

Welcome to E-XFL.COM

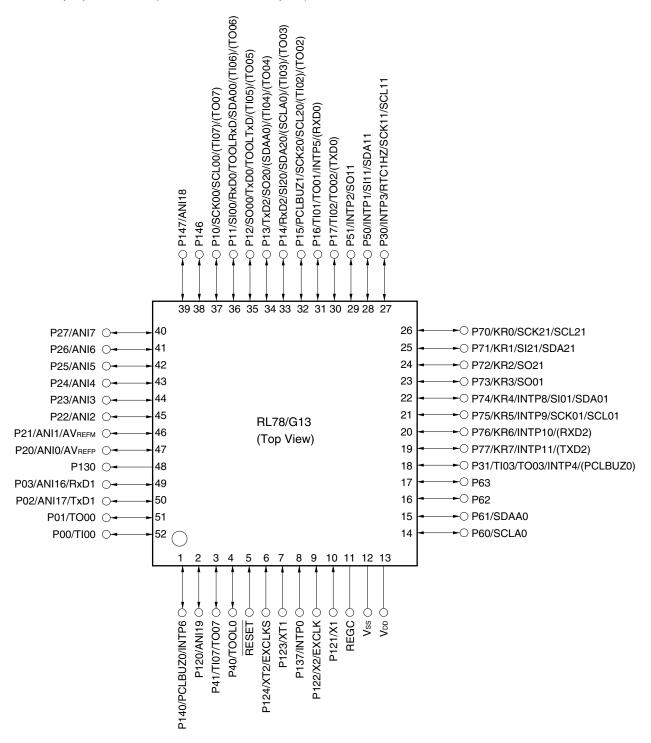
What is "Embedded - Microcontrollers"?

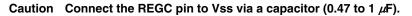
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $\times \square$

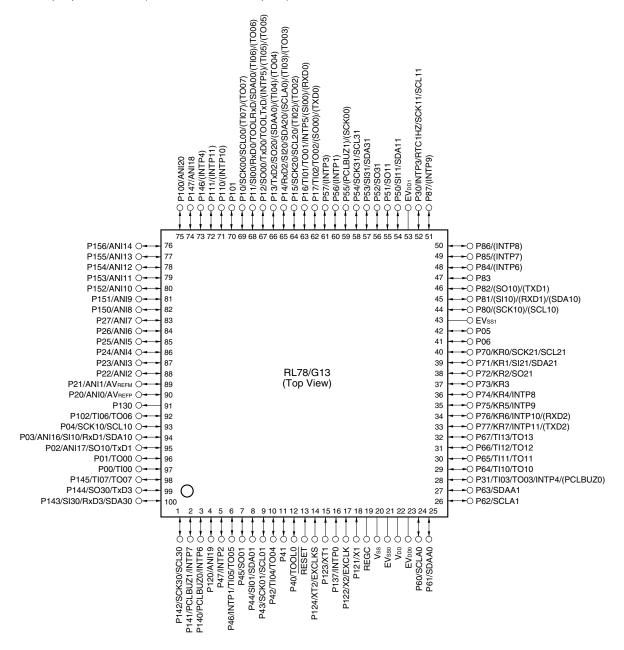

2 010.00	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 6x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1016dasp-v0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.10 52-pin products

