

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

XFI

| Product Status             | Obsolete                                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 28                                                                              |
| Program Memory Size        | 48KB (48K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 3K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 9x8/10b                                                                     |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 40-WFQFN Exposed Pad                                                            |
| Supplier Device Package    | 40-HWQFN (6x6)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101eddna-u0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Table 1-1. | List of | Ordering | Part | Numbers |
|------------|---------|----------|------|---------|
|------------|---------|----------|------|---------|

|         |                         |         |             | (5/12)                                          |
|---------|-------------------------|---------|-------------|-------------------------------------------------|
| Pin     | Package                 | Data    | Fields of   | Ordering Part Number                            |
| count   |                         | flash   | Application |                                                 |
|         |                         |         | Note        |                                                 |
| 48 pins | 48-pin plastic          | Mounted | А           | R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0, |
|         | LFQFP (7 $\times$ 7 mm, |         |             | R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0, |
|         | 0.5 mm pitch)           |         |             | R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0, |
|         |                         |         |             | R5F100GLAFB#V0                                  |
|         |                         |         |             | R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0, |
|         |                         |         |             | R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0, |
|         |                         |         |             | R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0, |
|         |                         |         |             | R5F100GLAFB#X0                                  |
|         |                         |         | D           | R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0, |
|         |                         |         |             | R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0, |
|         |                         |         |             | R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0, |
|         |                         |         |             | R5F100GLDFB#V0                                  |
|         |                         |         |             | R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0, |
|         |                         |         |             | R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0, |
|         |                         |         |             | R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0, |
|         |                         |         |             | R5F100GLDFB#X0                                  |
|         |                         |         | G           | R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0, |
|         |                         |         |             | R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0, |
|         |                         |         |             | R5F100GHGFB#V0, R5F100GJGFB#V0                  |
|         |                         |         |             | R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0, |
|         |                         |         |             | R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0, |
|         |                         |         |             | R5F100GHGFB#X0, R5F100GJGFB#X0                  |
|         |                         | Not     | А           | R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0, |
|         |                         | mounted |             | R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0, |
|         |                         |         |             | R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0, |
|         |                         |         |             | R5F101GLAFB#V0                                  |
|         |                         |         |             | R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0, |
|         |                         |         |             | R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0, |
|         |                         |         |             | R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0, |
|         |                         |         |             | R5F101GLAFB#X0                                  |
|         |                         |         | D           | R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0, |
|         |                         |         |             | R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0, |
|         |                         |         |             | R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0, |
|         |                         |         |             | R5F101GLDFB#V0                                  |
|         |                         |         |             | R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0, |
|         |                         |         |             | R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0, |
|         |                         |         |             | R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0, |
|         |                         | 1       |             | R5F101GLDFB#X0                                  |

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



### 1.3 Pin Configuration (Top View)

### 1.3.1 20-pin products

• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

Remark For pin identification, see 1.4 Pin Identification.



### 1.3.10 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)





Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.



### 1.3.11 64-pin products

- 64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)



Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
  - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V<sub>DD</sub> and EV<sub>DD0</sub> pins and connect the V<sub>SS</sub> and EV<sub>SS0</sub> pins to separate ground lines.
  - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.



### 1.3.12 80-pin products

- 80-pin plastic LQFP (14  $\times$  14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)



Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
  - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V<sub>DD</sub> and EV<sub>DD0</sub> pins and connect the V<sub>SS</sub> and EV<sub>SS0</sub> pins to separate ground lines.
  - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.



