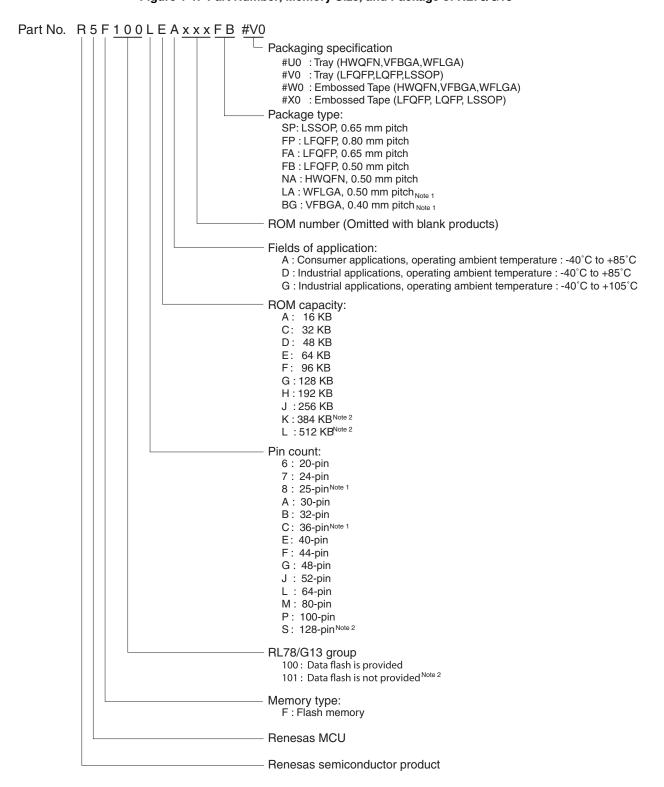


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 6x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1016easp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

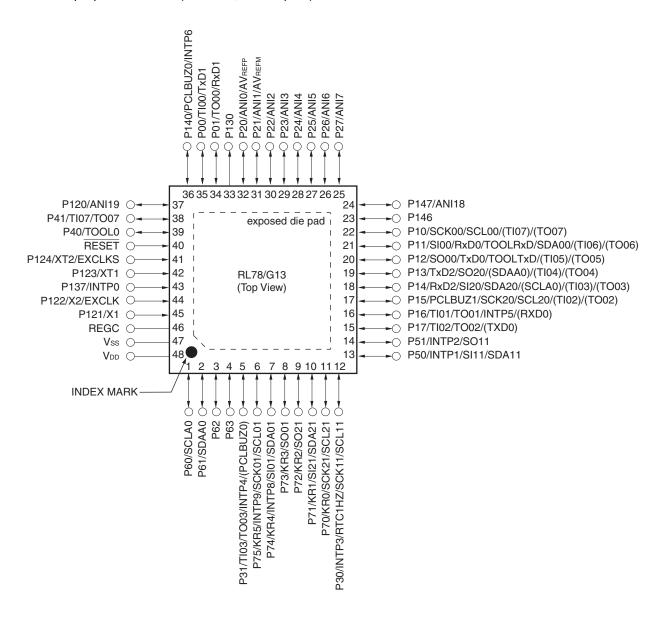
1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G13

Notes 1. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)"

2. Products only for "A: Consumer applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)", and "D: Industrial applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)"

