

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101bcana-u0

Email: info@E-XFL.COM

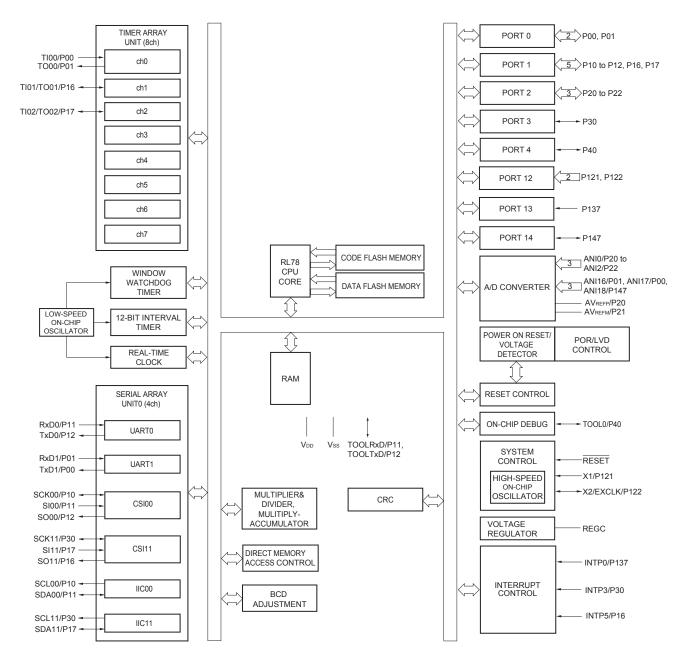
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