| Parameter            | Symbols |                              | Conditions                                                                                                                                                                                          | Ratings     | Unit |
|----------------------|---------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| Output current, high | Іон1    | Per pin                      | P00 to P07, P10 to P17,<br>P30 to P37, P40 to P47,<br>P50 to P57, P64 to P67,<br>P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106,<br>P110 to P117, P120,<br>P125 to P127, P130, P140 to<br>P147 | -40         | mA   |
|                      |         | Total of all pins<br>–170 mA | P00 to P04, P07, P32 to P37,<br>P40 to P47, P102 to P106, P120,<br>P125 to P127, P130, P140 to<br>P145                                                                                              | -70         | mA   |
|                      |         |                              | P05, P06, P10 to P17, P30, P31,<br>P50 to P57, P64 to P67,<br>P70 to P77, P80 to P87,<br>P90 to P97, P100, P101,<br>P110 to P117, P146, P147                                                        | -100        | mA   |
|                      | Іон2    | Per pin                      | P20 to P27, P150 to P156                                                                                                                                                                            | -0.5        | mA   |
|                      |         | Total of all pins            |                                                                                                                                                                                                     | -2          | mA   |
| Output current, low  | IoL1    | Per pin                      | P00 to P07, P10 to P17,<br>P30 to P37, P40 to P47,<br>P50 to P57, P60 to P67,<br>P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106,<br>P110 to P117, P120,<br>P125 to P127, P130, P140 to<br>P147 | 40          | mA   |
|                      |         | Total of all pins<br>170 mA  | P00 to P04, P07, P32 to P37,<br>P40 to P47, P102 to P106, P120,<br>P125 to P127, P130, P140 to<br>P145                                                                                              | 70          | mA   |
|                      |         |                              | P05, P06, P10 to P17, P30, P31,<br>P50 to P57, P60 to P67,<br>P70 to P77, P80 to P87,<br>P90 to P97, P100, P101,<br>P110 to P117, P146, P147                                                        | 100         | mA   |
|                      | IOL2    | Per pin                      | P20 to P27, P150 to P156                                                                                                                                                                            | 1           | mA   |
|                      |         | Total of all pins            |                                                                                                                                                                                                     | 5           | mA   |
| Operating ambient    | Та      | In normal operati            | on mode                                                                                                                                                                                             | -40 to +85  | °C   |
| temperature          |         | In flash memory              | programming mode                                                                                                                                                                                    |             |      |
| Storage temperature  | Tstg    |                              |                                                                                                                                                                                                     | -65 to +150 | °C   |

# Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



- **Notes 1.** Total current flowing into V<sub>DD</sub> and EV<sub>DD0</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub>, EV<sub>DD0</sub> or V<sub>SS</sub>, EV<sub>SS0</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. During HALT instruction execution by flash memory.
  - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 4. When high-speed system clock and subsystem clock are stopped.
  - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
  - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
  - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
    - HS (high-speed main) mode: 2.7 V  $\leq$  V\_{DD}  $\leq$  5.5 V@1 MHz to 32 MHz
      - 2.4 V  $\leq$  V\_{DD}  $\leq$  5.5 V@1 MHz to 16 MHz
    - LS (low-speed main) mode:  $1.8 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$  to 8 MHz
    - LV (low-voltage main) mode: 1.6 V  $\leq$  V\_{DD}  $\leq$  5.5 V@1 MHz to 4 MHz
  - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T<sub>A</sub> = 25°C



- **Notes 1.** Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 3. When high-speed system clock and subsystem clock are stopped.
  - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
  - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
    - HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$  to 32 MHz
      - 2.4 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V@1 MHz to 16 MHz
    - LS (low-speed main) mode:  $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$  @1 MHz to 8 MHz
    - LV (low-voltage main) mode: 1.6 V  $\leq$  V\_DD  $\leq$  5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation, temperature condition of the TYP. value is  $T_A = 25^{\circ}C$



