

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	15
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 6x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-WFLGA
Supplier Device Package	25-LGA (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1018eala-u0

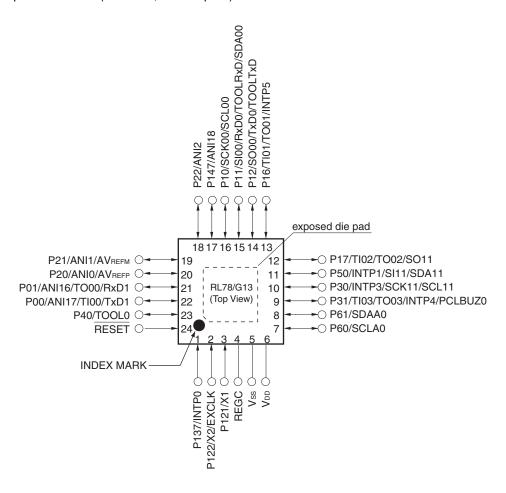
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(4/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
44 pins	44-pin plastic LQFP (10 × 10 mm, 0.8 mm	Mounted	А	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0, R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
	,			R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not	Α	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
		mounted		R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0

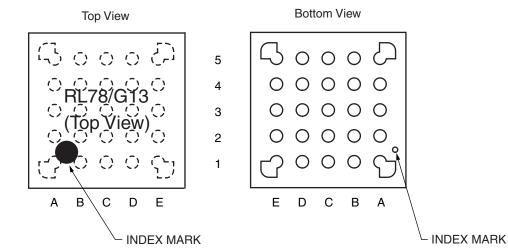

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.2 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

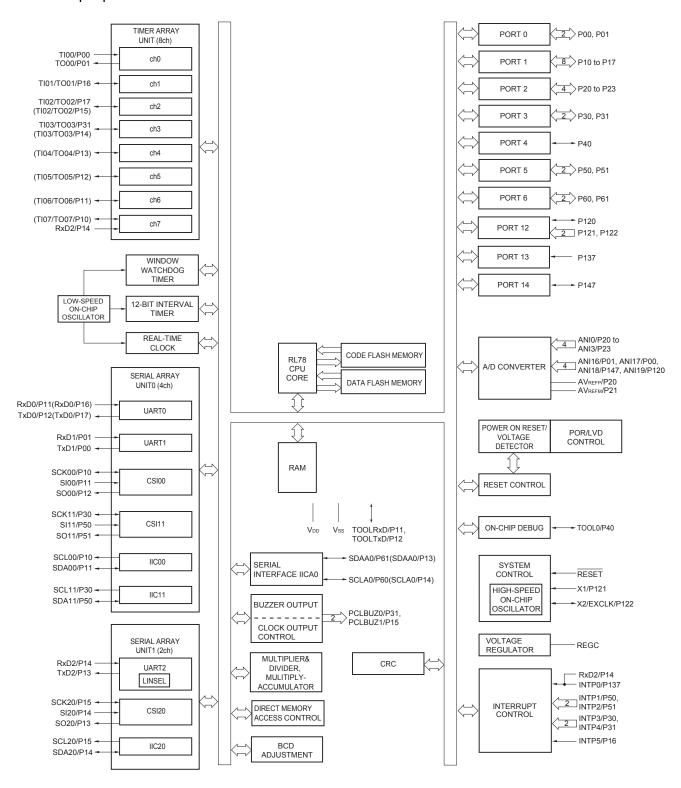

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$

1.3.3 25-pin products

<R>

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)



	Α	В	С	D	E	
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AV _{REFM}	P10/SCK00/ SCL00	4
3	P121/X1	V _{DD}	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/TI02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	A	В	С	D	E	

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

1.5.4 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual).

