

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

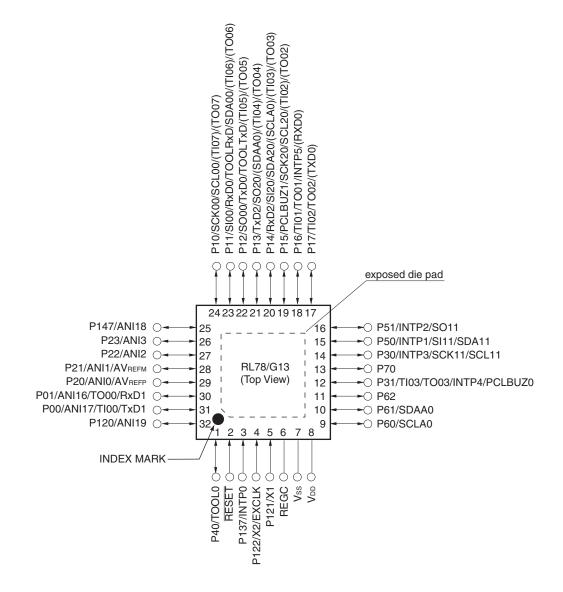
XF

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101bdana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Package	Data	Fields of	(5/12) Ordering Part Number
count		flash	Application	
48 pins	48-pin plastic	Mounted	A	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP (7 \times 7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	А	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
				R5F101GLDFB#X0

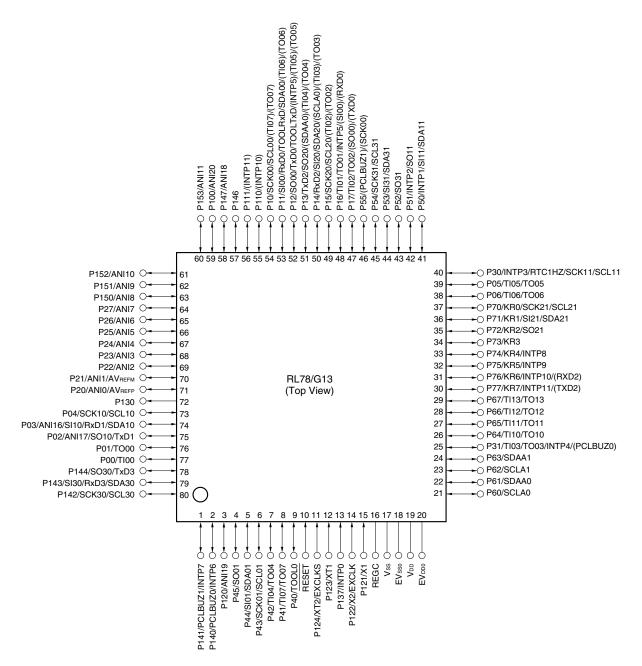

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to V_{ss} .

1.3.12 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the V_{SS} and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

						1	(2/2)	
Ite	m	80-pin		100			3-pin	
		R5F100Mx R5	F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx	
Clock output/buzz	er output	2		:	2		2	
		 2.44 kHz, 4.88 kHz (Main system clock) 256 Hz, 512 Hz, 1.0 (Subsystem clock): 	: fmain = 20 024 kHz, 2.	MHz operation) .048 kHz, 4.096 k	Hz, 8.192 kHz, 1		68 kHz	
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels		
Serial interface		[80-pin, 100-pin, 128-	pin product	ts]				
		 CSI: 2 channels/sin 	nplified I ² C: nplified I ² C:	2 channels/UAR 2 channels/UAR	T: 1 channel T (UART suppor	ting LIN-bus): 1 c	channel	
	I ² C bus	2 channels		2 channels		2 channels		
Multiplier and divid	der/multiply-	• 16 bits × 16 bits = 32	2 bits (Unsi	igned or signed)				
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)						
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)						
DMA controller		4 channels						
Vectored	Internal	37		3	37	2	41	
interrupt sources	External	13		1	3	-	13	
Key interrupt	I	8					8	
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 						
Power-on-reset ci	rcuit	 Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.) 						
Voltage detector		Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)						
On-chip debug function		Provided						
Power supply voltage		$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (T_A = -40 \text{ to } +85^{\circ}\text{C})$ $V_{DD} = 2.4 \text{ to } 5.5 \text{ V} (T_A = -40 \text{ to } +105^{\circ}\text{C})$						
Operating ambient temperature		$T_A = 40$ to +85°C (A: Consumer applications, D: Industrial applications) $T_A = 40$ to +105°C (G: Industrial applications)						

