

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

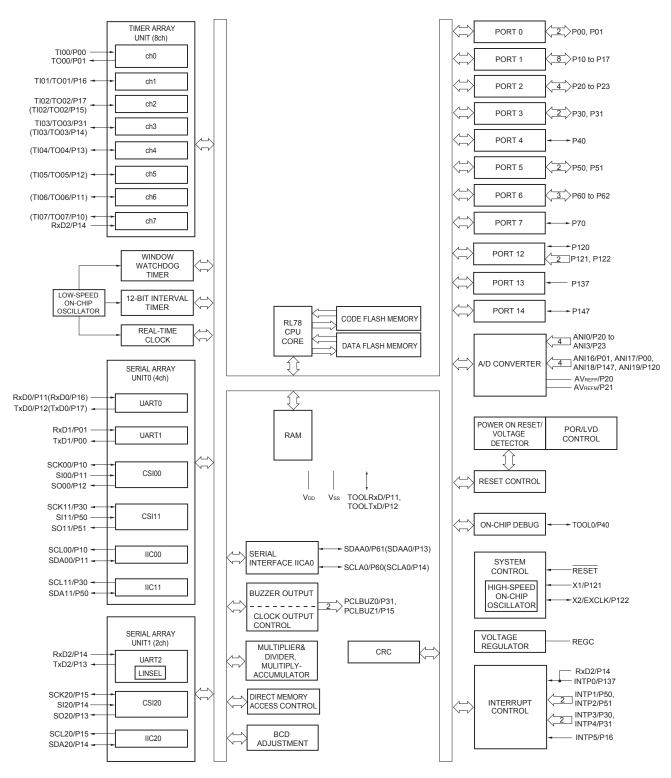
Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101agasp-x0

Email: info@E-XFL.COM

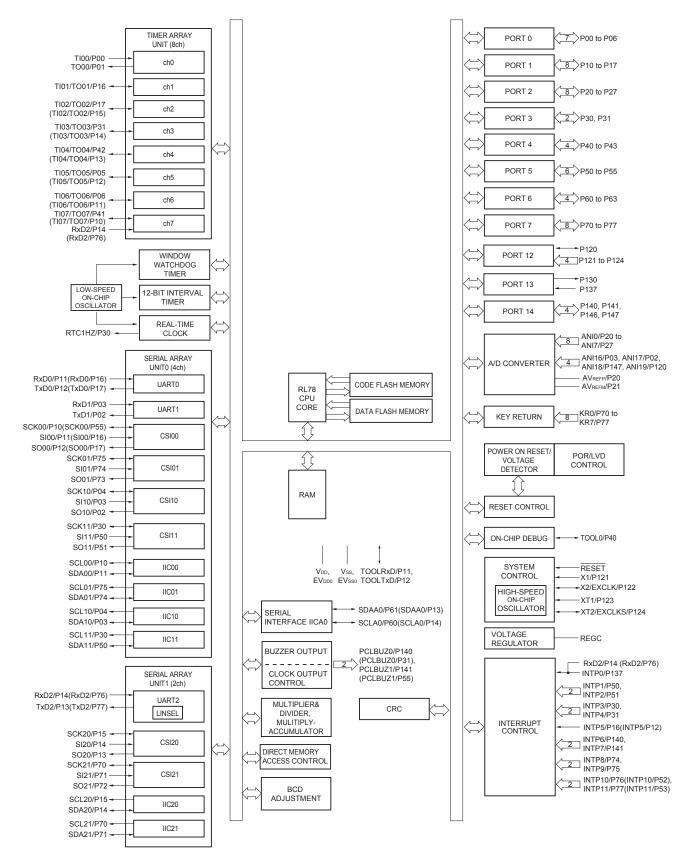
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of Ordering Part Nu	umbers
------------	--------------------------	--------