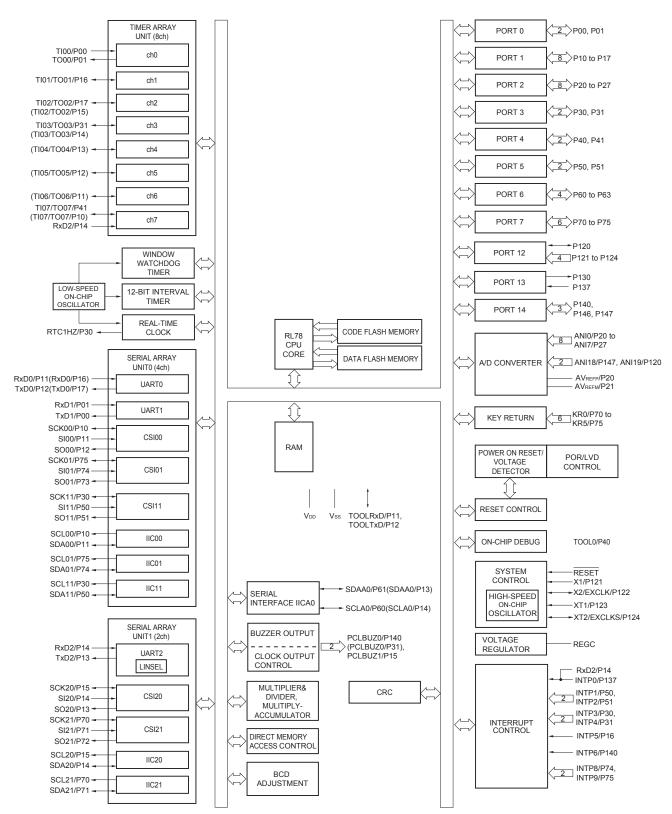
Pin count	Package	Data flash	Fields of	(11/12) Ordering Part Number
	i dokage	Data nash	Application	
100 pins	100-pin plastic	Mounted	А	R5F100PFAFB#V0, R5F100PGAFB#V0, R5F100PHAFB#V0,
	LFQFP (14 $ imes$ 14			R5F100PJAFB#V0, R5F100PKAFB#V0, R5F100PLAFB#V0
	mm, 0.5 mm pitch)			R5F100PFAFB#X0, R5F100PGAFB#X0, R5F100PHAFB#X0,
				R5F100PJAFB#X0, R5F100PKAFB#X0, R5F100PLAFB#X0
			D	R5F100PFDFB#V0, R5F100PGDFB#V0, R5F100PHDFB#V0,
				R5F100PJDFB#V0, R5F100PKDFB#V0, R5F100PLDFB#V0
				R5F100PFDFB#X0, R5F100PGDFB#X0, R5F100PHDFB#X0,
				R5F100PJDFB#X0, R5F100PKDFB#X0, R5F100PLDFB#X0
			G	R5F100PFGFB#V0, R5F100PGGFB#V0, R5F100PHGFB#V0,
				R5F100PJGFB#V0
				R5F100PFGFB#X0, R5F100PGGFB#X0, R5F100PHGFB#X0,
				R5F100PJGFB#X0
		Not	А	R5F101PFAFB#V0, R5F101PGAFB#V0, R5F101PHAFB#V0,
		mounted		R5F101PJAFB#V0, R5F101PKAFB#V0, R5F101PLAFB#V0
				R5F101PFAFB#X0, R5F101PGAFB#X0, R5F101PHAFB#X0,
				R5F101PJAFB#X0, R5F101PKAFB#X0, R5F101PLAFB#X0
			D	R5F101PFDFB#V0, R5F101PGDFB#V0, R5F101PHDFB#V0,
				R5F101PJDFB#V0, R5F101PKDFB#V0, R5F101PLDFB#V0
				R5F101PFDFB#X0, R5F101PGDFB#X0, R5F101PHDFB#X0,
				R5F101PJDFB#X0, R5F101PKDFB#X0, R5F101PLDFB#X0
	100-pin plastic	Mounted	А	R5F100PFAFA#V0, R5F100PGAFA#V0, R5F100PHAFA#V0,
	LQFP (14 $ imes$ 20 mm,			R5F100PJAFA#V0, R5F100PKAFA#V0, R5F100PLAFA#V0
	0.65 mm pitch)			R5F100PFAFA#X0, R5F100PGAFA#X0, R5F100PHAFA#X0,
				R5F100PJAFA#X0, R5F100PKAFA#X0, R5F100PLAFA#X0
			D	R5F100PFDFA#V0, R5F100PGDFA#V0, R5F100PHDFA#V0,
				R5F100PJDFA#V0, R5F100PKDFA#V0, R5F100PLDFA#V0
				R5F100PFDFA#X0, R5F100PGDFA#X0, R5F100PHDFA#X0,
				R5F100PJDFA#X0, R5F100PKDFA#X0, R5F100PLDFA#X0
			G	R5F100PFGFA#V0, R5F100PGGFA#V0, R5F100PHGFA#V0, R5F100PJGFA#V0
				R5F100PFGFA#X0, R5F100PGGFA#X0, R5F100PHGFA#X0,
				R5F100PJGFA#X0
		Not	А	R5F101PFAFA#V0, R5F101PGAFA#V0, R5F101PHAFA#V0,
		mounted		R5F101PJAFA#V0, R5F101PKAFA#V0, R5F101PLAFA#V0
				R5F101PFAFA#X0, R5F101PGAFA#X0, R5F101PHAFA#X0,
				R5F101PJAFA#X0, R5F101PKAFA#X0, R5F101PLAFA#X0
			D	R5F101PFDFA#V0, R5F101PGDFA#V0, R5F101PHDFA#V0,
				R5F101PJDFA#V0, R5F101PKDFA#V0, R5F101PLDFA#V0
				R5F101PFDFA#X0, R5F101PGDFA#X0, R5F101PHDFA#X0,
				R5F101PJDFA#X0, R5F101PKDFA#X0, R5F101PLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.


