Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 22 | | Program Memory Size | 48KB (48K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 3K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 8x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-WFQFN Exposed Pad | | Supplier Device Package | 32-HWQFN (5x5) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101bddna-u0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # 1.3 Pin Configuration (Top View) # 1.3.1 20-pin products • 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remark For pin identification, see 1.4 Pin Identification. # 1.3.9 48-pin products • 48-pin plastic LFQFP (7 x 7 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. • 100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch) - Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin. - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1). - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). - Remarks 1. For pin identification, see 1.4 Pin Identification. - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EV_{SS0} and EV_{SS1} pins to separate ground lines. - 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. # 1.5.4 30-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. # 1.5.6 36-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. # 1.5.13 100-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products] # Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H. (1/2) | | Item | | 40-pin 44-pin 48-pin 52-pin | | nin | 64-pin | | | | | | |-------------------|---|---|---|--|--|--|--|-----------------------|--|----------|--| | | item | | <u> </u> | 44 | i | | | 52- | -piri | | İ | | | | R5F100Ex | R5F101Ex | R5F100Fx | R5F101Fx | R5F100Gx | R5F101Gx | R5F100Jx | R5F101Jx | R5F100Lx | R5F101Lx | | | | 100 | 101 | 100 | 101 | 100 | 101 | 100 | 101 | 100 | 101 | | | | Ex | Ex | × | × | χ
Ω | ωx | × | × | Ž | Ž | | Code flash me | emory (KB) | 16 to 192 16 to 512 16 to 512 32 to 512 | | o 512 | 32 to | o 512 | | | | | | | Data flash me | emory (KB) | 4 to 8 | - | 4 to 8 | - | 4 to 8 | - | 4 to 8 | _ | 4 to 8 | _ | | RAM (KB) | | 2 to 1 | 16 ^{Note1} | 2 to : | 32 ^{Note1} | 2 to 3 | 32 ^{Note1} | 2 to 3 | 32 ^{Note1} | 2 to 3 | 32 ^{Note1} | | Address spac | e | 1 MB | | | | | | | | | | | Main system clock | High-speed system clock | HS (High
HS (High
LS (Low- | n-speed ma
n-speed ma
speed ma | ain) mode
ain) mode
in) mode: | on, externa
: 1 to 20 l
: 1 to 16 l
1 to 8 M
e: 1 to 4 M | MHz (V _{DD} :
MHz (V _{DD} :
IHz (V _{DD} = | = 2.7 to 5.
= 2.4 to 5.
1.8 to 5.5 | 5 V),
5 V),
V), | CLK) | | | | | High-speed on-chip oscillator | HS (High
LS (Low- | HS (High-speed main) mode: 1 to 32 MHz (V_{DD} = 2.7 to 5.5 V),
HS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V),
LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V),
LV (Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V) | | | | | | | | | | Subsystem cl | Subsystem clock XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz | | | | | | | | | | | | Low-speed or | 15 kHz (| 15 kHz (TYP.) | | | | | | | | | | | General-purp | ose registers | (8-bit reg | ister × 8) | × 4 banks | | | | | | | | | Minimum insti | ruction execution time | 0.03125 μs (High-speed on-chip oscillator: f _{IH} = 32 MHz operation) | | | | | | | | | | | | | 0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation) | | | | | | | | | | | | | 30.5 μ s (Subsystem clock: fsuB = 32.768 kHz operation) | | | | | | | | | | | Instruction se | t | Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. | | | | | | | | | | | I/O port | Total | 3 | 36 | 4 | 40 | 2 | 14 | 4 | 18 | 5 | 58 | | | CMOS I/O | (N-ch (| 28
O.D. I/O
ithstand
ge]: 10) | (N-ch
[V _{DD} w | 31
O.D. I/O
rithstand
ge]: 10) | (N-ch (| 34
O.D. I/O
ithstand
je]: 11) | (N-ch (| 38
O.D. I/O
ithstand
ge]: 13) | (N-ch (| 18
O.D. I/O
ithstand
ge]: 15) | | | CMOS input | | 5 | | 5 | | 5 | | 5 | | 5 | | | CMOS output | | = | | = | | 1 | | 1 | | 1 | | | N-ch O.D. I/O (withstand voltage: 6 V) | | 3 | | 4 | | 4 | | 4 | | 4 | | Timer | 16-bit timer | | | | | 8 cha | nnels | | | | | | | Watchdog timer | | | | | 1 cha | annel | | | | | | | Real-time clock (RTC) | | | | | 1 cha | annel | | | | | | | 12-bit interval timer (IT) | | | | - | | annel | | | | | | | Timer output | 4 channels (PWM outputs: 4 Note 2), 8 channels (PWM outputs: 7 Note 2) Note 3 outputs: 7 Note 2 outputs: 7 Note 2 Note 3 | | | | | | | | | | | | RTC output | | | 1 channel ■ 1 Hz (subsystem clock: fsuB = 32.768 kHz) | | | | | | | | Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below. R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L): Start address F7F00H For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**. # 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C) This chapter describes the following electrical specifications. Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxAxx, R5F101xxAxx D: Industrial applications T_A = −40 to +85°C R5F100xxDxx, R5F101xxDxx G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$ R5F100xxGxx - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}. - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5) | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |------------------------|------------------|--|--|----------------------|------|----------------------|------| | Input voltage,
