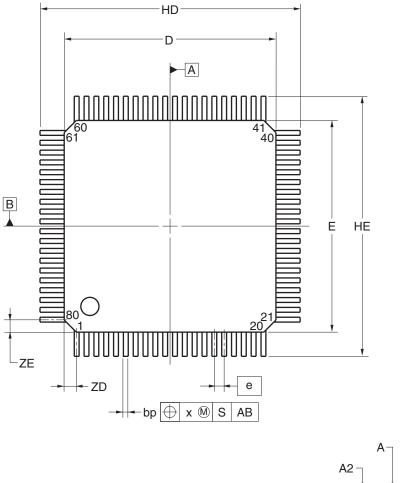

SOLDER RESIST)

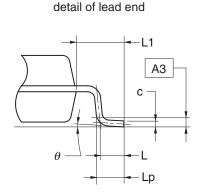

R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

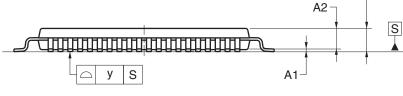
R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03


	(UNIT:mm)
ITEM	DIMENSIONS
D	4.00±0.10
Е	4.00±0.10
W	0.15
Α	0.89±0.10
A1	0.20±0.05
A2	0.69
е	0.40
b	0.25±0.05
х	0.05
у	0.08
y1	0.20
ZD	0.60
ZE	0.60


© 2012 Renesas Electronics Corporation. All rights reserved.

4.12 80-pin Products


R5F100MFAFA, R5F100MGAFA, R5F100MHAFA, R5F100MJAFA, R5F100MKAFA, R5F100MLAFA R5F101MFAFA, R5F101MGAFA, R5F101MHAFA, R5F101MJAFA, R5F101MKAFA, R5F101MLAFA R5F100MFDFA, R5F100MGDFA, R5F100MHDFA, R5F100MJDFA, R5F100MKDFA, R5F101MLDFA R5F101MFDFA, R5F101MGDFA, R5F101MHDFA, R5F101MJDFA, R5F101MKDFA, R5F101MLDFA R5F100MFGFA, R5F100MGGFA, R5F100MHGFA, R5F100MJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	13.80	14.00	14.20		
Е	13.80	14.00	14.20		
HD	17.00	17.20	17.40		
HE	17.00	17.20	17.40		
А			1.70		
A1	0.05	0.125	0.20		
A2	1.35	1.40	1.45		
A3		0.25			
bp	0.26	0.32	0.38		
С	0.10	0.145	0.20		
L		0.80			
Lp	0.736	0.886	1.036		
L1	1.40	1.60	1.80		
θ	0°	3°	8°		
е		0.65			
х		_	0.13		
У			0.10		
ZD		0.825			
ZE		0.825			

© 2012 Renesas ElectronicsCorporation. All rights reserved.