4. When setting to PIOR = 1

11	n	n	١
14	ر2	_	ı

Ite	m	20-	pin	24-	pin	25-	pin	30-	-pin	32	-pin	36	pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	RSF100Cx s 8 chan c 1 channel c 1 channel c 1 channel	R5F101Cx
Clock output/buzze	er output		_		1		1		2		2		2
				88 kHz, 9 n clock: f				ИHz, 5 N	IHz, 10 N	МНz		•	
8/10-bit resolution	A/D converter	6 channels 6 channels 6 channels 8 channels 8 channels 8 channels											
Serial interface		[20-pin, 24-pin, 25-pin products]											
		CSI: 1 channel/simplified I ² C: 1 channel/UART: 1 channel											
		CSI: 1 channel/simplified I ² C: 1 channel/UART: 1 channel											
		[30-pin,	32-pin	products]								
		 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel 											
		[36-pin	products	s]									
		• CSI:	1 chann	el/simplit el/simplit els/simpl	fied I ² C:	1 channe	el/UART	: 1 chanı	nel	rtina LIN	-bus): 1	channel	
	I ² C bus	CSI: 2 channels/simplified I ² C: 2 channels/UART (UART supporting LIN-bus): 1 channel 1 channel											
Multiplier and divid	der/multiply-	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 											
DMA controller		2 channels											
Vectored interrupt	Internal	2	23	2	24	2	24	2	27	2	27	2	27
sources	External	;	3		5		5		6		6		6
Key interrupt				•				_					
Reset		InterrInterrInterrInterrInterr	nal reset nal reset nal reset nal reset	SET pin by watc by power by volta by illega by illega by illega	er-on-res ge detec al instruc I parity e	set ctor tion exec rror		e					
Power-on-reset cir	cuit		er-on-res er-down-	set: 1	I.51 V (T I.50 V (T	,							
Voltage detector			g edge : ig edge			4.06 V (3.98 V (_						
On-chip debug fun	ection	Provide	ed										
Power supply volta	age	V _{DD} = 1	.6 to 5.5	V (T _A =	-40 to +8	35°C)							
		$V_{DD} = 2$	4 to 5.5	V (T _A = -	40 to +1	05°C)							
Operating ambient	t temperature			C (A: Co i°C (G: Ir				ndustria	l applica	tions)			
		14 - 40	10 T 100	. o (a. 11	idudilidi	αμμποαι	0110)						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

3. When setting to PIOR = 1

(2/2)

										(2)	(2)
Ite	m	40-	pin	44	pin	48-	pin	52	-pin	64	-pin
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	2	2		2		2		2		2
·	·	(Main s	system clo	ock: fmain = 1.024 kHz	Hz, 1.25 M 20 MHz o 2, 2.048 kH 2.768 kHz	peration) Iz, 4.096 k	:Hz, 8.192			2.768 kHz	
8/10-bit resolution	A/D converter	9 channels 10 channels 12 channels 12 channels									
Serial interface [40-pin, 44-pin products] • CSI: 1 channel/simplified I°C: 1 channel/UART: 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART: 1 channel • CSI: 1 channel/simplified I°C: 1 channel/UART: 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I°C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I°C: 3 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I°C: 3 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 3 channels/simplified I°C: 3 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 4 channels/simplified I°C: 5 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 5 channels/simplified I°C: 6 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 6 channels/simplified I°C: 9 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 8 channels/simplified I°C: 9 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 9 channels/simplified I°C: 9 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 9 channels/simplified I°C: 9 c						l I					
accumulator DMA controller	uei/munpiy-	 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 2 channels 									
Vectored	Internal		7	1	27		27		27		27
interrupt sources	External		7		7		10		12		 13
Key interrupt	1	4	1		4		6		8		8
Reset		InternaInternaInternaInterna	I reset by I reset by I reset by I reset by I reset by	watchdog power-on- voltage de illegal inst RAM parit	reset etector ruction exe						
Power-on-reset ci	rcuit	Power- Power-		1.51 V et: 1.50 V	` ,						
Voltage detector		Rising edge: 1.67 V to 4.06 V (14 stages) Falling edge: 1.63 V to 3.98 V (14 stages)									
On-chip debug fur	nction	Provided									
Power supply volt	age	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +85^{\circ}\text{C})$ $V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$									
Operating ambien	t temperature	T _A = 40 to +85°C (A: Consumer applications, D: Industrial applications) T _A = 40 to +105°C (G: Industrial applications)									

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{DD} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{DD} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6~V \leq V_{DD} < 1.8~V$	-5.0		+5.0	%
		–40 to −20 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \le V_{DD} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