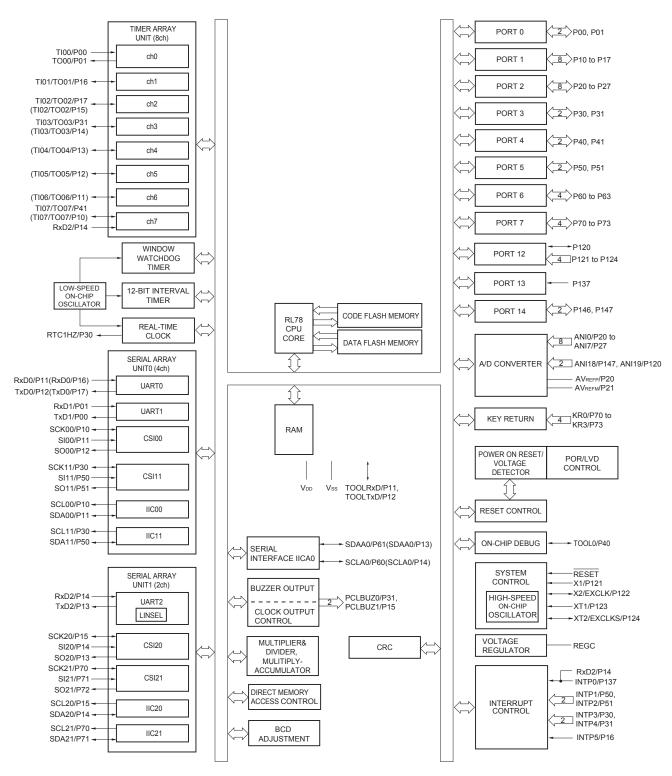
• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)


Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.13 100-pin products

• 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)



Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the V_{SS}, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

							(1/2)			
	Item	80-	•	100)-pin	128-pin				
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx			
Code flash m	emory (KB)	96 te	512	96 t	o 512	192	to 512			
Data flash me	emory (KB)	8	_	8	-	8	-			
RAM (KB)		8 to 3	2 Note 1	8 to 3	32 Note 1	16 to 5	32 Note 1			
Address space	e	1 MB								
Main system clock	High-speed system clock	HS (High-speed HS (High-speed LS (Low-speed	mic) oscillation, I main) mode: 1 I main) mode: 1 main) mode: 1 e main) mode: 1	to 20 MHz (V_{DD} to 16 MHz (V_{DD} to 8 MHz (V_{DD} =	= 2.4 to 5.5 V), 1.8 to 5.5 V),	(EXCLK)				
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 32 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)								
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	I subsystem cloc	k input (EXCLKS	i)				
Low-speed or	n-chip oscillator	15 kHz (TYP.)								
General-purp	ose register	(8-bit register ×	8) \times 4 banks							
Minimum instruction execution time		0.03125 <i>μ</i> s (Hig	h-speed on-chip	oscillator: fin = 3	32 MHz operation)				
		0.05 <i>µ</i> s (High-s	peed system clo	ck: fмx = 20 MHz	operation)					
		30.5 <i>µ</i> s (Subsys	stem clock: fsue =	- 32.768 kHz ope	eration)					
Instruction se	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 								
I/O port	Total	7	74		92	1	20			
	CMOS I/O	(N-ch O.D. I/O	64 [EV _{DD} withstand le]: 21)	(N-ch O.D. I/O	82 [EV⊳⊳ withstand ge]: 24)	(N-ch O.D. I/O	10 [EV _{DD} withstand ge]: 25)			
	CMOS input		5		5		5			
	CMOS output		1		1		1			
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4			
Timer	16-bit timer	12 cha	annels	12 ch	annels	16 ch	annels			
	Watchdog timer	1 cha	annel	1 ch	annel	1 cha	annel			
	Real-time clock (RTC)	1 cha	annel	1 ch	annel	1 cha	annel			
	12-bit interval timer (IT)	1 cha	annel	1 ch	annel	1 cha	annel			
	Timer output	12 channels (PWM outputs:	10 ^{Note 2})	12 channels (PWM outputs:	10 Note 2)	16 channels (PWM outputs: 14 ^{Note 2})				
	RTC output	1 channel • 1 Hz (subsyster)	tem clock: fsuв =	32.768 kHz)						

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H

R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library** for RL78 Family (R20UT2944).