1.4 Pin Identification

ANI0 to ANI14,		REGC:	Regulator capacitance
ANI16 to ANI26:	Analog input	RESET:	Reset
AVREFM:	A/D converter reference	RTC1HZ:	Real-time clock correction clock
	potential (– side) input		(1 Hz) output
AVREFP:	A/D converter reference	RxD0 to RxD3:	Receive data
	potential (+ side) input	SCK00, SCK01, SCK10,	
EVDD0, EVDD1:	Power supply for port	SCK11, SCK20, SCK21,	
EVsso, EVss1:	Ground for port	SCLA0, SCLA1:	Serial clock input/output
EXCLK:	External clock input (Main	SCLA0, SCLA1, SCL00,	
	system clock)	SCL01, SCL10, SCL11,	
EXCLKS:	External clock input	SCL20,SCL21, SCL30,	
	(Subsystem clock)	SCL31:	Serial clock output
INTP0 to INTP11:	Interrupt request from	SDAA0, SDAA1, SDA00,	
	peripheral	SDA01,SDA10, SDA11,	
KR0 to KR7:	Key return	SDA20,SDA21, SDA30,	
P00 to P07:	Port 0	SDA31:	Serial data input/output
P10 to P17:	Port 1	SI00, SI01, SI10, SI11,	
P20 to P27:	Port 2	SI20, SI21, SI30, SI31:	Serial data input
P30 to P37:	Port 3	SO00, SO01, SO10,	
P40 to P47:	Port 4	SO11, SO20, SO21,	
P50 to P57:	Port 5	SO30, SO31:	Serial data output
P60 to P67:	Port 6	TI00 to TI07,	
P70 to P77:	Port 7	TI10 to TI17:	Timer input
P80 to P87:	Port 8	TO00 to TO07,	
P90 to P97:	Port 9	TO10 to TO17:	Timer output
P100 to P106:	Port 10	TOOL0:	Data input/output for tool
P110 to P117:	Port 11	TOOLRxD, TOOLTxD:	Data input/output for external device
P120 to P127:	Port 12	TxD0 to TxD3:	Transmit data
P130, P137:	Port 13	VDD:	Power supply
P140 to P147:	Port 14	Vss:	Ground
P150 to P156:	Port 15	X1, X2:	Crystal oscillator (main system clock)
PCLBUZ0, PCLBUZ1:	Programmable clock	XT1, XT2:	Crystal oscillator (subsystem clock)
	output/buzzer output		


1.5 Block Diagram

1.5.1 20-pin products

1.5.9 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

^{3.} When setting to PIOR = 1

Item		40-pin 44-pin 48-pin		52-pin		(2/2) 64-pin					
Ite					İ.			52	-pin		
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	:	2		2		2		2		2
·		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 									
8/10-bit resolution	A/D converter	9 channe	ls	10 chanr	nels	10 chanr	nels	12 chan	nels	12 chanr	nels
Serial interface		[40-pin, 4	4-pin prod	ducts]		J				J	
		 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [48-pin, 52-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel 									
				-		1				1	
• CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel I²C bus 1 channel 1 channel 1 channel 1 channel Multiplier and divider/multiply- accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 32 bits ÷ 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)											
		• 16 bits	× 16 bits +	- 32 bits =	32 bits (U	nsigned or	r signed)				
DMA controller		2 channe	ls								
Vectored	Internal	2	27	:	27	2	27		27	2	27
interrupt sources	External		7		7		10		12		13
Key interrupt			4		4		6		8		8
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 									
Power-on-reset ci	rcuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)									
Voltage detector		Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)									
On-chip debug fur	nction	Provided									
Power supply volta		$V_{_{DD}} = 1.6 \text{ to } 5.5 \text{ V} (T_{_{A}} = -40 \text{ to } +85^{\circ}\text{C})$ $V_{_{DD}} = 2.4 \text{ to } 5.5 \text{ V} (T_{_{A}} = -40 \text{ to } +105^{\circ}\text{C})$									
Operating ambien	t temperature	$T_{A} = 40$ to +85°C (A: Consumer applications, D: Industrial applications) $T_{A} = 40$ to +105°C (G: Industrial applications)									

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions	1	1	MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	DD1	Operating	HS (high-	f⊪ = 32 MHz ^{№te 3}	Basic	VDD = 5.0 V		2.1		mA
current		mode	speed main) mode ^{Note 5}		operation	$V_{DD} = 3.0 V$		2.1		mA
			mode		Normal	$V_{DD} = 5.0 V$		4.6	7.0	mA
					operation	$V_{DD} = 3.0 V$		4.6	7.0	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA
					operation	$V_{DD} = 3.0 V$		3.7	5.5	mA
				fıн = 16 MHz ^{№te 3}	Normal	VDD = 5.0 V		2.7	4.0	mA
				operation	V _{DD} = 3.0 V		2.7	4.0	mA	
			LS (low-	fін = 8 MHz ^{Note 3}	Normal	VDD = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
		LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.2	1.7	mA	
			voltage main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
			speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operation	Resonator connection		3.2	4.8	mA
			$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.6	mA	
				$V_{DD} = 3.0 V$	operation	Resonator connection		3.2	4.8	mA
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA	
				$V_{DD} = 5.0 V$	operation	Resonator connection		1.9	2.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.9	2.7	mA
			LS (low- speed main) mode ^{Note 5}	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal operation	Square wave input		1.1	1.7	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				^{Note 4} T _A = +25°C	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4	operation	Resonator		4.3	5.6	μΑ
				T _A = +50°C		connection				
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
				Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		4.4	6.4	μA
				fsuв = 32.768 kHz	Normal	Square wave input	<u> </u>	4.6	7.7	μA
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μA