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{H} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.62	1.86	mA
current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fiH = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fiH = 16 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.11	mA
			LS (low		$V_{DD} = 3.0 V$		0.44	1.11	
									mA
			LS (low- speed main) mode ^{Note 7}	$f_{IH} = 8 MHz^{Note 4}$	V _{DD} = 3.0 V V _{DD} = 2.0 V		290 290	620 620	μΑ μΑ
			LV (low-	file = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA
			voltage main) mode		V _{DD} = 2.0 V		440	680	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	1.28	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.08	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.63	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	0.71	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.28	0.71	mA
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	420	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 2.0 V	Resonator connection		160	420	μA
			Subsystem	fs∪в = 32.768 kHz ^{№te 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.53	0.80	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.60	2.49	μA
				fs∪в = 32.768 kHz ^{№te 5}	Square wave input	1	0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				$T_{A} = +85^{\circ}C$	Resonator connection		1.28	8.23	μA
	DD3 ^{Note 6}	STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA
	mode ^{Note 8}	mode ^{Note 8}	T _A = +25°C			1	0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μA
		T _A = +70°C				0.55	3.94	μA	
			$T_{A} = +85^{\circ}C$				1.00	7.95	μA

(Notes and Remarks are listed on the next page.)

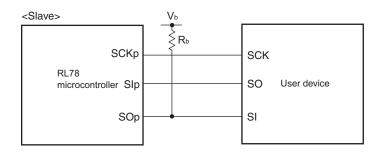
- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

AC Timing Test Points Vін/Vон Vін/Vон Test points VIL/VOL VIL/VOL **External System Clock Timing** 1/f_{EX}/ 1/f_{EXS} texl/ texн/ **t**EXLS **t**EXHS EXCLK/EXCLKS **TI/TO Timing** t⊤ı∟ tтıн TI00 to TI07, TI10 to TI17 **1/f**то TO00 to TO07, TO10 to TO17 **Interrupt Request Input Timing** tINTL **t**INTH INTP0 to INTP11 **Key Interrupt Input Timing t**ĸĸ KR0 to KR7 **RESET** Input Timing tRSL RESET



Parameter	Symbol	Symbol Conditions		HS (high main)	•	LS (low main)	r-speed Mode	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fclk	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	125		500		1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	250		500		1000		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	500		500		1000		ns
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	1000		1000		1000		ns
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	—		1000		1000		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 V \le EV_{DI}$	5.5 V	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$100 \leq 5.5 \text{ V}$	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
			$1.6 V \le EV_{DI}$	$500 \leq 5.5 \text{ V}$	—		tксү1/2 – 100		tксү1/2 – 100	
SIp setup time	tsik1	$4.0 V \le EV_{DI}$	$100 \leq 5.5 \text{ V}$	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	44		110		110		ns
		$2.4 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	75		110		110		ns
		$1.8 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$0.0 \leq 5.5 \text{ V}$	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V			220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	19		19		19		ns
(from SCKp \uparrow) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$\begin{array}{l} 1.7 \ V \leq EV_{DI} \\ C = 30 \ pF^{\text{Note}} \end{array}$			25		25		25	ns
output Note 3		$1.6 V \le EV_{DI}$ C = 30 pF ^{Note}			_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_4 = -40$ to $+85^{\circ}$ C, 1.6 V \leq EVppa = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVssa = EVssa = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fмск: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{BGR}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}^{\text{Note 4}}, \text{HS (high-speed main) mode}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

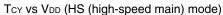
Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

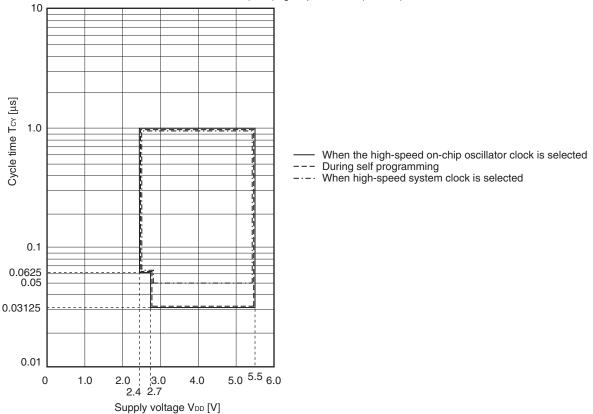
2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

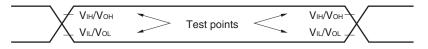
(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	ulse width	t∟w		300			μs
Detection d	elay time					300	μS

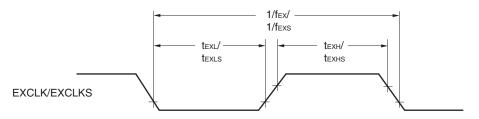

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μA
	Ілна	P20 to P27, P137, P150 to P156, RESET	$V_{I} = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low			Vi = EVsso				-1	μA
	Ilile	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso	, In input port	10	20	100	kΩ