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Юн1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	IoL1 Per pin P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 P147		40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins] [5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0.8EVDD0		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDDO	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDDO	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156		0.7V _{DD}		VDD	V
	VIH4	P60 to P63	0.7EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V \leq EV _{DD0} $<$ 4.0 V	0		0.5	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156	0		0.3Vdd	V	
	VIL4	P60 to P63	0		0.3EVDD0	V	
	VIL5	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0		0.2VDD	V

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: ~~ 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol		MIN.	TYP.	MAX.	Unit				
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		2.6		mA
current Note 1		mode	speed main) mode ^{Note 5}		operation	$V_{DD} = 3.0 V$		2.6		mA
					Normal	$V_{DD} = 5.0 V$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 V$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		4.8	7.4	mA
					operation	$V_{DD} = 3.0 V$		4.8	7.4	mA
				$f_{IH} = 16 \ MHz^{Note \ 3}$	Normal	$V_{DD} = 5.0 V$		3.5	5.3	mA
					operation	V _{DD} = 3.0 V		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	$V_{DD} = 2.0 V$		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.5	2.0	mA
		voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
		speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		4.1	6.3	mA	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		4.1	6.3	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.5	3.7	mA
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.5	3.7	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.5	3.7	mA
			LS (low-	$V_{DD} = 3.0 V$	operation	Resonator connection		2.5	3.7	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	°², Normal operation	Square wave input		1.4	2.2	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		5.6	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.6	9.4	μA
				$T_{A} = +50^{\circ}C$	operation	Resonator connection		5.7	9.5	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.9	12.0	μA
				Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μA
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μA
					Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol		Conditions			high- main) ode		/-speed Mode	voltage	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{b} \leq 4.0 \ V \end{array}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$: MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

		bol $Conditions$							1.177	1	Lint
Parameter	Symbol		Conditions			high-		low-		low-	Unit
						main) ode	speed	main) ode		age Mode	
								1			
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$			Note		Note		Note	bps
			$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$			1		1		1	
				Theoretical		2.8		2.8		2.8	Mbps
				value of the		Note 2		Note 2		Note 2	
				maximum							
				transfer rate							
				$C_b = 50 \text{ pF}, R_b =$							
				$1.4 \text{ k}\Omega, V_{\text{b}} = 2.7$							
				V							
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$			Note		Note		Note	bps
			$2.3~V \leq V_b \leq 2.7~V$			3		3		3	
				Theoretical		1.2		1.2		1.2	Mbps
				value of the		Note 4		Note 4		Note 4	
				maximum							
				transfer rate							
				$C_b = 50 \text{ pF}, R_b =$							
				$2.7 \text{ k}\Omega$, V _b = 2.3							
				V							
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$			Notes		Notes		Notes	bps
			$1.6~V \leq V_b \leq 2.0~V$			5, 6		5, 6		5, 6	
				Theoretical		0.43		0.43		0.43	Mbps
				value of the		Note 7		Note 7		Note 7	
				maximum							
				transfer rate							
				$C_b = 50 \text{ pF}, R_b =$							
				$5.5 \text{ k}\Omega, \text{V}_{\text{b}} = 1.6$							
				V							

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) (TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Notes 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (hig	h-speed Mode	LS (low		`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \end{array}$	1150		1150		1150		ns
SCKp high-level width	tкнı	$2.7~V \leq V_b \leq 4.0~V,$		tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns
		$C_b = 30 \text{ pF},$ 2.7 V $\leq EV_{DI}$ 2.3 V $\leq V_b \leq$ $C_b = 30 \text{ pF},$	₂₀ < 4.0 V, 2.7 V,	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$1.8 V \le EV_{DI}$ $1.6 V \le V_b \le C_b = 30 \text{ pF},$	2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	tĸ∟ı	$4.0 V \leq EV_{DI}$				tксү1/2 – 50		tксү1/2 – 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DI} \\ 2.3 \ V \leq V_b \leq \end{array}$	₀₀ < 4.0 V, 2.7 V,	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$\label{eq:cb} \begin{split} &C_{\rm b} = 30 \ p F, \\ &1.8 \ V \leq E V_{\rm DI} \\ &1.6 \ V \leq V_{\rm b} \leq \\ &C_{\rm b} = 30 \ p F, \end{split}$	⁰⁰ < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	·	0.8EV _{DD0}		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq EV_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156		0.7V _{DD}		VDD	V
	VIH4	P60 to P63	0.7EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, RESET				VDD	V
Input voltage, Iow	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	Unit
		l T	MIN.	MAX.	
SIp setup time	tsik1	$4.0 \ V \le EV_{\text{DD0}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V,$	162		ns
(to SCKp↑) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	354		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	958		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$			
Slp hold time (from SCKp↑) ^{№te}	tksi1	$4.0 \ V \le EV_{\text{DD0}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \le EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \le V_{\text{b}} \le 2.7 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
Delay time from SCKp \downarrow to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		200	ns
SOp output ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \le EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \le V_{\text{b}} \le 2.7 \ V,$		390	ns
		$C_{\rm b}=30~pF,~R_{\rm b}=2.7~k\Omega$			
		$2.4 \ V \le EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \le V_{\text{b}} \le 2.0 \ V,$		966	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)
 (T₁ = 40 to ±105°C 2.4 V ≤ EVere = EVere ≤ Vere ≤ 5.5 V, Vere = EVere = 6.V)