high | V _{IH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | | 0.8EVDDO | | EV _{DD0} | V | | V _{IH2} | V _{IH2} | P01, P03, P04, P10, P11,
P13 to P17, P43, P44, P53 to P55, | TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V | 2.2 | | EV _{DD0} | V | | | | P80, P81, P142, P143 | TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$ | 2.0 | | EV _{DD0} | V | | | | | TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V | 1.5 | | EV _{DD0} | V | | | V _{IH3} | V _{IHS} P20 to P27, P150 to P156 | | 0.7V _{DD} | | V _{DD} | ٧ | | | V _{IH4} | P60 to P63 | | 0.7EV _{DD0} | | 6.0 | ٧ | | | V _{IH5} | P121 to P124, P137, EXCLK, EXCL | KS, RESET | 0.8V _{DD} | | V _{DD} | ٧ | | Input voltage,
low | V _{IL1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | , | 0 | | 0.2EV _{DD0} | V | | | V _{IL2} | P01, P03, P04, P10, P11,
P13 to P17, P43, P44, P53 to P55, | TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V | 0 | | 0.8 | V | | | | P80, P81, P142, P143 | TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V | 0 | | 0.5 | V | | | | | TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V | 0 | | 0.32 | V | | | VIL3 | P20 to P27, P150 to P156 | | 0 | | 0.3V _{DD} | ٧ | | | V _{IL4} | P60 to P63 | | 0 | | 0.3EV _{DD0} | ٧ | | | V _{IL5} | P121 to P124, P137, EXCLK, EXCL | KS, RESET | 0 | | 0.2V _{DD} | ٧ | Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C - Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. During HALT instruction execution by flash memory. - 3. When high-speed on-chip oscillator and subsystem clock are stopped. - 4. When high-speed system clock and subsystem clock are stopped. - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz - **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C 220 220 # (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ Parameter Symbo Conditions HS (high-speed LS (low-speed main) LV (low-voltage main) Unit main) Mode I Mode Mode MIN. MIN. MAX. MIN. MAX. MAX. Slp setup time tsik2 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ $1/f_{MCK}+2$ 1/fmck+30 1/fmck+30 ns (to SCKp↑) Note 1 n $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмск+30 1/fмcк+30 ns 0 $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+4 $1/f_{MCK}+40$ $1/f_{MCK}+40$ ns 0 1/fмск+40 1/fмск+40 $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ ns Slp hold time tks12 $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмcк+31 1/fмcк+31 ns (from SCKp↑) 1 $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмcк+ 1/fмск+ 1/fмcк+ ns 250 250 250 $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ 1/fmck+ 1/fмcк+ ns 250 250 2/f_{MCK+} 2/f_{MCK+} Delay time tks02 C = 30 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ ns pF Note 4 from SCKp↓ to 44 110 110 SOp output Note $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fмcк+ 2/fмск+ ns 110 75 110 2/fмск+ $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns 110 110 110 $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fmck+ 2/fмск+ ns 220 220 220 $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns - **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SOp output lines. - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). - **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14) - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) #### (5) During communication at same potential (simplified I²C mode) (2/2) (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | , , | h-speed
Mode | , | r-speed
Mode | ` | -voltage
Mode | Unit | |-------------------------------|---------|--|---|-----------------|---|-----------------|---|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Data setup time (reception) | tsu:dat | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$ | 1/f _{MCK}
+ 85
_{Note2} | | 1/fmck
+ 145
Note2 | | 1/f _{MCK}
+ 145
{Note2} | | ns | | | | $1.8~V \leq EV{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$ | 1/f _{MCK}
+ 145
_{Note2} | | 1/f _{MCK}
+ 145
_{Note2} | | 1/f _{MCK}
+ 145
{Note2} | | ns | | | | $1.8~V \leq EV{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 1/fmck
+ 230
Note2 | | 1/fmck
+ 230
Note2 | | 1/fmck
+ 230
Note2 | | ns | | | | $1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | ns | | | | $1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | _ | | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | ns | | Data hold time (transmission) | thd:dat | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$ | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | $1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 0 | 405 | 0 | 405 | 0 | 405 | ns | | | | $1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 0 | 405 | 0 | 405 | 0 | 405 | ns | | | | $1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | _ | _ | 0 | 405 | 0 | 405 | ns | Notes 1. The value must also be equal to or less than fmck/4. 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the normal input buffer and the N-ch open drain output (Vpb tolerance (When 20- to 52-pin products)/EVpb tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh). (Remarks are listed on the next page.) #### (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | HS (high | • | ` | /-speed