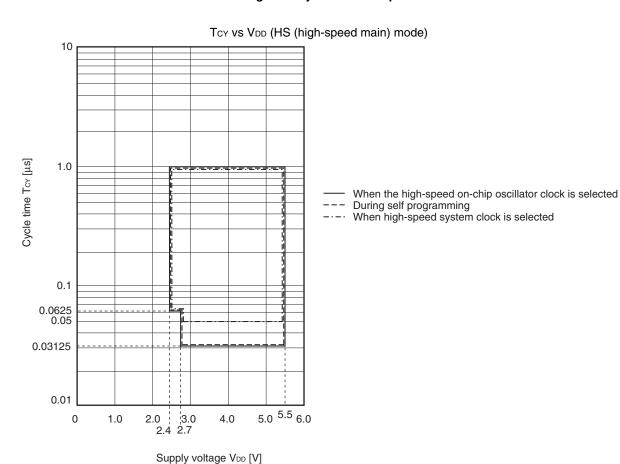
(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

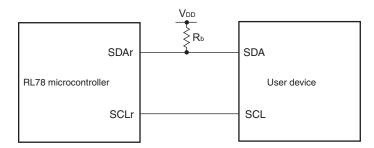
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit		
Supply	I _{DD2}	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.54	1.63	mA		
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.54	1.63	mA		
				$f_{IH} = 24 \text{ MHz}^{\text{Note 4}}$	V _{DD} = 5.0 V		0.44	1.28	mA		
					V _{DD} = 3.0 V		0.44	1.28	mA		
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA		
					V _{DD} = 3.0 V		0.40	1.00	mA		
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μА		
			speed main) mode Note 7		V _{DD} = 2.0 V		260	530	μА		
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA		
					voltage main) mode		V _{DD} = 2.0 V		420	640	μА
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA		
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA		
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA		
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA		
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.26	0.67	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA		
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.26	0.67	mA		
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μΑ		
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		145	380	μΑ		
			mode	$f_{MX} = 8 MHz^{Note 3},$	Square wave input		95	330	μΑ		
				$V_{DD} = 2.0 \text{ V}$	Resonator connection		145	380	μΑ		
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μΑ		
			clock	T _A = -40°C	Resonator connection		0.44	0.76	μΑ		
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μΑ		
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ		
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.37	1.17	μΑ		
				T _A = +50°C	Resonator connection		0.56	1.36	μΑ		
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.53	1.97	μΑ		
				T _A = +70°C	Resonator connection		0.72	2.16	μA		
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.82	3.37	μΑ		
				T _A = +85°C	Resonator connection		1.01	3.56	μΑ		
	I _{DD3} Note 6 STOP T _A = -40°C				0.18	0.50	μΑ				
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μΑ		
			T _A = +50°C				0.30	1.10	μΑ		
			T _A = +70°C			0.46	1.90	μА			
			T _A = +85°C				0.75	3.30	μΑ		

(Notes and Remarks are listed on the next page.)

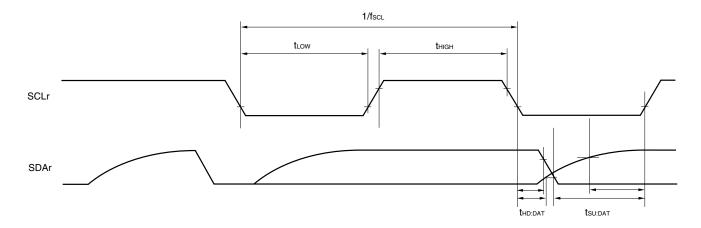
Note The following conditions are required for low voltage interface when EVDDO < VDD


 $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V} : \text{MIN. } 250 \text{ ns}$

Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))


Minimum Instruction Execution Time during Main System Clock Operation

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),
 - n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-	LS (low-		low- age Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			Note 3		Note 3		Note 3	bps
		2.3 V ≤ Vb ≤ 2.7 V	Theoretical value of the maximum transfer rate Cb = 50 pF, Rb =		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$2.7 \text{ k}\Omega, V_b = 2.3$							
		$1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$			Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps
			$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$							