### 2.4 AC Characteristics

### (TA = -40 to +85°C, 1.6 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = EVss1 = 0 V)

| Items                                                                 | Symbol        |                                                           | Conditions                                                | 3                                                          | MIN.      | TYP. | MAX.     | Unit               |
|-----------------------------------------------------------------------|---------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------|------|----------|--------------------|
| Instruction cycle (minimum Tcy Main HS (                              |               | HS (high-                                                 | $2.7~V{\leq}V_{\text{DD}}{\leq}5.5~V$                     | 0.03125                                                    |           | 1    | μS       |                    |
| instruction execution time)                                           |               | system<br>clock (fmain)                                   | speed main)<br>mode                                       | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$          | 0.0625    |      | 1        | μs                 |
|                                                                       |               | operation                                                 | LS (low-speed<br>main) mode                               | $1.8 V \le V_{DD} \le 5.5 V$                               | 0.125     |      | 1        | μS                 |
|                                                                       |               |                                                           | LV (low-<br>voltage main)<br>mode                         | $1.6~V \le V_{DD} \le 5.5~V$                               | 0.25      |      | 1        | μs                 |
|                                                                       |               | Subsystem of                                              | clock (fsua)                                              | $1.8V\!\le\!V_{DD}\!\le\!5.5V$                             | 28.5      | 30.5 | 31.3     | μS                 |
|                                                                       |               | operation                                                 | [                                                         |                                                            |           |      |          |                    |
|                                                                       |               | In the self                                               | HS (high-                                                 | $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ | 0.03125   |      | 1        | μS                 |
|                                                                       |               | mode                                                      | mode                                                      | $2.4 V \le V_{DD} < 2.7 V$                                 | 0.0625    |      | 1        | μS                 |
|                                                                       |               |                                                           | LS (low-speed<br>main) mode                               | $1.8V\!\leq\!V_{DD}\!\leq\!5.5V$                           | 0.125     |      | 1        | μS                 |
|                                                                       |               |                                                           | LV (low-<br>voltage main)<br>mode                         | $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ | 0.25      |      | 1        | μS                 |
| External system clock                                                 | fex           | $2.7 \text{ V} \leq \text{V}_{\text{DD}}$                 | ≤ 5.5 V                                                   | I                                                          | 1.0       |      | 20.0     | MHz                |
| frequency                                                             |               | $2.4 V \le V_{DD}$                                        | < 2.7 V                                                   |                                                            | 1.0       |      | 16.0     | MHz                |
|                                                                       |               | $1.8 V \le V_{DD}$                                        | < 2.4 V                                                   |                                                            | 1.0       |      | 8.0      | MHz                |
|                                                                       |               | $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$ |                                                           |                                                            | 1.0       |      | 4.0      | MHz                |
|                                                                       | fexs          |                                                           |                                                           |                                                            | 32        |      | 35       | kHz                |
| External system clock input                                           | texh, texl    | $2.7 \ V \le V_{DD}$                                      | 24                                                        |                                                            |           | ns   |          |                    |
| high-level width, low-level width                                     |               | $2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$ |                                                           |                                                            | 30        |      |          | ns                 |
|                                                                       |               | $1.8 V \le V_{DD}$                                        | < 2.4 V                                                   |                                                            | 60        |      |          | ns                 |
|                                                                       |               | $1.6 V \le V_{DD}$                                        | $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$ |                                                            |           |      |          | ns                 |