Mode | LV (low
main) | -voltage
Mode | Unit | |-------------------------------|---------|---|---------------------------------|------|---------------------------|-----------------|---------------------------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Data setup time (reception) | tsu:dat | $\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned}$ | 1/f _{MCK} + 135 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $\label{eq:substitute} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 1/f _{MCK} + 135 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 1/f _{MCK} + 190 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $\label{eq:section} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 1/f _{MCK} + 190 Note 3 | | 1/fMCK
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $ \begin{aligned} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned} $ | 1/f _{MCK} + 190 Note 3 | | 1/fMCK
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | Data hold time (transmission) | thd:dat | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $ \begin{cases} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{cases} $ | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | eq:second-seco | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | $\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$ | 0 | 405 | 0 | 405 | 0 | 405 | ns | **Notes 1.** The value must also be equal to or less than $f_{MCK}/4$. - 2. Use it with $EV_{DD0} \ge V_b$. - 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected. <R> - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. - Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination. - **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ #### 2.10 Timing of Entry to Flash Memory Programming Modes $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---|---------|---|------|------|------|------| | Time to complete the communication for the initial setting after the external reset is released | tsuіліт | POR and LVD reset must be released before the external reset is released. | | | 100 | ms | | Time to release the external reset after the TOOL0 pin is set to the low level | tsu | POR and LVD reset must be released before the external reset is released. | 10 | | | μS | | Time to hold the TOOL0 pin at
the low level after the external
reset is released
(excluding the processing time of
the firmware to control the flash
memory) | tно | POR and LVD reset must be released before the external reset is released. | 1 | | | ms | - <1> The low level is input to the TOOL0 pin. - <2> The external reset is released (POR and LVD reset must be released before the external reset is released.). - <3> The TOOL0 pin is set to the high level. - <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting. **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period. tsu: Time to release the external reset after the TOOL0 pin is set to the low level thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) # 3.6 Analog Characteristics #### 3.6.1 A/D converter characteristics Classification of A/D converter characteristics | | | Reference Voltage | | |----------------------------|--------------------------------|-----------------------------|--------------------------------| | | Reference voltage (+) = AVREFP | Reference voltage (+) = VDD | Reference voltage (+) = VBGR | | Input channel | Reference voltage (-) = AVREFM | Reference voltage (-) = Vss | Reference voltage (-) = AVREFM | | ANI0 to ANI14 | Refer to 3.6.1 (1) . | Refer to 3.6.1 (3) . | Refer to 3.6.1 (4) . | | ANI16 to ANI26 | Refer to 3.6.1 (2) . | | | | Internal reference voltage | Refer to 3.6.1 (1) . | | _ | | Temperature sensor output | | | | | voltage | | | | (1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage (TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V) | Parameter | Symbol | Condition | าร | MIN. | TYP. | MAX. | Unit | |--|--------|--|---|--------|-------------|--------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution
AV _{REFP} = V _{DD} Note 3 | 2.4 V ≤ AVREFP ≤ 5.5 V | | 1.2 | ±3.5 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μs | | | | Target pin: ANI2 to ANI14 | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875 | | 39 | μS | | | | | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μs | | | | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375 | | 39 | μs | | | " | Target pin: Internal reference | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625 | | 39 | μs | | | | voltage, and temperature
sensor output voltage (HS
(high-speed main) mode) | $2.4~V \leq V \text{DD} \leq 5.5~V$ | 17 | | 39 | μs | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution
AVREFP = VDD Note 3 | $\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$ | | | ±0.25 | %FSR | | Full-scale error ^{Notes 1, 2} | Ers | 10-bit resolution
AV _{REFP} = V _{DD} Note 3 | $\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$ | | | ±0.25 | %FSR | | Integral linearity error | ILE | 10-bit resolution AVREFP = VDD Note 3 | $\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$ | | | ±2.5 | LSB | | Differential linearity error | DLE | 10-bit resolution