Table 1-1. List of Ordering Part Numbers

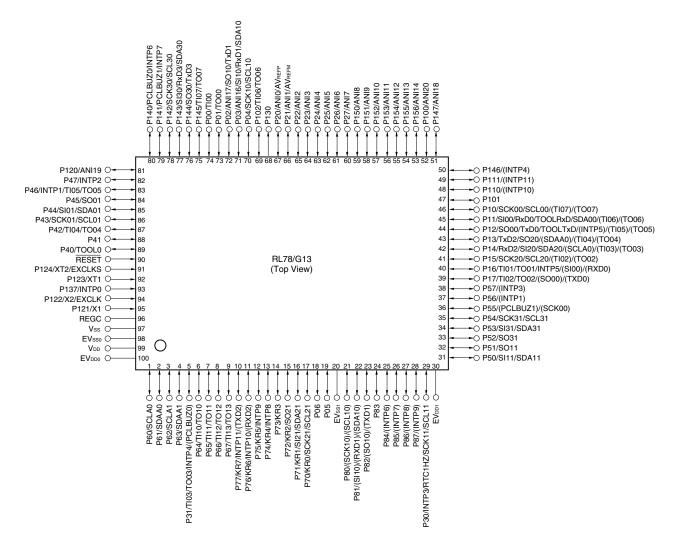

(7/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
52 pins	52-pin plastic	Mounted	A	R5F100JCAFA#V0, R5F100JDAFA#V0, R5F100JEAFA#V0,
	LQFP (10 × 10			R5F100JFAFA#V0, R5F100JGAFA#V0, R5F100JHAFA#V0,
	mm, 0.65 mm			R5F100JJAFA#V0, R5F100JKAFA#V0, R5F100JLAFA#V0
	pitch)			R5F100JCAFA#X0, R5F100JDAFA#X0, R5F100JEAFA#X0,
				R5F100JFAFA#X0, R5F100JGAFA#X0, R5F100JHAFA#X0,
				R5F100JJAFA#X0, R5F100JKAFA#X0, R5F100JLAFA#X0
			D	R5F100JCDFA#V0, R5F100JDDFA#V0, R5F100JEDFA#V0,
				R5F100JFDFA#V0, R5F100JGDFA#V0, R5F100JHDFA#V0,
				R5F100JJDFA#V0, R5F100JKDFA#V0, R5F100JLDFA#V0
				R5F100JCDFA#X0, R5F100JDDFA#X0, R5F100JEDFA#X0,
				R5F100JFDFA#X0, R5F100JGDFA#X0, R5F100JHDFA#X0,
				R5F100JJDFA#X0, R5F100JKDFA#X0, R5F100JLDFA#X0
			G	R5F100JCGFA#V0, R5F100JDGFA#V0, R5F100JEGFA#V0,
				R5F100JFGFA#V0,R5F100JGGFA#V0, R5F100JHGFA#V0,
				R5F100JJGFA#V0
				R5F100JCGFA#X0, R5F100JDGFA#X0, R5F100JEGFA#X0,
				R5F100JFGFA#X0,R5F100JGGFA#X0, R5F100JHGFA#X0,
				R5F100JJGFA#X0
		Not	Α	R5F101JCAFA#V0, R5F101JDAFA#V0, R5F101JEAFA#V0,
		mounted		R5F101JFAFA#V0, R5F101JGAFA#V0, R5F101JHAFA#V0,
				R5F101JJAFA#V0, R5F101JKAFA#V0, R5F101JLAFA#V0
				R5F101JCAFA#X0, R5F101JDAFA#X0, R5F101JEAFA#X0,
				R5F101JFAFA#X0, R5F101JGAFA#X0, R5F101JHAFA#X0,
				R5F101JJAFA#X0, R5F101JKAFA#X0, R5F101JLAFA#X0
			D	R5F101JCDFA#V0, R5F101JDDFA#V0, R5F101JEDFA#V0,
				R5F101JFDFA#V0, R5F101JGDFA#V0, R5F101JHDFA#V0,
				R5F101JJDFA#V0, R5F101JKDFA#V0, R5F101JLDFA#V0
				R5F101JCDFA#X0, R5F101JDDFA#X0, R5F101JEDFA#X0,
				R5F101JFDFA#X0, R5F101JGDFA#X0, R5F101JHDFA#X0,
				R5F101JJDFA#X0, R5F101JKDFA#X0, R5F101JLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$

• 100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch)

- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EVsso and EVss1 pins to separate ground lines.
 - 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (5/5)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μΑ
	ILIH2	P20 to P27, P1 <u>37,</u> P150 to P156, RESET	$V_I = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	lut1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EVsso				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	LIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	R∪	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vı = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

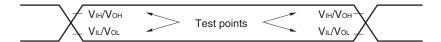
HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

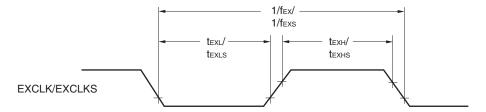
LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

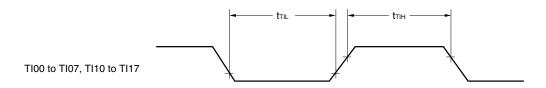
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

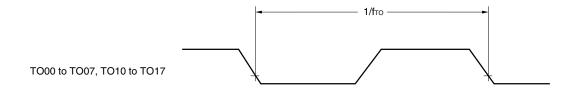
(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products