|                                                                       | texhs, texls  |                                                           |                                                           |                                                            | 13.7      |      |          | μS                 |
| TI00 to TI07, TI10 to TI17 input<br>high-level width, low-level width | tтıн,<br>tтı∟ |                                                           |                                                           |                                                            | 1/fмск+10 |      |          | ns <sup>Note</sup> |
| TO00 to TO07, TO10 to TO17                                            | fтo           | HS (high-spe                                              | eed 4.0 V                                                 | $\leq EV_{DD0} \leq 5.5 V$                                 |           |      | 16       | MHz                |
| output frequency                                                      |               | main) mode                                                | 2.7 V                                                     | $\leq EV_{DD0} < 4.0 V$                                    |           |      | 8        | MHz                |
|                                                                       |               |                                                           | 1.8 V                                                     | $\leq EV_{DD0} < 2.7 V$                                    |           |      | 4        | MHz                |
|                                                                       |               |                                                           | 1.6 V                                                     | $\leq$ EV <sub>DD0</sub> < 1.8 V                           |           |      | 2        | MHz                |
|                                                                       |               | LS (low-spee                                              | ed 1.8 V                                                  | $\leq EV_{DD0} \leq 5.5 V$                                 |           |      | 4        | MHz                |
|                                                                       |               |                                                           | 1.6 V                                                     | $\leq EV_{DD0} < 1.8 V$                                    |           |      | 2        | MHz                |
|                                                                       |               | LV (low-volta<br>main) mode                               | age 1.6 V                                                 | $\leq EV$ DD0 $\leq 5.5 V$                                 |           |      | 2        | MHz                |
| PCLBUZ0, PCLBUZ1 output                                               | <b>f</b> PCL  | HS (high-spe                                              | eed 4.0 V                                                 | $\leq EV_{DD0} \leq 5.5 V$                                 |           |      | 16       | MHz                |
| nequency                                                              |               | main) mode                                                | 2.7 V                                                     | $\leq EV_{DD0} < 4.0 V$                                    |           |      | 8        | MHz                |
|                                                                       |               |                                                           | 1.8 V                                                     | $\leq EV_{DD0} < 2.7 V$                                    |           |      | 4        | MHz                |
|                                                                       |               | 10 //                                                     | 1.6 V                                                     | $\leq$ EV <sub>DD0</sub> < 1.8 V                           |           |      | 2        | MHz                |
|                                                                       |               | LS (IOW-Spee<br>main) mode                                | ea 1.8 V                                                  | $\leq EVDD0 \leq 5.5 V$                                    |           |      | 4        | MIHZ               |
|                                                                       |               |                                                           | 1.6 V                                                     | $\leq EVDD0 < 1.8 V$                                       |           |      | 2        |                    |
|                                                                       |               | main) mode                                                | 1.8 V                                                     | $\geq EVDD0 \leq 5.5 V$                                    |           |      | 4        | IVIHZ<br>M⊔⇒       |
| Interrupt input high-lovel width                                      | tiniti i      |                                                           | 1.0 V                                                     |                                                            | 1         |      | 2        | IVII⊓∠<br>./e      |
| low-level width                                                       | tINTL         |                                                           | 1.0 V                                                     | < EVDD < 5.5 V                                             | 1         |      |          | μs                 |
| Key interrupt input low-level                                         | tkB           | KB0 to KR7                                                | 1.0 V                                                     | $\leq \mathrm{EV}_{\mathrm{DD0}} \leq 5.5 \mathrm{V}$      | 250       |      |          | μο<br>ne           |
| width                                                                 |               |                                                           | 1.6 V                                                     | < EV <sub>DD0</sub> < 1.8 V                                | 1         |      | <u> </u> | <i>u</i> s         |
| RESET low-level width                                                 | trsl          |                                                           |                                                           |                                                            | 10        |      |          | μs                 |