AV _{REFP} = V _{DD} Note 3 | $\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$ | | | ±1.5 | LSB | | Analog input voltage | Vain | ANI2 to ANI14 | | 0 | | AVREFP | V | | | | Internal reference voltage output (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) | | | VBGR Note 4 | | V | | | | Temperature sensor output volume (2.4 V \leq VDD \leq 5.5 V, HS (high | V _{TMPS25} Note 4 | | | V | | (Notes are listed on the next page.) #### 3.6.4 LVD circuit characteristics # LVD Detection Voltage of Reset Mode and Interrupt Mode (Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V) | | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-------------|----------------------|-------------------|------------------------|------|------|------|------| | Detection | Supply voltage level | V _{LVD0} | Power supply rise time | 3.90 | 4.06 | 4.22 | V | | voltage | | | Power supply fall time | 3.83 | 3.98 | 4.13 | V | | | | V _{LVD1} | Power supply rise time | 3.60 | 3.75 | 3.90 | V | | | | | Power supply fall time | 3.53 | 3.67 | 3.81 | V | | | | V _{LVD2} | Power supply rise time | 3.01 | 3.13 | 3.25 | V | | | | | Power supply fall time | 2.94 | 3.06 | 3.18 | V | | | | V LVD3 | Power supply rise time | 2.90 | 3.02 | 3.14 | V | | | | | Power supply fall time | 2.85 | 2.96 | 3.07 | V | | | | V _{LVD4} | Power supply rise time | 2.81 | 2.92 | 3.03 | V | | | | | Power supply fall time | 2.75 | 2.86 | 2.97 | V | | | | V _{LVD5} | Power supply rise time | 2.70 | 2.81 | 2.92 | V | | | | | Power supply fall time | 2.64 | 2.75 | 2.86 | V | | | | V _{LVD6} | Power supply rise time | 2.61 | 2.71 | 2.81 | V | | | | | Power supply fall time | 2.55 | 2.65 | 2.75 | V | | | | V _{LVD7} | Power supply rise time | 2.51 | 2.61 | 2.71 | V | | | | | Power supply fall time | 2.45 | 2.55 | 2.65 | V | | Minimum p | ulse width | tLW | | 300 | | | μS | | Detection d | elay time | | | | | 300 | μS | #### **LVD Detection Voltage of Interrupt & Reset Mode** (Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V) | Parameter | Symbol | | Conditions | | | TYP. | MAX. | Unit | |---------------------|--------------------|------------|-----------------------|------------------------------|------|------|------|------| | Interrupt and reset | V _{LVDD0} | VPOC2, VPC | oc1, VPOC0 = 0, 1, 1, | falling reset voltage | 2.64 | 2.75 | 2.86 | ٧ | | mode | VLVDD1 | LV | 'IS1, LVIS0 = 1, 0 | Rising release reset voltage | 2.81 | 2.92 | 3.03 | V | | | | | | Falling interrupt voltage | 2.75 | 2.86 | 2.97 | ٧ | | | VLVDD2 | LV | 'IS1, LVIS0 = 0, 1 | Rising release reset voltage | 2.90 | 3.02 | 3.14 | V | | | | | | Falling interrupt voltage | 2.85 | 2.96 | 3.07 | ٧ | | | V LVDD3 | LV | 'IS1, LVIS0 = 0, 0 | Rising release reset voltage | 3.90 | 4.06 | 4.22 | V | | | | | | Falling interrupt voltage | 3.83 | 3.98 | 4.13 | V | #### 4.10 52-pin Products R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JJAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP52-10x10-0.65 | PLQP0052JA-A | P52GB-65-GBS-1 | 0.3 | © 2012 Renesas Electronics Corporation. All rights reserved. (UNIT:mm) | | | | Description | |------|--------------|--------|--| | Rev. | Date | Page | Summary | | 3.00 | Aug 02, 2013 | 81 | Modification of figure of AC Timing Test Points | | | | 81 | Modification of description and note 3 in (1) During communication at same potential (UART mode) | | | | 83 | Modification of description in (2) During communication at same potential (CSI mode) | | | | 84 | Modification of description in (3) During communication at same potential (CSI mode) | | | | 85 | Modification of description in (4) During communication at same potential (CSI mode) (1/2) | | | | 86 | Modification of description in (4) During communication at same potential (CSI mode) (2/2) | | | | 88 | Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2) | | | | 89 | Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2) | | | | 91 | Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) | | | | 92, 93 | Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 94 | Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 95 | Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2) | | | | 96 | Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2) | | | | 97 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) | | | | 98 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) | | | | 99 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | 100 | Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | 102 | Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2) | | | | 103 | Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2) | | | | 106 | Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | 107 | Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | 109 | Addition of (1) I ² C standard mode | | | | 111 | Addition of (2) I ² C fast mode | | | | 112 | Addition of (3) I ² C fast mode plus | | | | 112 | Modification of IICA serial transfer timing | | | | 113 | Addition of table in 2.6.1 A/D converter characteristics | | | | 113 | Modification of description in 2.6.1 (1) | | | | 114 | Modification of notes 3 to 5 in 2.6.1 (1) | | | | 115 | Modification of description and notes 2, 4, and 5 in 2.6.1 (2) | | | | 116 | Modification of description and notes 3 and 4 in 2.6.1 (3) | | | | 117 | Modification of description and notes 3 and 4 in 2.6.1 (4) |