Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 15 | | Program Memory Size | 48KB (48K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 3K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 6x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 24-WFQFN Exposed Pad | | Supplier Device Package | 24-HWQFN (4x4) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1017ddna-u0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong RL78/G13 1. OUTLINE #### 1.3.6 36-pin products • 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch) | | Α | В | С | D | E | F | | |---|---------------------------|--------------------------------|---|---|---------------------------------|---------------------|---| | 6 | P60/SCLA0 | V _{DD} | P121/X1 | P122/X2/EXCLK | P137/INTP0 | P40/TOOL0 | 6 | | Ü | | | | | | |] | | 5 | P62 | P61/SDAA0 | Vss | REGC | RESET | P120/ANI19 | 5 | | | | | | | | | | | 4 | P72/SO21 | P71/SI21/
SDA21 | P14/RxD2/SI20/
SDA20/(SCLA0)
/(TI03)/(TO03) | P31/TI03/TO03/
INTP4/
PCLBUZ0 | P00/Tl00/TxD1 | P01/T000/RxD1 | 4 | | 3 | P50/INTP1/
SI11/SDA11 | P70/SCK21/
SCL21 | P15/PCLBUZ1/
SCK20/SCL20/
(TI02)/(TO02) | P22/ANI2 | P20/ANI0/
AV _{REFP} | P21/ANI1/
AVREFM | 3 | | 2 | P30/INTP3/
SCK11/SCL11 | P16/TI01/TO01/
INTP5/(RxD0) | P12/SO00/
TxD0/TOOLTxD
/(TI05)/(TO05) | P11/SI00/RxD0/
TOOLRxD/
SDA00/(TI06)/
(TO06) | P24/ANI4 | P23/ANI3 | 2 | | 1 | P51/INTP2/
SO11 | P17/Tl02/TO02/
(TxD0) | P13/TxD2/
SO20/(SDAA0)/
(TI04)/(TO04) | P10/SCK00/
SCL00/(TI07)/
(TO07) | P147/ANI18 | P25/ANI5 | 1 | | | Α | В | С | D | E | F | - | Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. RL78/G13 1. OUTLINE #### 1.5.5 32-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ### 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C) This chapter describes the following electrical specifications. Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxAxx, R5F101xxAxx D: Industrial applications T_A = −40 to +85°C R5F100xxDxx, R5F101xxDxx G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$ R5F100xxGxx - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}. - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. #### (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products # (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2) | Parameter | Symbol | | | Conditions | | | MIN. | TYP. | MAX. | Unit | |-------------------|------------------|-------------------|----------------------------|--|----------------------|-------------------------|------------|----------|------|-------| | Supply | I _{DD1} | Operating | HS (high- | fin = 32 MHz ^{Note 3} | Basic | V _{DD} = 5.0 V | | 2.3 | | mA | | Current
Note 1 | | mode | speed main)
mode Note 5 | | operation | V _{DD} = 3.0 V | | 2.3 | | mA | | | | | modo | | Nomal | V _{DD} = 5.0 V | | 5.2 | 8.5 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 5.2 | 8.5 | mA | | | | | | fin = 24 MHz Note 3 | Nomal | V _{DD} = 5.0 V | | 4.1 | 6.6 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 4.1 | 6.6 | mA | | | | | | fin = 16 MHz ^{Note 3} | Normal | V _{DD} = 5.0 V | | 3.0 | 4.7 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 3.0 | 4.7 | mA | | | | | LS (low- | fin = 8 MHz Note 3 | Normal | V _{DD} = 3.0 V | | 1.3 | 2.1 | mA | | | | | speed main)
mode Note 5 | | operation | V _{DD} = 2.0 V | | 1.3 | 2.1 | mA | | | | | LV (low- | fin = 4 MHz Note 3 | Nomal | V _{DD} = 3.0 V | | 1.3 | 1.8 | mA | | | | | voltage
main) mode | | operation | V _{DD} = 2.0 V | | 1.3 | 1.8 | mA | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Nomal | Square wave input | | 3.4 | 5.5 | mA | | | | | speed main)
mode Note 5 | V _{DD} = 5.0 V | operation | Resonator connection | | 3.6 | 5.7 | mA | | | | | mode | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal | Square wave input | | 3.4 | 5.5 | mA | | | | | V _{DD} = 3.0 V | operation | Resonator connection | | 3.6 | 5.7 | mA | | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Nomal | Square wave input | | 2.1 | 3.2 | mA | | | | | | VDD = 5.0 V | operation | Resonator connection | | 2.1 | 3.2 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{Note 2},$ | | Square wave input | | 2.1 | 3.2 | mA | | | | | | V _{DD} = 3.0 V | operation | Resonator connection | | 2.1 | 3.2 | mA | | | | | LS (low- | $f_{MX} = 8 MHz^{Note 2},$ | Normal | Square wave input | | 1.2 | 2.0 | mA | | | | | speed main)