(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

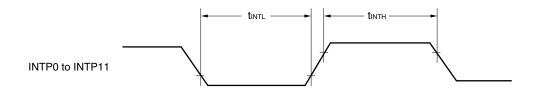
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (high-	fin = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	1.86	mA
Current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.11	mA
					V _{DD} = 3.0 V		0.44	1.11	mA
			LS (low-	fin = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μA
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μΑ
			voltage main) mode		V _{DD} = 2.0 V		440	680	μΑ
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.08	mA
			V _{DD} = 3.0 V	Resonator connection		0.48	1.28	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.63	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.63	mA	
		V _{DD} = 3.0 V	Resonator connection		0.28	0.71	mA		
			LS (low-	f _M x = 8 MHz ^{Note 3} ,	Square wave input		110	360	μА
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	420	μΑ
				fmx = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ
				V _{DD} = 2.0 V	Resonator connection		160	420	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
				T _A = +25°C	Resonator connection		0.53	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μΑ
				T _A = +50°C	Resonator connection		0.60	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μΑ
				T _A = +70°C	Resonator connection		0.83	4.22	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μΑ
			T _A = +85°C	Resonator connection		1.28	8.23	μА	
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.19	0.52	μΑ
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μΑ
			T _A = +70°C					3.94	μΑ
			T _A = +85°C				1.00	7.95	μA


(Notes and Remarks are listed on the next page.)

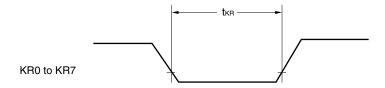

AC Timing Test Points

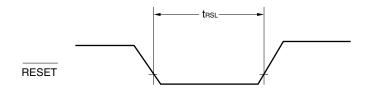


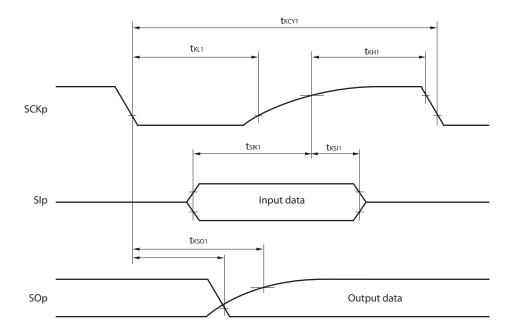
External System Clock Timing



TI/TO Timing




Interrupt Request Input Timing


Key Interrupt Input Timing

RESET Input Timing

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(2) I2C fast mode

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Сог	Conditions		h-speed Mode	`	/-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \le EV_{DD0} \le 5.5~V$	0	400	0	400	0	400	kHz
		fc∟κ≥ 3.5 MHz	1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	400	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	7 V ≤ EV _{DD0} ≤ 5.5 V			0.6		0.6		μS
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
Hold time when SCLA0 =	tLOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
" <u>L</u> "		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
Hold time when SCLA0 =	t HIGH	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.6		0.6		0.6		μS
"H"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μS
Data setup time	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	2.7 V ≤ EV _{DD0} ≤ 5.5 V			100		100		μS
(reception)		1.8 V ≤ EV _{DD0} ≤ 5.5 V		100		100		100		μS
Data hold time	thd:dat	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0	0.9	0	0.9	0	0.9	μS
(transmission)Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
Setup time of stop	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.$	5 V	0.6		0.6		0.6		μS
condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

<R>

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage							
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR						
Input channel	Reference voltage (–) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AVREFM						
ANI0 to ANI14	Refer to 2.6.1 (1) .	Refer to 2.6.1 (3) .	Refer to 2.6.1 (4) .						
ANI16 to ANI26	Refer to 2.6.1 (2) .								
Internal reference voltage	Refer to 2.6.1 (1) .		_						
Temperature sensor output									
voltage									

(1) When reference voltage (+)= AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2 to	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI14	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.25	%FSR
		(HS (high-speed main) mode) 10-bit resolution	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	E _{FS}	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±0.25	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±7.0 39 39 39 95 39 39 39 ±0.25 ±0.50 ±0.50 ±2.5 ±5.0 ±1.5 ±2.0 AVREEPP	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±2.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±1.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS			V _{BGR} Note 5		V
		Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS	•	\	/TMPS25 Note	5	V

(Notes are listed on the next page.)