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



Minimum Instruction Execution Time during Main System Clock Operation

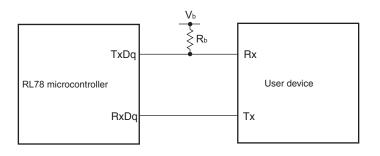


AC Timing Test Points

External System Clock Timing

5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

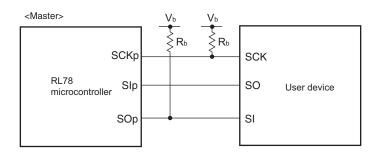
* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	Unit
		[MIN.	MAX.	
SIp setup time	tsik1	$4.0 \ V \le EV_{\text{DD0}} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V,$	162		ns
(to SCKp↑) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	354		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	958		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$			
SIp hold time	tksi1	$4.0 \ V \le EV_{\text{DD0}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V,$	38		ns
(from SCKp↑) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \le EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \le V_{\text{b}} \le 2.7 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
Delay time from SCKp \downarrow to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		200	ns
SOp output ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \le EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \le V_b \le 2.7 \ V,$		390	ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		966	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)
 (T₁ = 40 to ±105°C 2.4 V ≤ EVere = EVere ≤ Vere ≤ 5.5 V, Vere = EVere = 6.V)

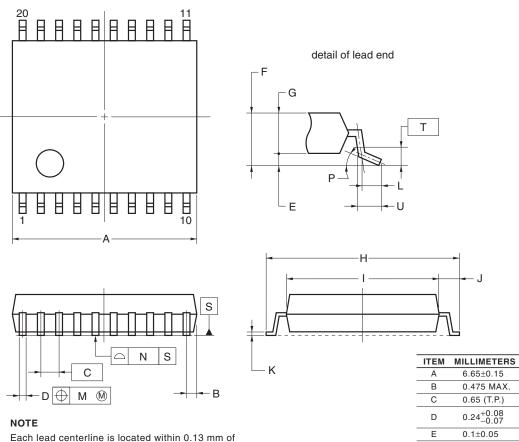

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.



4. PACKAGE DRAWINGS

4.1 20-pin Products

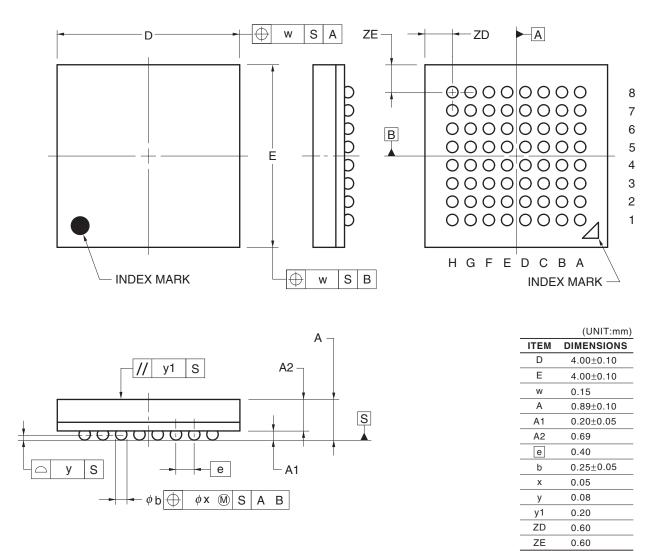
R5F1006AASP, R5F1006CASP, R5F1006DASP, R5F1006EASP R5F1016AASP, R5F1016CASP, R5F1016DASP, R5F1016EASP R5F1006ADSP, R5F1006CDSP, R5F1006DDSP, R5F1006EDSP R5F1016ADSP, R5F1016CDSP, R5F1016DDSP, R5F1016EDSP R5F1006AGSP, R5F1006CGSP, R5F1006DGSP, R5F1006EGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-0300-0.65	PLSP0020JC-A	S20MC-65-5A4-3	0.12

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

	()
D	$0.24^{+0.08}_{-0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
Ι	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
Μ	0.13
Ν	0.10
Р	3° ^{+5°} 3°
Т	0.25
U	0.6±0.15

© 2012 Renesas Electronics Corporation. All rights reserved.



R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03

© 2012 Renesas Electronics Corporation. All rights reserved.

	Description			
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics	
		118	Modification of table and note in 2.6.3 POR circuit characteristics	
		119	Modification of table in 2.6.4 LVD circuit characteristics	
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics	
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes	
		123	Modification of caution 1 and description	
		124	Modification of table and remark 3 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$)	
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics	
		126	Modification of table in 3.2.2 On-chip oscillator characteristics	
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)	
	128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)		
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)	
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products (2/2)	
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (1/2)	
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)	
		140	Modification of (3) Peripheral Functions (Common to all products)	
		142	Modification of table in 3.4 AC Characteristics	
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		143	Modification of figure of AC Timing Test Points	
		143	Modification of figure of External System Clock Timing	
		145	Modification of figure of AC Timing Test Points	
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)	
		146	Modification of description in (2) During communication at same potential (CSI mode)	
		147	Modification of description in (3) During communication at same potential (CSI mode)	
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)	
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)	