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

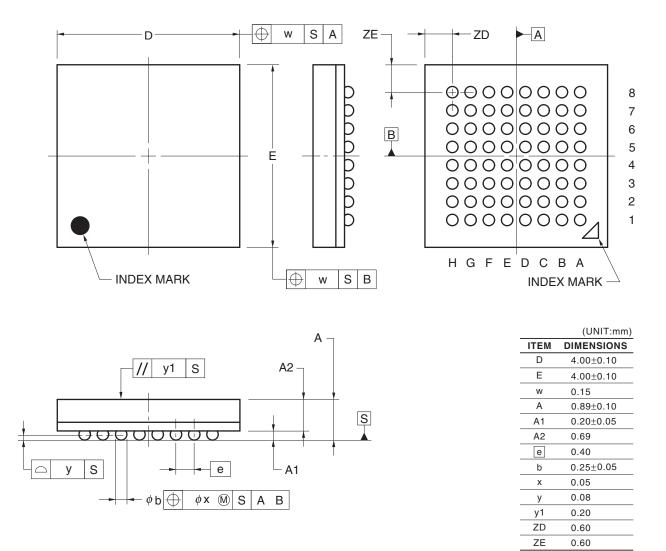
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time ^{№te 1}	tkCY2	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V, \end{array}$	24 MHz < fмск	28/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	24/f мск		ns
		$2.7 V \le V_b \le 4.0 V$	$8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \\ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	24 MHz < fмск	40/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	32/f мск		ns
			$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/fмск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \\ V, \end{array}$	24 MHz < fмск	96/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	72/f мск		ns
		$1.6 V {\le} V_b {\le} 2.0 V$	$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	64/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	52/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	32/f мск		ns
			fмск \leq 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tк∟2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		tkcy2/2 - 24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		tkcy2/2 - 36		ns
		$\label{eq:Volume} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) ^{№te2}	tsik2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		1/fмск + 40		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		1/fмск + 40		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№te 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tksoz	$ \begin{split} 4.0 \ V &\leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{split} $			2/fмск + 240	ns
		$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{\text{DD0}} < 4.0 \ \text{V}, \ 2.3 \ \text{V} \leq V_b \leq 2.7 \ \text{V}, \\ C_b &= 30 \ \text{pF}, \ R_b = 2.7 \ \text{k}\Omega \end{split}$			2/fмск + 428	ns
		$\label{eq:V_def} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)



R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03	

© 2012 Renesas Electronics Corporation. All rights reserved.

Davi	Description		Description
Rev.	Date	Page	Summary
3.00 Aug 02, 2013	Aug 02, 2013	81	Modification of figure of AC Timing Test Points
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)
	83	Modification of description in (2) During communication at same potential (CSI mode)	
	84	Modification of description in (3) During communication at same potential (CSI mode)	
	85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)	
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)
	89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)	
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)
		109	Addition of (1) I ² C standard mode
		111	Addition of (2) I ² C fast mode
		112	Addition of (3) I ² C fast mode plus
		112	Modification of IICA serial transfer timing
		113	Addition of table in 2.6.1 A/D converter characteristics
		113	Modification of description in 2.6.1 (1)
		114	Modification of notes 3 to 5 in 2.6.1 (1)
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

California Eastern Laboratories. Inc. 4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited ntury Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong t 1601-1611, 16/F., Tower 2, Grand Cen : +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malavsia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141