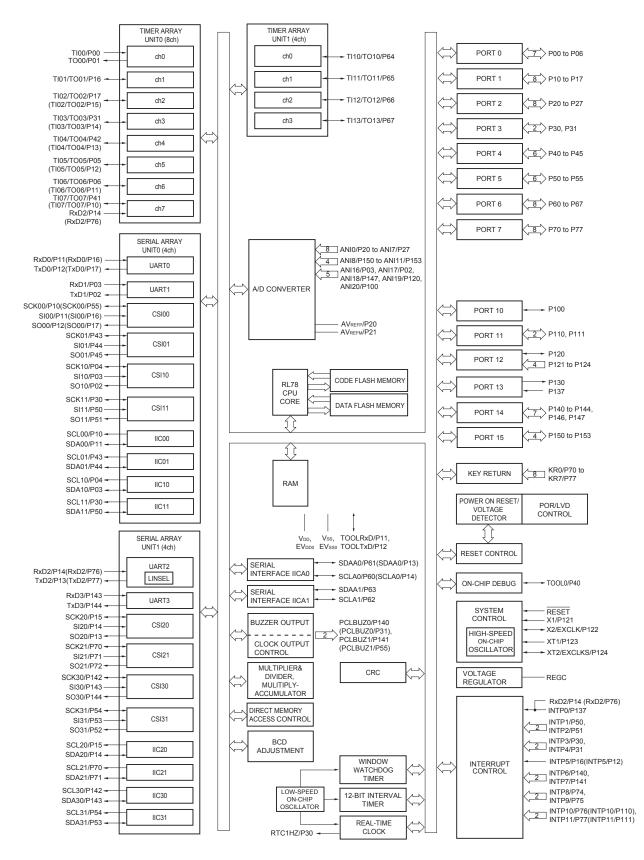

				(12/12)
Pin count	Package	Data flash	Fields of Application ^{Note}	Ordering Part Number
128 pins	128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch)	Mounted	A	R5F100SHAFB#V0, R5F100SJAFB#V0, R5F100SKAFB#V0, R5F100SLAFB#V0 R5F100SHAFB#X0, R5F100SJAFB#X0, R5F100SKAFB#X0, R5F100SLAFB#X0 R5F100SHDFB#V0, R5F100SJDFB#V0, R5F100SKDFB#V0, R5F100SLDFB#V0 R5F100SKDFB#X0, R5F100SJDFB#X0, R5F100SKDFB#X0, R5F100SLDFB#X0
		Not mounted	D	R5F101SHAFB#V0, R5F101SJAFB#V0, R5F101SKAFB#V0, R5F101SLAFB#V0 R5F101SHAFB#X0, R5F101SJAFB#X0, R5F101SKAFB#X0, R5F101SLAFB#X0 R5F101SHDFB#V0, R5F101SJDFB#V0, R5F101SKDFB#V0, R5F101SLDFB#V0, R5F101SHDFB#X0, R5F101SLDFB#X0, R5F101SKDFB#X0, R5F101SLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.


1.5.5 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.


1.5.11 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.12 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

- The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).
- 4. When setting to PIOR = 1