(Note and Remark are listed on the next page.)



| Parameter                 | Parameter Symbol Conditions |                                                                                                                                                                                      | HS (hig<br>main) | h-speed<br>Mode | LS (low-speed main) Mode |               | LV (low-voltage main) Mode |               | Unit |
|---------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|--------------------------|---------------|----------------------------|---------------|------|
|                           |                             |                                                                                                                                                                                      | MIN.             | MAX.            | MIN.                     | MAX.          | MIN.                       | MAX.          |      |
| SCLr clock frequency      | fsc∟                        | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$<br>$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$                                                            |                  | 1000<br>Note 1  |                          | 400<br>Note 1 |                            | 400<br>Note 1 | kHz  |
|                           |                             | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$                                            |                  | 400<br>Note 1   |                          | 400<br>Note 1 |                            | 400<br>Note 1 | kHz  |
|                           |                             | $\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5  k\Omega \end{array}$             |                  | 300<br>Note 1   |                          | 300<br>Note 1 |                            | 300<br>Note 1 | kHz  |
|                           |                             | $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$                                               |                  | 250<br>Note 1   |                          | 250<br>Note 1 |                            | 250<br>Note 1 | kHz  |
|                           |                             | 1.6 V ≤ EV <sub>DD0</sub> < 1.8 V,<br>C₀ = 100 pF, R₀ = 5 kΩ                                                                                                                         |                  | _               |                          | 250<br>Note 1 |                            | 250<br>Note 1 | kHz  |
| Hold time when SCLr = "L" | tLow                        | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$<br>$C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$                                          | 475              |                 | 1150                     |               | 1150                       |               | ns   |
|                           |                             | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$                                            | 1150             |                 | 1150                     |               | 1150                       |               | ns   |
|                           |                             | 1.8 V $\leq$ EV <sub>DD0</sub> < 2.7 V,<br>C <sub>b</sub> = 100 pF, R <sub>b</sub> = 5 kΩ                                                                                            | 1550             |                 | 1550                     |               | 1550                       |               | ns   |
|                           |                             | $1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$<br>$C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$                                             | 1850             |                 | 1850                     |               | 1850                       |               | ns   |
|                           |                             | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$<br>$C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$                                             |                  |                 | 1850                     |               | 1850                       |               | ns   |
| Hold time when SCLr = "H" | tніgн                       | $\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$ | 475              |                 | 1150                     |               | 1150                       |               | ns   |
|                           |                             | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$                                            | 1150             |                 | 1150                     |               | 1150                       |               | ns   |
|                           |                             | 1.8 V $\leq$ EV <sub>DD0</sub> < 2.7 V,<br>C <sub>b</sub> = 100 pF, R <sub>b</sub> = 5 kΩ                                                                                            | 1550             |                 | 1550                     |               | 1550                       |               | ns   |
|                           |                             | $1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$<br>$C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$                                             | 1850             |                 | 1850                     |               | 1850                       |               | ns   |
|                           |                             | $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$                                               | _                |                 | 1850                     |               | 1850                       |               | ns   |

## (5) During communication at same potential (simplified I<sup>2</sup>C mode) (1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)







- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- **3.** fMCK: Serial array unit operation clock frequency
  (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
  m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.



# (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

| Parameter                                       | Symbol | Conditions                                                                                                                                    | HS (higl<br>main) | h-speed<br>Mode | LS (low<br>main) | r-speed<br>Mode | LV (low<br>main) | LV (low-voltage main) Mode |    |
|-------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|------------------|-----------------|------------------|----------------------------|----|
|                                                 |        |                                                                                                                                               | MIN.              | MAX.            | MIN.             | MAX.            | MIN.             | MAX.                       |    |
| SIp setup time<br>(to SCKp↓) <sup>Note 1</sup>  | tsikı  | $\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$                                   | 44                |                 | 110              |                 | 110              |                            | ns |
|                                                 |        | $C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$                                                                                      |                   |                 |                  |                 |                  |                            |    |
|                                                 |        | $\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$                             | 44                |                 | 110              |                 | 110              |                            | ns |
|                                                 |        | $C_{b}=30 \text{ pF}, \text{ R}_{b}=2.7 \text{ k}\Omega$                                                                                      |                   |                 |                  |                 |                  |                            |    |
|                                                 |        | $ \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split} $                     | 110               |                 | 110              |                 | 110              |                            | ns |
|                                                 |        | $C_b$ = 30 pF, $R_b$ = 5.5 k $\Omega$                                                                                                         |                   |                 |                  |                 |                  |                            |    |
| SIp hold time<br>(from SCKp↓) <sup>№ te 1</sup> | tksi1  | $\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array}$ | 19                |                 | 19               |                 | 19               |                            | ns |
|                                                 |        | $C_b$ = 30 pF, $R_b$ = 1.4 k $\Omega$                                                                                                         |                   |                 |                  |                 |                  |                            |    |
|                                                 |        | $\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$                                    | 19                |                 | 19               |                 | 19               |                            | ns |
|                                                 |        | $C_b$ = 30 pF, $R_b$ = 2.7 k $\Omega$                                                                                                         |                   |                 |                  |                 |                  |                            |    |
|                                                 |        | $ \begin{aligned} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{aligned} $        | 19                |                 | 19               |                 | 19               |                            | ns |
|                                                 |        | $C_{b}=30 \text{ pF},  \text{R}_{b}=5.5  \text{k}\Omega$                                                                                      |                   |                 |                  |                 |                  |                            |    |
| Delay time from SCKp↑<br>to                     | tkso1  |                                                                                                                                               |                   | 25              |                  | 25              |                  | 25                         | ns |
| SOp output Note 1                               |        | $C_b$ = 30 pF, $R_b$ = 1.4 k $\Omega$                                                                                                         |                   |                 |                  |                 |                  |                            |    |
|                                                 |        | $\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$                                             |                   | 25              |                  | 25              |                  | 25                         | ns |
|                                                 |        | $C_b$ = 30 pF, $R_b$ = 2.7 k $\Omega$                                                                                                         |                   |                 |                  |                 |                  |                            |    |
|                                                 |        | $\label{eq:linear} \begin{split} 1.8 \ V &\leq E V_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$    |                   | 25              |                  | 25              |                  | 25                         | ns |
|                                                 |        | $C_b$ = 30 pF, $R_b$ = 5.5 k $\Omega$                                                                                                         |                   |                 |                  |                 |                  |                            |    |