mode Note 5 | V _{DD} = 3.0 V | operation | Resonator connection | | 1.2 | 2.0 | mA | | | | | modo | $f_{MX} = 8 MHz^{Note 2}$ | Normal | Square wave input | | 1.2 | 2.0 | mA | | | | | | V _{DD} = 2.0 V | operation | Resonator connection | | 1.2 | 2.0 | mA | | | | | Subsystem | fsub = 32.768 kHz | Nomal | Square wave input | | 4.8 | 5.9 | μΑ | | | | | clock
operation | T _A = -40°C | operation | Resonator connection | | 4.9 | 6.0 | μΑ | | | | | | fsub = 32.768 kHz | Nomal | Square wave input | | 4.9 | 5.9 | μΑ | | | | | | T _A = +25°C | operation | Resonator connection | | 5.0 | 6.0 | μА | | | | | | fsuB = 32.768 kHz | Nomal | Square wave input | _ | 5.0 | 7.6 | μΑ | | | | | | Note 4 | operation | Resonator connection | | 5.1 | 7.7 | μА | | | | | | T _A = +50°C | No. | 0 | | F 0 | 0.0 | | | | | fsub = 32.768 kHz | Normal operation | Square wave input Resonator connection | | 5.2
5.3 | 9.3
9.4 | μA
μA | | | | | | | | T _A = +70°C | | | | 0.0 | 0.4 | par C | | | | | | fsub = 32.768 kHz | Normal | Square wave input | | 5.7 | 13.3 | μА | | | | | | T _A = +85°C | operation | Resonator connection | | 5.8 | 13.4 | μA | | | l |] | 1 | 1 | 1 | l . | | I | ı | l | (Notes and Remarks are listed on the next page.) # (3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products # (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2) | Parameter | Symbol | | | Conditions | | MIN. | TYP. | MAX. | Unit | |-----------|------------------|--|----------------------------|--|-------------------------|------|-------|-------|------| | Supply | I _{DD2} | HALT | HS (high- | f _{IH} = 32 MHz ^{Note 4} | V _{DD} = 5.0 V | | 0.62 | 1.89 | mA | | current | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.62 | 1.89 | mA | | | | | mode | fih = 24 MHz Note 4 | V _{DD} = 5.0 V | | 0.50 | 1.48 | mA | | | | | | | V _{DD} = 3.0 V | | 0.50 | 1.48 | mA | | | | | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.44 | 1.12 | mA | | | | | | | V _{DD} = 3.0 V | | 0.44 | 1.12 | mA | | | | | LS (low- | fih = 8 MHz Note 4 | V _{DD} = 3.0 V | | 290 | 620 | μΑ | | | | | speed main)
mode Note 7 | | V _{DD} = 2.0 V | | 290 | 620 | μΑ | | | | | LV (low- | f _{IH} = 4 MHz Note 4 | V _{DD} = 3.0 V | | 460 | 700 | μΑ | | | | | voltage
main) mode | | V _{DD} = 2.0 V | | 460 | 700 | μΑ | | | | | HS (high- | fmx = 20 MHz ^{Note 3} , | Square wave input | | 0.31 | 1.14 | mA | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.48 | 1.34 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{Note 3},$ | Square wave input | | 0.31 | 1.14 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.48 | 1.34 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.21 | 0.68 | mA | | | | | | V _{DD} = 5.0 V | Resonator connection | | 0.28 | 0.76 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.21 | 0.68 | mA | | | | LS (low-
speed main)
mode Note 7 | 10 //2 | V _{DD} = 3.0 V | Resonator connection | | 0.28 | 0.76 | mA | | | | | $f_{MX} = 8 MHz^{Note 3}$ | Square wave input | | 110 | 390 | μΑ | | | | | | V _{DD} = 3.0 V | Resonator connection | | 160 | 450 | μΑ | | | | | | | $f_{MX} = 8 MHz^{Note 3}$ | Square wave input | | 110 | 390 | μΑ | | | | | | V _{DD} = 2.0 V | Resonator connection | | 160 | 450 | μΑ | | | | | Subsystem | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.31 | 0.66 | μΑ | | | | | clock
operation | T _A = -40°C | Resonator connection | | 0.50 | 0.85 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.38 | 0.66 | μΑ | | | | | | T _A = +25°C | Resonator connection | | 0.57 | 0.85 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.47 | 3.49 | μΑ | | | | | | T _A = +50°C | Resonator connection | | 0.66 | 3.68 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.80 | 6.10 | μΑ | | | | | | T _A = +70°C | Resonator connection | | 0.99 | 6.29 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 1.52 | 10.46 | μΑ | | | | | T _A = +85°C | Resonator connection | | 1.71 | 10.65 | μΑ | | | | IDD3 Note 6 | STOP
mode ^{Note 8} | T _A = -40°C | | | | 0.19 | 0.54 | μΑ | | | | mode | T _A = +25°C | | | | 0.26 | 0.54 | μΑ | | | | | T _A = +50°C | | | | 0.35 | 3.37 | μΑ | | | | | T _A = +70°C | | | | 0.68 | 5.98 | μA | | | | | T _A = +85°C | | | | 1.40 | 10.34 | μΑ | (Notes and Remarks are listed on the next page.) - **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode. - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation. - 8. Current flowing only during data flash rewrite. - 9. Current flowing only during self programming. - 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode. - Remarks 1. fil: Low-speed on-chip oscillator clock frequency - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 3. fclk: CPU/peripheral hardware clock frequency - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$ #### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | | speed | high-