													
Ite	m	20-	pin	24-	pin	25-	pin	30-	pin	32-	-pin	36	-pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	
Clock output/buzzer output		-	_		1		1		2		2		2
						, 1.25 Mł) MHz op		ИHz, 5 M	Hz, 10 I	ИНz			
8/10-bit resolution	A/D converter	6 chanr	nels	6 chanı	nels	6 chanr	nels	8 chanr	nels	8 chanı	nels	8 chan	nels
Serial interface	 [20-pin, 24-pin, 25-pin products] CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel [30-pin, 32-pin products] CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified l²C: 1 channel/UART (UART supporting LIN-bus): 1 channel [36-pin products] CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel [36:pin products] CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel [SI: 1 channel/simplified l²C: 2 channel/UART: 1 channel CSI: 2 channel/simplified l²C: 2 channel/UART (UART supporting LIN-bus): 1 channel 												
Multiplier and divid	I ² C bus ler/multiply-		_	1 chani	nel	1 chanr	nel	1 chanı	nel	1 chanı	nel	1 chan	nel
accumulator		 16 bits 32 bits 16 bits 	– s × 16 b s ÷ 32 b s × 16 b	1 chanı its = 32 k its = 32 k	nel bits (Uns bits (Uns	1 chanr signed or	nel signed)	1		1 chanı	nel	1 chan	nel
accumulator DMA controller	ler/multiply-	16 bit: 32 bit: 16 bit: 2 chann	- s × 16 b s ÷ 32 b s × 16 b nels	1 chanı its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32	1 chann signed or signed) bits (Uns	nel signed) signed o	r signed)	1	I			
accumulator	ler/multiply-	 16 bit 32 bit 16 bit 2 chann 	- s × 16 b s ÷ 32 b s × 16 b nels 3	1 chani its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32 24	1 chann signed or signed) bits (Uns	nel signed) signed o 24	or signed)	27		27		27
accumulator DMA controller Vectored interrupt	ler/multiply-	 16 bit 32 bit 16 bit 2 chann 	- s × 16 b s ÷ 32 b s × 16 b nels	1 chani its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32	1 chann signed or signed) bits (Uns	nel signed) signed o 24 5	or signed)	1				
accumulator DMA controller Vectored interrupt sources	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 2 chann 2 chann 2 chann 2 chann 9 Rese 9 Intern 9 Intern	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 b its = 32 b its + 32 b its + 32 b SET pin by watc by volta by volta by volta by RAM	hel bits (Uns bits (Uns bits = 32 24 5 4 5 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 chann iigned or iigned) bits (Uns 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	nel signed o 24 5	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt	ler/multiply-	16 bit: 32 bit: 16 bit: 2 chann 2 chann 2 Rese Interr Interr Interr Interr Interr Interr Interr Interr Interr Powe	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 t its = 32 t its + 32 t its + 32 t SET pin by watc by powe by volta t by illega by Illega	hel bits (Uns bits (Uns bits = 32 24 5 5 4 4 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9	1 chann igned or igned) bits (Un: 2 bits (Un: 2 channel of the set ctor ctor exector ctor exector ctor exector ry access TYP.)	nel signed o 24 5	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset	ler/multiply-	16 bit: 32 bit: 16 bit: 2 chann 2 chann 2 Rese Interr Interr Interr Interr Interr Interr Interr Interr Interr Powe	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 24 5 4 5 4 5 4 5 4 5 24 5 5 1 5 1 5 1 5 1 5 1 7 1 5 1 7 1 5 1 7 1 1 5 7 7 1 5 1 7 1 1 5 1 7 1 7	1 chann igned or igned) bits (Un: 2 bits (Un: 2 channel of the set ctor ctor exector ctor exector ctor exector ry access TYP.)	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 4 chann <	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 24 5 4 5 4 5 4 5 4 5 24 5 5 1 5 1 5 1 5 1 5 1 7 1 5 1 7 1 5 1 7 1 1 5 7 7 1 5 1 7 1 1 5 1 7 1 7	1 chann signed or signed) bits (Uns bits (Uns can be channed) bits (Uns can be channed) can be channed can be channed channed channed can be channed channed channed can be channed channed channed can be channed channed channed channed can be channed	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 4 chann 4 chann 5 chann 6 chann 7 chann <	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 4 5 4 5 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 chann igned or igned) bits (Unstantional bits (Unstantional 2 2 	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector On-chip debug fur Power supply volta	Internal External cuit age	 16 bit. 32 bit. 16 bit. 2 chann 4 chann 8 Rese 9 Interr 9 Powee 9 Risin 9 Fallin 9 Powee 9 Powee 9 Nove 1 1 V_{DD} = 2. 	$\frac{-}{s \times 16 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 32 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 16 \text{ b}}$	1 chann its = 32 t its = 32 t its = 32 t its + 32 t 2 SET pin t by watc by volta t by illega by RAM t by illega set: 1 reset: 1 f v ($T_a = -$ V ($T_a = -$	nel pits (Uns pits (Uns pits = 32 24 5 hdog tim er-on-res ge detect al instruct l parity e al-memo l.51 V (1 l.50 V (1 l.63 V to l.63 V to -40 to +1 40 to +1	1 chann igned or igned) bits (Unstantional bits (Unstantional constantional	tel signed o 24 5 cution [№] s	r signed)	27 6		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector On-chip debug fur	Internal External cuit age	• 16 bit • 32 bit • 16 bit 2 chann 2 • Rese • Interr • Interr • Interr • Interr • Interr • Interr • Risin • Rese • Interr • Interr • Interr • Rese • Interr • Interr • Interr • Powe • Risin • Fallin Provide V_{DD} = 1 V_{DD} = 2. T_A = 40	$\frac{-}{s \times 16 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 32 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 16 \text{ b}}$ $s \times 1$	1 channel its = 32 t its = 32 t its = 32 t its = 32 t its + 32 t its + 32 t SET pin by watc by power by volta by illegat by illegat set: 1 it 1	nel pits (Uns pits (Uns pits = 32 24 5 hdog tim er-on-res ge detect al instruct l parity e al-memo l.51 V (T l.50 V (T l.67 V to l.63 V to -40 to +1 -40 to +1 nsumer	1 chann igned or igned) bits (Un: 2 2 her set ctor ry access rry - ry - (YP.) 0 4.06 V (0 3.98 V (B5°C)	nel signed o 24 5 cution ^{№t} s 14 stage 14 stage 14 stage	r signed)	27 6		27		27