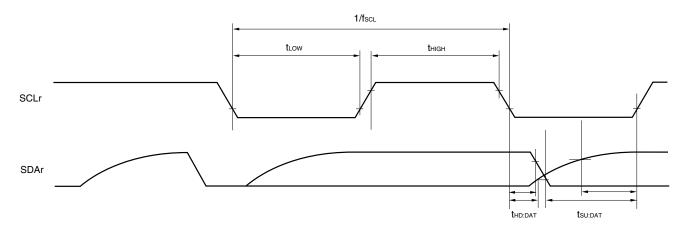
(Notes and Remarks are listed on the next page.)

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.54	1.63	mA
Current	Note 2	mode	speed main) mode ^{Note 7}		$V_{DD} = 3.0 V$		0.54	1.63	mA
				fiH = 24 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				fin = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fin = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		V _{DD} = 2.0 V		260	530	μA
			LV (low-	fiH = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode		V _{DD} = 2.0 V		420	640	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.45	1.17	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.19	0.60	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.26	0.67	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	0.60	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.26	0.67	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
			speed main) mode ^{Note 7}	$V_{DD} = 3.0 V$	Resonator connection		145	380	μA
				$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
				$V_{DD} = 2.0 V$	Resonator connection		145	380	μA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		0.30	0.57	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.49	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.56	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.72	2.16	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
-				T _A = +85°C	Resonator connection		1.01	3.56	μA
	DD3 ^{Note 6}	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA
			$T_A = +50^{\circ}C$				0.30	1.10	μA
			$T_A = +70^{\circ}C$	T _A = +70°C			0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA

(Notes and Remarks are listed on the next page.)


- **Notes 1.** Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

3. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate.

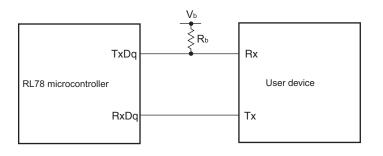
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- $\textbf{5.} \quad \textbf{Use it with } EV_{DD0} \geq V_{b}.$
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.


Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions		h-speed Mode	``	/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsikı	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array}$	81		479		479		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	177		479		479		ns
		$C_b=30 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$							
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \end{split}$	479		479		479		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp [↑]) Note 1	tksi1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$	19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		100		100		100	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		195		195		195	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$		483		483		483	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

		5 5 V Voo - EVo	$ = EV_{oot} = 0.V$
$T_{A} = -40$ to +85°C,		j.j v, vss = ⊑vs	$s_0 = \Box v s s_1 = U v $

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

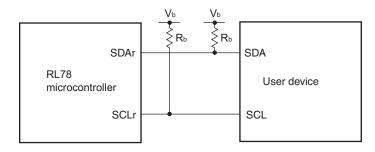
2. Use it with $EV_{DD0} \ge V_b$.

(Remarks are listed on the page after the next page.)

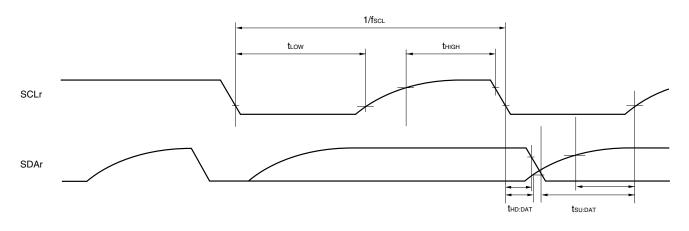
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions	HS (high- speed main) Mode		LS (low	· · ·	•	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsiк2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Slp hold time (from SCKp↑) ^{Note 4}	tksı2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tĸso2	$\label{eq:V_def} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \\ V, \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\label{eq:V} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{split} 1.8 \ V &\leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note } 2}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns


Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

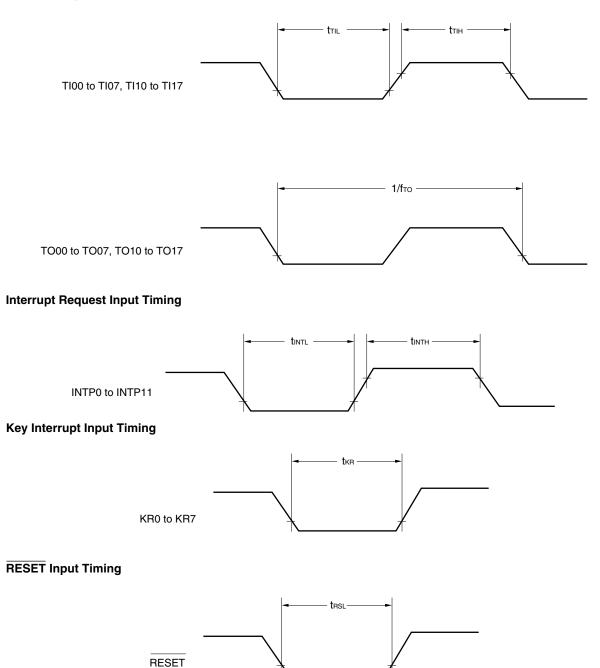
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іонт	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	·	0.8EV _{DD0}		EVDDO	V
	V _{IH2} P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,		TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq EV_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDDO	V
	VIH3	P20 to P27, P150 to P156		0.7V _{DD}		VDD	V
	VIH4	P60 to P63		0.7EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

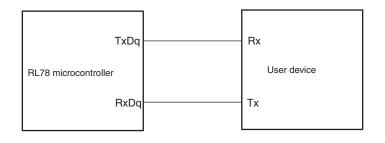
- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


TI/TO Timing

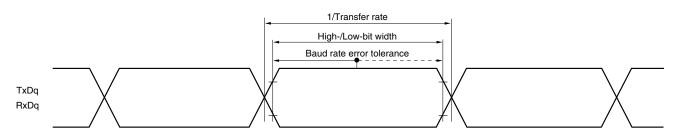
3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit


(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$


Parameter	Symbol	Conditions HS (high-speed main) Mode		ed main) Mode	Unit
			MIN.	MAX.	
Transfer rate Note 1				fмск/12 ^{Note 2}	bps
		Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 1.3 Mbps
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency

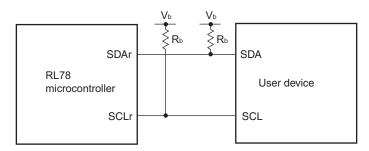
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

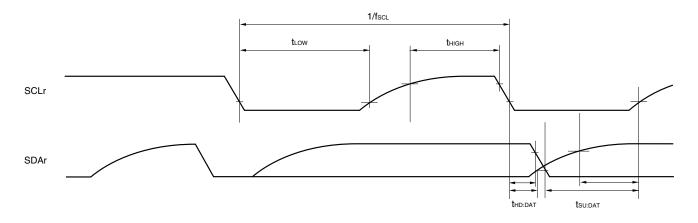
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	1/fмск + 340 Note 2		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1/fмск + 340 Note 2		ns
			1/fмск + 760 Note 2		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1/fмск + 760 Note 2		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	ţнd:dat		0	770	ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

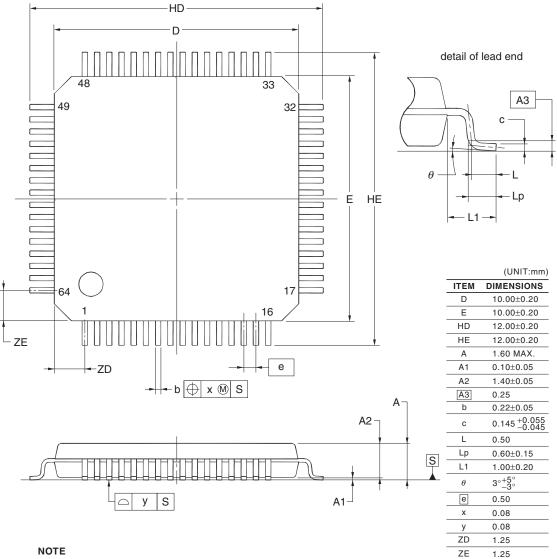
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LLAFB

R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB,


R5F101LJAFB, R5F101LKAFB, R5F101LLAFB

R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LJDFB, R5F100LLDFB

R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB, R5F101LJDFB, R5F101LKDFB, R5F101LLDFB

R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