I main)
ode | | /-speed
Mode | voltage | low-
e main)
ode | Unit | |---------------|--------|----------------|--|---|-------|-------------------------|------|----------------------|---------|------------------------|------| | | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Transfer rate | | Recep-
tion | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$
$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$ | | | fMCK/6
Note 1 | | fMCK/6
Note 1 | | fMCK/6
Note 1 | bps | | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$
$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ | | | fMCK/6
Note 1 | | fMCK/6
Note 1 | | fMCK/6
Note 1 | bps | | | | | | Theoretical value of the maximum transfer rate folk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | | $1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$ | | | fMCK/6
Notes 1 to 3 | | fMCK/6
Notes 1, 2 | | fMCK/6
Notes 1, 2 | bps | | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | **Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only. - 2. Use it with EVDD0≥Vb. - 3. The following conditions are required for low voltage interface when $E_{VDDO} < V_{DD}$. $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 2.6 Mbps $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are: HS (high-speed main) mode: 32 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V) LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 5.5 V) Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance (When 20- to 52-pin products)/EVpd tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected. **Remarks 1.** $V_b[V]$: Communication line voltage - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. #### UART mode bit width (during communication at different potential) (reference) - $\begin{tabular}{ll} \begin{tabular}{ll} \bf R_b[\Omega]: Communication line (TxDq) pull-up resistance, \\ C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage \\ \end{tabular}$ - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. # (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | , 0 | h-speed
Mode | , | /-speed
Mode | , | -voltage
Mode | Unit | |--------------------------------------|---------------|---|------|-----------------|------|-----------------|------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SIp setup time
(to SCKp↓) Note 1 | tsıĸı | $\begin{array}{l} 4.0~V \leq EV_{DD0} \leq 5.5~V, \\ 2.7~V \leq V_b \leq 4.0~V, \end{array} \label{eq:decomposition}$ | 44 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 44 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $ \begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $ | 110 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | | | | | SIp hold time
(from SCKp↓) Note 1 | t KSI1 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | | | | | Delay time from SCKp↑ to | tkso1 | $ \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $ | | 25 | | 25 | | 25 | ns | | SOp output Note 1 | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | $ \begin{array}{c} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \end{array} $ | | 25 | | 25 | | 25 | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | | 25 | | 25 | | 25 | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | Notes - 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. Use it with $EV_{DD0} \ge V_b$. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) #### CSI mode connection diagram (during communication at different potential) - **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage - **2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. <R> #### (3) I2C fast mode plus $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Cor | nditions | | h-speed
Mode | LS (low
main) | r-speed
Mode | | -voltage
Mode | Unit | |--|---------|--|--------------------------------|------|-----------------|------------------|-----------------|------|------------------|------| | | | | | | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCLA0 clock frequency | fscL | Fast mode plus:
fcLk≥ 10 MHz | $2.7~V \le EV_{DD0} \le 5.5~V$ | 0 | 1000 | _ | | | | kHz | | Setup time of restart condition | tsu:sta | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0.26 | | _ | _ | _ | _ | μS | | Hold time ^{Note 1} | thd:STA | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ | 5 V | 0.26 | | _ | - | _ | _ | μS | | Hold time when SCLA0 = "L" | tLOW | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0.5 | | _ | - | _ | - | μS | | Hold time when SCLA0 = "H" | tніgн | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0.26 | | _ | - | _ | - | μS | | Data setup time (reception) | tsu:dat | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 50 | | _ | - | _ | _ | μS | | Data hold time
(transmission) ^{Note 2} | thd:dat | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0 | 0.45 | _ | - | _ | _ | μS | | Setup time of stop condition | tsu:sto | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0.26 | | | _ | _ | _ | μs | | Bus-free time | tbuf | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0.5 | | _ | _ | _ | _ | μS | **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected. 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination. **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: $C_b = 120 \ pF, \ R_b = 1.1 \ k\Omega$ #### **IICA** serial transfer timing **Remark** n = 0, 1 - **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows. - Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} . - Zero-scale error/Full-scale error: Add $\pm 0.05\%FSR$ to the MAX. value when AV_{REFP} = V_{DD}. - Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}. - **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.). - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics. (3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$ | Parameter | Symbol | Conditio | ns | MIN. | TYP. | MAX. | Unit | |--|--------|---|---------------------------------------|-------------|----------------|-------------------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | 1.2 | ±7.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | 1.2 | ±10.5 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μS | | | | Target pin: ANIO to ANI14, | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875 | | 39 | μS | | | | ANI16 to ANI26 | $1.8~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ | 57 | | 95 | μS | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375 | | 39 | μS | | | | Target pin: Internal | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625 | | 39 | μS | | | | reference voltage, and
temperature sensor output
voltage (HS (high-speed
main) mode) | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±0.85 | %FSR | | Full-scale error ^{Notes 1, 2} | Ers | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±0.85 | %FSR | | Integral linearity errorNote 1 | ILE | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±4.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±6.5 | LSB | | Differential linearity error Note 1 | DLE | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±2.5 | LSB | | Analog input voltage | VAIN | ANI0 to ANI14 | • | 0 | | V _{DD} | V | | | | ANI16 to ANI26 | | 0 | | EV _{DD0} | ٧ | | | | Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (hi | | VBGR Note 4 | | V | | | | | Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (hi | • | | VTMPS25 Note 4 | 1 | V | Notes 1. Excludes quantization error (±1/2 LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.). - 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics. Absolute Maximum Ratings (TA = 25°C) (2/2) | Parameter | Symbols | | Conditions | Ratings | Unit | |-------------------------------|------------------|------------------------------|--|-----------------|------| | Output current, high | Іон1 | Per pin | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | -40 | mA | | | | Total of all pins
-170 mA | P00 to P04, P07, P32 to P37,
P40 to P47, P102 to P106, P120,
P125 to P127, P130, P140 to
P145 | - 70 | mA | | | | | P05, P06, P10 to P17, P30, P31,
P50 to P57, P64 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100, P101,
P110 to P117, P146, P147 | -100 | mA | | | Іон2 | Per pin | P20 to P27, P150 to P156 | -0.5 | mA | | | | Total of all pins | | -2 | mA | | Output current, low | lo _{L1} | Per pin | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 | 40 | mA | | | | Total of all pins
170 mA | P00 to P04, P07, P32 to P37,
P40 to P47, P102 to P106, P120,
P125 to P127, P130, P140 to
P145 | 70 | mA | | | | | P05, P06, P10 to P17, P30, P31,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100, P101,