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(TA = -40 to +85 Parameter	Symbol	ymbol Conditions		HS (high- speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle time ^{Note 1}		$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$	24 MHz < fмск	14/ fмск				_		ns	
			20 MHz < fмск ≤ 24 MHz	12/ fмск		_		—		ns	
			8 MHz < fмск ≤ 20 MHz	10/ fмск						ns	
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns	
			fмск ≤4 MHz	6/f мск		10/ fмск		10/ fмск		ns	
		2.7 V ≤ EV _{DD0} < 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V	24 MHz < fмск	20/ fмск				_		ns	
			20 MHz < fмск ≤ 24 MHz	16/ fмск				—		ns	
			16 MHz < fмск ≤ 20 MHz	14/ fмск				_		ns	
			8 MHz < fмск ≤ 16 MHz	12/ fмск						ns	
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns	
				fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$\begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \end{split}$	24 MHz < fмск	48/ fмск		_		—		ns	
		2	20 MHz < fмск ≤ 24 MHz	36/ fмск		_				ns	
			16 MHz < fмск ≤ 20 MHz	32/ fмск		—		_		ns	
			8 MHz < fмск ≤ 16 MHz	26/ fмск		_		_		ns	
			4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск		_		ns	
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns	

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$
Reference voltage (+) = AVREFP, Reference voltage (–) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$		1.2	±8.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μs
		Target ANI pin : ANI16 to	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI26	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note}}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$			±0.60	%FSR
Integral linearity error ^{Note}	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
1		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3,4}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
error ^{Note 1}		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI26	·	0		AVREFP and EVDD0	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{∾te 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$2.4~V \leq EV_{DD0} \leq 5.5~V$			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-30.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
		P125 to P127, P130, P140 to P145 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80				-30.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
		to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 $(When \ duty \le 70\%^{\text{Note 3}})$	$2.4~V \leq EV_{DD0} < 2.7~V$			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{№te 3})	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	2,4 V \leq V_{DD} \leq 5.5 V			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and $I_{OH} = -10.0 \text{ mA}$
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_{\text{A}}=25^{\circ}\text{C}$

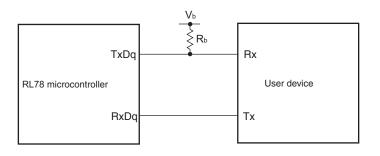
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	Idd1	Operating mode	HS (high- speed main) mode ^{Note 5}	f _{IH} = 32 MHz ^{Note 3}	Basic operatio n	V _{DD} = 5.0 V V _{DD} = 3.0 V		2.3 2.3		mA mA
					Normal operatio	V _{DD} = 5.0 V V _{DD} = 3.0 V		5.2 5.2	9.2 9.2	mA mA
				fin = 24 MHz ^{Note 3}	n Normal operatio	V _{DD} = 5.0 V V _{DD} = 3.0 V		4.1 4.1	7.0 7.0	mA mA
				fін = 16 MHz ^{Note 3}	n Normal	$V_{DD} = 5.0 V$		3.0	5.0	mA
					operatio n	$V_{DD} = 3.0 V$		3.0	5.0	mA
			HS (high- speed main)	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal operatio	Square wave input		3.4	5.9	mA
			mode ^{Note 5}	V _{DD} = 5.0 V	n	Resonator connection		3.6	6.0	mA
			$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Normal operatio	Square wave input Resonator		3.4 3.6	5.9 6.0	mA mA	
				fмx = 10 MHz ^{Note 2} ,	n Normal	connection Square wave input		2.1	3.5	mA
				$V_{DD} = 5.0 V$	operatio n	Resonator connection		2.1	3.5	mA
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.5	mA	
				V _{DD} = 3.0 V	operatio n	Resonator connection		2.1	3.5	mA
			Subsystem clock operation	fsub = 32.768 kHz	Normal operatio	Square wave input		4.8	5.9	μA
				$T_A = -40^{\circ}C$	n	Resonator connection		4.9	6.0	μA
				fsub = 32.768 kHz	Normal operatio	Square wave input		4.9	5.9	μA
				T _A = +25°C	n	Resonator connection		5.0	6.0	μA
				fsub = 32.768 kHz	Normal operatio n	Square wave input Resonator		5.0 5.1	7.6 7.7	μA μA
				T _A = +50°C f _{SUB} = 32.768 kHz	Normal	connection Square wave input		5.2	9.3	μA
				Note 4 $T_A = +70^{\circ}C$	operatio n	Resonator connection		5.3	9.4	μA
				fsub = 32.768 kHz	Normal operatio n	Square wave input		5.7	13.3	μA
				$T_A = +85^{\circ}C$		Resonator connection		5.8	13.4	μA
				fs∪B = 32.768 kHz Note 4	Normal operatio	Square wave input Resonator		10.0	46.0 46.0	μA A
				T _A = +105°C	n	connection		10.0	40.0	μA

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/2)	

(Notes and Remarks are listed on the next page.)