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln \ (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	I _{DD1}	Operating mode	HS (high- speed main)	fih = 32 MHz ^{Note 3}	Basic operatio	V _{DD} = 5.0 V		2.1		mA
Note 1		mode	mode Note 5		n	V _{DD} = 3.0 V		2.1		mA
					Normal	V _{DD} = 5.0 V		4.6	7.5	mA
					operatio n	V _{DD} = 3.0 V		4.6	7.5	mA
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operatio n	V _{DD} = 3.0 V		3.7	5.8	mA
				fih = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.2	mA
					operatio n	V _{DD} = 3.0 V		2.7	4.2	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
			speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
				$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.9	mA
				$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
			clock operation	Note 4 $T_A = -40^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
				T _A = +25°C	operatio n	Resonator connection		4.2	5.0	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ
				Note 4 $T_A = +50^{\circ}C$	operatio n	Resonator connection		4.3	5.6	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ
				Note 4 $T_A = +70^{\circ}C$	operatio n	Resonator connection		4.4	6.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μΑ
	Note 4	Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μА		
				fsus = 32.768 kHz	Normal	Square wave input		6.9	19.7	μΑ
				Note 4 $T_A = +105^{\circ}C$	operation	Resonator connection		7.0	19.8	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD} and EV_{DDO}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDO} or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 32~MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz

- **8.** Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.3		mA
Current Note 1		mode	speed main) mode Note 5		operatio n	V _{DD} = 3.0 V		2.3		mA
					Normal	V _{DD} = 5.0 V		5.2	9.2	mA
					operatio n	V _{DD} = 3.0 V		5.2	9.2	mA
				fih = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		4.1	7.0	mA
					operatio n	V _{DD} = 3.0 V		4.1	7.0	mA
				f _{IH} = 16 MHz ^{Note 3} Normal	V _{DD} = 5.0 V		3.0	5.0	mA	
					operatio n	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
				V _{DD} = 3.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 5.0 \text{ V}$	Normal	Square wave input		2.1	3.5	mA
					operatio n	Resonator connection		2.1	3.5	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
				V _{DD} = 3.0 V	operatio n	Resonator connection		2.1	3.5	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		4.8	5.9	μΑ
			clock operation	$T_A = -40^{\circ}C$	operatio n	Resonator connection		4.9	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μΑ
				T _A = +25°C	operatio n	Resonator connection		5.0	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		5.0	7.6	μΑ
				T _A = +50°C	operatio n	Resonator connection		5.1	7.7	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		5.2	9.3	μΑ
				Note 4 TA = +70°C	operatio n	Resonator connection		5.3	9.4	μА
	fsuB = 32.768 kH	fsuB = 32.768 kHz	Normal	Square wave input		5.7	13.3	μΑ		
				Note 4 $T_A = +85^{\circ}C$	operatio n	Resonator connection		5.8	13.4	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		10.0	46.0	μΑ
				Note 4 TA = +105°C	operatio n	Resonator connection		10.0	46.0	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Slp setup time	tsıĸı	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	162		ns
(to SCKp↑) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	354		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	958		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Slp hold time	tksii	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	38		ns
(from SCKp↑) ^{Note}		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
Delay time from SCKp↓ to SOp output Note	tkso1	$\label{eq:4.0} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$		200	ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \le EV_{DD0} < 3.3~V,~1.6~V \le V_b \le 2.0~V,$		966	ns
		$C_b=30~pF,~R_b=5.5~k\Omega$			

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	24 MHz < fмск	28/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7 \; V \leq V_b \leq 4.0 \; V$	8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0$	24 MHz < fмск	40/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3$	24 MHz < fмск	96/fмск		ns
		V,	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \ V \leq V_b \leq 2.0 \ V$	16 MHz < fмcк ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkH2,	$ 4.0 \ V \le EV_{DD0} \le 5.0 $ $ 2.7 \ V \le V_b \le 4.0 \ V $		tkcy2/2 - 24		ns
		$2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$		txcy2/2 - 36		ns
		$2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note2	tsık2	$4.0 \ V \le EV_{DD0} \le 5.0$ $2.7 \ V \le V_b \le 4.0 \ V$	*	1/fмск + 40		ns
		$ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V} $		1/fмск + 40		ns
		$2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to SOp output Note 4	tkso2	$ 4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 30~pF,~R_b = 1.4~k\Omega $			2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ		2/fмск + 428	ns
		. $2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V$ $C_b = 30~pF,~R_b = 5.5~k\Omega$			2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