P110 to P117, P146, P147 | 100 | mA | | | lo _{L2} | Per pin | P20 to P27, P150 to P156 | 1 | mA | | | | Total of all pins | | 5 | mA | | Operating ambient temperature | TA | In normal operati | on mode programming mode | -40 to +105 | °C | | | l | | | | | Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. # (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2) | Parameter | Symbol | | | Conditions | | MIN. | TYP. | MAX. | Unit | |-----------|--|------------------------|----------------------------|--|-------------------------|------|------|-------|------| | Supply | I _{DD2} | HALT | HS (high- | fih = 32 MHz Note 4 | V _{DD} = 5.0 V | | 0.54 | 2.90 | mA | | current | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.54 | 2.90 | mA | | | | | | fih = 24 MHz Note 4 | V _{DD} = 5.0 V | | 0.44 | 2.30 | mA | | | | | | | V _{DD} = 3.0 V | | 0.44 | 2.30 | mA | | | | | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.40 | 1.70 | mA | | | | | | | V _{DD} = 3.0 V | | 0.40 | 1.70 | mA | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.28 | 1.90 | mA | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.45 | 2.00 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.28 | 1.90 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.45 | 2.00 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.19 | 1.02 | mA | | | | | | V _{DD} = 5.0 V | Resonator connection | | 0.26 | 1.10 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.19 | 1.02 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.26 | 1.10 | mA | | | | | Subsystem | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.25 | 0.57 | μА | | | | | clock | T _A = -40°C | Resonator connection | | 0.44 | 0.76 | μА | | | | | operation | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.30 | 0.57 | μА | | | | | | T _A = +25°C | Resonator connection | | 0.49 | 0.76 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.37 | 1.17 | μА | | | | | | T _A = +50°C | Resonator connection | | 0.56 | 1.36 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.53 | 1.97 | μА | | | | | | T _A = +70°C | Resonator connection | | 0.72 | 2.16 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.82 | 3.37 | μА | | | | | | T _A = +85°C | Resonator connection | | 1.01 | 3.56 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 3.01 | 15.37 | μА | | | | | | T _A = +105°C | Resonator connection | | 3.20 | 15.56 | μА | | | IDD3 ^{Note 6} | STOP | T _A = -40°C | | | | 0.18 | 0.50 | μА | | | mode ^{Note 8} $T_A = +25^\circ$ | T _A = +25°C | | | | 0.23 | 0.50 | μА | | | | | T _A = +50°C | | | | 0.30 | 1.10 | μА | | | | | | T _A = +70°C | | | | 0.46 | 1.90 | μА | | | | | T _A = +85°C | | | | 0.75 | 3.30 | μА | | | | | T _A = +105°C | | | | 2.94 | 15.30 | μА | (Notes and Remarks are listed on the next page.) - Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C #### (3) Peripheral Functions (Common to all products) #### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | MIN. | TYP. | MAX. | Unit | |--|-----------------------|----------------------------|---|------|------|-------|------| | Low-speed on-
chip oscillator
operating
current | FIL
Note 1 | | | | 0.20 | | μΑ | | RTC operating current | IRTC
Notes 1, 2, 3 | | | | 0.02 | | μΑ | | 12-bit interval timer operating current | IIT
Notes 1, 2, 4 | | | | 0.02 | | μА | | Watchdog timer operating current | WDT
Notes 1, 2, 5 | fı∟ = 15 kHz | | | 0.22 | | μΑ | | A/D converter operating | ADC
Notes 1, 6 | When conversion at maximum | Normal mode, AVREFP = VDD = 5.0 V | | 1.3 | 1.7 | mA | | current | | speed | Low voltage mode, AVREFP = VDD = 3.0 V | | 0.5 | 0.7 | mA | | A/D converter
reference
voltage current | IADREF
Note 1 | | | | 75.0 | | μΑ | | Temperature sensor operating current | ITMPS
Note 1 | | | | 75.0 | | μA | | LVD operating current | ILVD
Notes 1, 7 | | | | 0.08 | | μА | | Self
programming
operating
current | FSP
Notes 1, 9 | | | | 2.50 | 12.20 | mA | | BGO operating current | BGO