5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

Parameter	Symbol	Conditions	HS (high-spee	gh-speed main) Mode		
		Γ	MIN.	MAX.		
SIp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	88		ns	
(to SCKp↓) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$				
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	88		ns	
		C_b = 30 pF, R_b = 2.7 k Ω				
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	220		ns	
		C_b = 30 pF, R_b = 5.5 k Ω				
SIp hold time	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	38		ns	
(from SCKp↓) ^{Note}		$C_b = 30 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$				
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	38		ns	
		$C_b=30 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$				
		$2.4~V \leq EV_{\text{DD0}} < 3.3~V,~1.6~V \leq V_{\text{b}} \leq 2.0~V,$	38		ns	
		$C_b=30 \text{ pF}, \text{R}_b=5.5 \text{k}\Omega$				
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		50	ns	
SOp output Note		C_b = 30 pF, R_b = 1.4 k Ω				
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		50	ns	
		$C_b=30 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$				
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$		50	ns	
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EVpp0 = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{split} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:2.4} \begin{split} 2.4 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	1200		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
		$\label{eq:loss} \begin{split} & 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ & 2.7 \ V \leq V_b \leq 4.0 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{split}$	4600		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	4600		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн		620		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	500		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	2700		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{\text{DD0}} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1830		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	1/fмск + 340 Note 2		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1/fмск + 340 Note 2		ns
			1/fмск + 760 Note 2		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1/fмск + 760 Note 2		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	0	1420	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

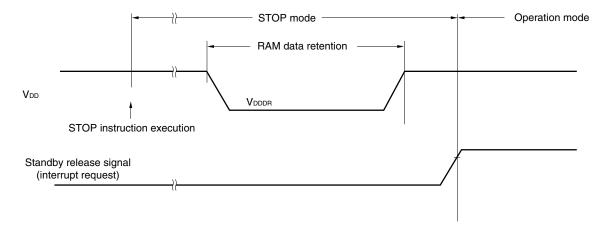
(T_A = -40 to $+105^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

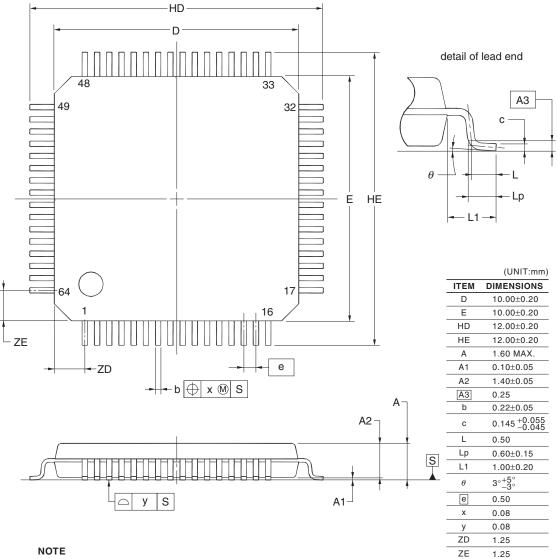
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LLAFB

R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB,


R5F101LJAFB, R5F101LKAFB, R5F101LLAFB

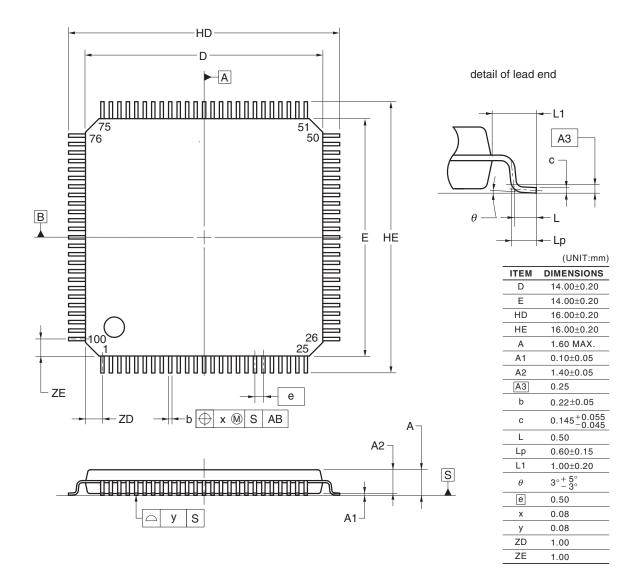
R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LJDFB, R5F100LLDFB

R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB, R5F101LJDFB, R5F101LKDFB, R5F101LLDFB

R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.


©2012 Renesas Electronics Corporation. All rights reserved.

4.13 100-pin Products

R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F100PLDFB R5F101PFDFB, R5F101PGDFB, R5F101PHDFB, R5F101PJDFB, R5F101PKDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

©2012 Renesas Electronics Corporation. All rights reserved.