LVD Detection Voltage of Interrupt & Reset Mode

(Ta = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDA0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	٧
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	٧
	V _{LVDB0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	V _{LVDB1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	>
				Falling interrupt voltage	1.90	1.94	1.98	٧
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	٧
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	٧
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	>
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	٧
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

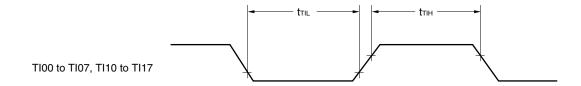
Absolute Maximum Ratings (TA = 25°C) (2/2)

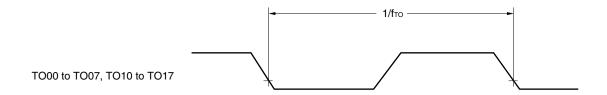
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	- 70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
	lo _{L1}	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	lo _{L2}	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та	In normal operati	on mode programming mode	-40 to +105	°C
	l				

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

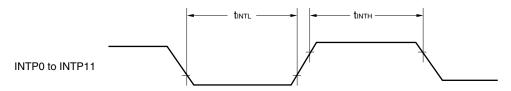
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (1/2)

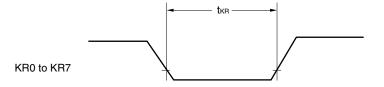

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.3		mA
Current Note 1		mode	speed main) mode Note 5		operatio n	V _{DD} = 3.0 V		2.3		mA
					Normal	V _{DD} = 5.0 V		5.2	9.2	mA
					operatio n	V _{DD} = 3.0 V		5.2	9.2	mA
				fih = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		4.1	7.0	mA
					operatio n	V _{DD} = 3.0 V		4.1	7.0	mA
				fin = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	5.0	mA
					operatio n	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} , Normal	Square wave input		3.4	5.9	mA	
			speed main) mode Note 5	V _{DD} = 5.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
				V DD - 0.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
			V _{DD} = 5.0 V	operatio n	Resonator connection		2.1	3.5	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
				V _{DD} = 3.0 V	operatio n	Resonator connection		2.1	3.5	mA
			Subsystem	fsub = 32.768 kHz	operatio	Square wave input		4.8	5.9	μΑ
			clock operation	$T_A = -40^{\circ}C$		Resonator connection		4.9	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μΑ
				T _A = +25°C	operatio n	Resonator connection		5.0	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		5.0	7.6	μΑ
				T _A = +50°C	operatio n	Resonator connection		5.1	7.7	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		5.2	9.3	μΑ
				Note 4 TA = +70°C	operatio n	Resonator connection		5.3	9.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		5.7	13.3	μΑ
				Note 4 $T_A = +85^{\circ}C$	operatio n	Resonator connection		5.8	13.4	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		10.0	46.0	μΑ
				Note 4 TA = +105°C	operatio n	Resonator connection		10.0	46.0	μΑ

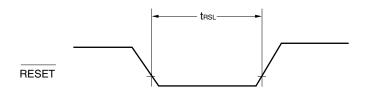

(Notes and Remarks are listed on the next page.)

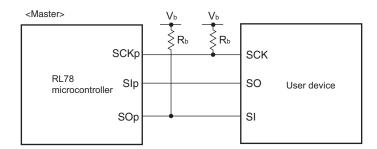
- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

TI/TO Timing




Interrupt Request Input Timing


Key Interrupt Input Timing

RESET Input Timing

CSI mode connection diagram (during communication at different potential)

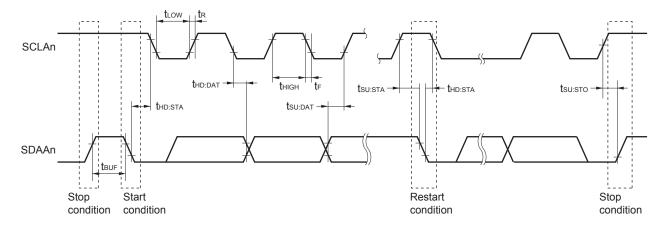
- Remarks 1. $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (h	igh-spee	ed main)	Mode	Unit
				ndard ode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk ≥ 3.5 MHz	-	_	0	400	kHz
		Standard mode: fcLK ≥ 1 MHz	0	100	ı	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	tBUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

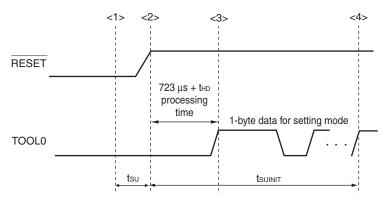

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing


Remark n = 0, 1

<R>

3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)		POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.