Notes 1, 8 | | | | 2.50 | 12.20 | mA | | SNOOZE | Isnoz | ADC operation | The mode is performed Note 10 | | 0.50 | 1.10 | mA | | operating current | Note 1 | | The A/D conversion operations are performed, Loe voltage mode, AVREFP = VDD = 3.0 V | | 1.20 | 2.04 | mA | | | | CSI/UART operation | on | | 0.70 | 1.54 | mA | #### Notes 1. Current flowing to the VDD. - 2. When high speed on-chip oscillator and high-speed system clock are stopped. - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock. - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. - **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates. #### 3.10 Timing of Entry to Flash Memory Programming Modes $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |--|---------|---|------|------|------|------| | Time to complete the communication for the initial setting after the external reset is released | tsuinit | POR and LVD reset must be released before the external reset is released. | | | 100 | ms | | Time to release the external reset after the TOOL0 pin is set to the low level | tsu | POR and LVD reset must be released before the external reset is released. | 10 | | | μS | | Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) | | POR and LVD reset must be released before the external reset is released. | 1 | | | ms | - <1> The low level is input to the TOOL0 pin. - <2> The external reset is released (POR and LVD reset must be released before the external reset is released.). - <3> The TOOL0 pin is set to the high level. - <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting. **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period. tsu: Time to release the external reset after the TOOL0 pin is set to the low level thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) #### 4.14 128-pin Products R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |-----------------------|--------------|-----------------|-----------------| | P-LFQFP128-14x20-0.50 | PLQP0128KD-A | P128GF-50-GBP-1 | 0.92 | \bigcirc 2012 Renesas Electronics Corporation. All rights reserved. # RL78/G13 Data Sheet | | | Description | | | | |------|--------------|-------------|--|--|--| | Rev. | Date | Page | Summary | | | | 1.00 | Feb 29, 2012 | - | First Edition issued | | | | 2.00 | Oct 12, 2012 | 7 | Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected. | | | | | | 25 | 1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected. | | | | | | 40, 42, 44 | 1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected. | | | | | | 41, 43, 45 | 1.6 Outline of Functions: Lists of Descriptions changed. | | | | | | 59, 63, 67 | Descriptions of Note 8 in a table corrected. | | | | | | 68 | (4) Common to RL78/G13 all products: Descriptions of Notes corrected. | | | | | | 69 | 2.4 AC Characteristics: Symbol of external system clock frequency corrected. | | | | | | 96 to 98 | 2.6.1 A/D converter characteristics: Notes of overall error corrected. | | | | | | 100 | 2.6.2 Temperature sensor characteristics: Parameter name corrected. | | | | | | 104 | 2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected. | | | | | | 116 | 3.10 52-pin products: Package drawings of 52-pin products corrected. | | | | | | 120 | 3.12 80-pin products: Package drawings of 80-pin products corrected. | | | | 3.00 | Aug 02, 2013 | 1 | Modification of 1.1 Features | | | | | | 3 | Modification of 1.2 List of Part Numbers | | | | | | 4 to 15 | Modification of Table 1-1. List of Ordering Part Numbers, note, and caution | | | | | | 16 to 32 | Modification of package type in 1.3.1 to 1.3.14 | | | | | | 33 | Modification of description in 1.4 Pin Identification | | | | | | 48, 50, 52 | Modification of caution, table, and note in 1.6 Outline of Functions | | | | | | 55 | Modification of description in table of Absolute Maximum Ratings (T _A = 25°C) | | | | | | 57 | Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics | | | | | | 57 | Modification of table in 2.2.2 On-chip oscillator characteristics | | | | | | 58 | Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics | | | | | | 59 | | | | | | | | Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics | | | | | | 63 | Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | | 64 | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | | 65 | Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | | 66 | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | | 68 | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products | | | | | | 70 | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products | | | | | | 72 | Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products | | | | | | 74 | Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products | | | | | | 75 | Modification of (4) Peripheral Functions (Common to all products) | | | | | | 77 | Modification of table in 2.4 AC Characteristics | | | | | | 78, 79 | Addition of Minimum Instruction Execution Time during Main System Clock Operation | | | | | | 80 | Modification of figures of AC Timing Test Points and External System Clock Timing | | |