3.6 Analog Characteristics

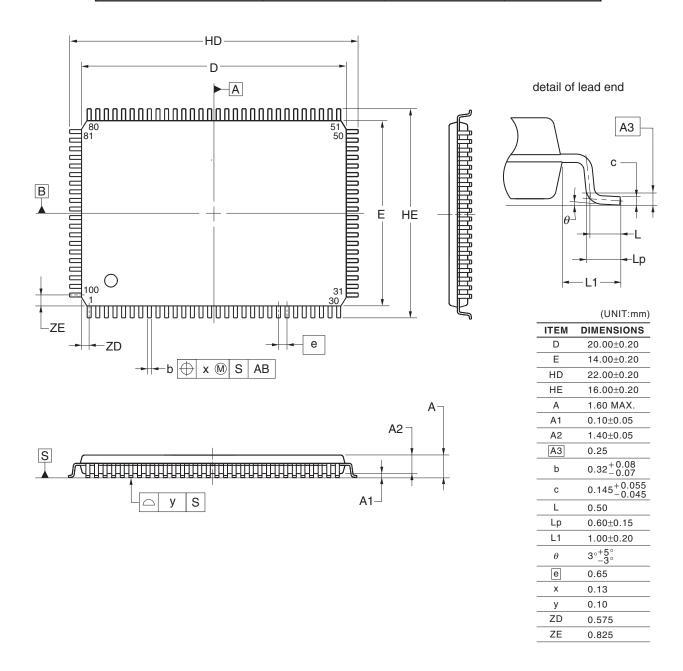
3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage			
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = V _{BGR}	
Input channel	Reference voltage (–) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AVREFM	
ANI0 to ANI14	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .	
ANI16 to ANI26	Refer to 3.6.1 (2) .			
Internal reference voltage	Refer to 3.6.1 (1) .		_	
Temperature sensor output				
voltage				

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

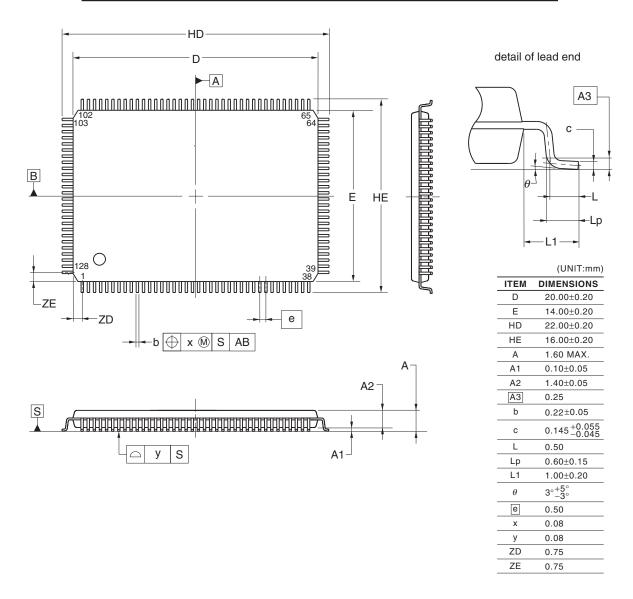
(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)


Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AVREFP = VDD Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode) Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4		V	
				VTMPS25 Note 4		V	

(Notes are listed on the next page.)

R5F100PFAFA, R5F100PGAFA, R5F100PHAFA, R5F100PJAFA, R5F100PKAFA, R5F100PLAFA R5F101PFAFA, R5F101PGAFA, R5F101PHAFA, R5F101PJAFA, R5F101PKAFA, R5F101PLAFA R5F100PFDFA, R5F100PGDFA, R5F100PHDFA, R5F100PJDFA, R5F100PKDFA, R5F101PLDFA R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA R5F100PFGFA, R5F100PGGFA, R5F100PHGFA, R5F100PJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92



 \odot 2012 Renesas Electronics Corporation. All rights reserved.

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP128-14x20-0.50	PLQP0128KD-A	P128GF-50-GBP-1	0.92

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.