| 1  | $(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \text{ V} \le \text{EV}_{DD} = \text{EV}_{D1} \le \text{V}_{D2} \le 5.5$ | 5 V   | $V_{SS} = FV_{SS0} = FV_{SS1} = 0 V$               |
|----|----------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------|
| ١. | $(1A = -40 10 + 05 0, 1.0 4 \le 24000 = 24001 \le 400 \le 5.5$                                                             | , v ; | $, v_{33} - \Box v_{330} - \Box v_{331} - O v_{j}$ |

**Notes** 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

**2.** Use it with  $EV_{DD0} \ge V_b$ .

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



### CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



**Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

**2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.



2.6.5 Power supply voltage rising slope characteristics

### $(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

| Parameter                         | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|--------|------------|------|------|------|------|
| Power supply voltage rising slope | SVDD   |            |      |      | 54   | V/ms |

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until  $V_{DD}$  reaches the operating voltage range shown in 2.4 AC Characteristics.

### 2.7 RAM Data Retention Characteristics

### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

| Parameter                     | Symbol | Conditions | MIN.                 | TYP. | MAX. | Unit |
|-------------------------------|--------|------------|----------------------|------|------|------|
| Data retention supply voltage | VDDDR  |            | 1.46 <sup>Note</sup> |      | 5.5  | V    |

**Note** This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.







### CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





**Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

**2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)



| Parameter                     | Symbol  | Conditions                                               | HS (high-speed main)<br>Mode |                      | Unit |
|-------------------------------|---------|----------------------------------------------------------|------------------------------|----------------------|------|
|                               |         |                                                          | MIN.                         | MAX.                 |      |
| SCLr clock frequency          | fsc∟    | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 |                              | 400 <sup>Note1</sup> | kHz  |
|                               |         | $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ |                              |                      |      |
|                               |         | $2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 |                              | 100 <sup>Note1</sup> | kHz  |
|                               |         | $C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$  |                              |                      |      |
| Hold time when SCLr = "L"     | t∟ow    | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 | 1200                         |                      | ns   |
|                               |         | $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ |                              |                      |      |
|                               |         | $2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 | 4600                         |                      | ns   |
|                               |         | $C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$  |                              |                      |      |
| Hold time when SCLr = "H"     | tніgн   | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 | 1200                         |                      | ns   |
|                               |         | $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ |                              |                      |      |
|                               |         | $2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 | 4600                         |                      | ns   |
|                               |         | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$          |                              |                      |      |
| Data setup time (reception)   | tsu:dat | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 | 1/fмск + 220                 |                      | ns   |
|                               |         | $C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{ k}\Omega$  | Note2                        |                      |      |
|                               |         | $2.4~V \leq EV_{\text{DD}} \leq 5.5~V,$                  | 1/fмск + 580                 |                      | ns   |
|                               |         | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$          | Note2                        |                      |      |
| Data hold time (transmission) | thd:dat | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 | 0                            | 770                  | ns   |
|                               |         | $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ |                              |                      |      |
|                               |         | $2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$                 | 0                            | 1420                 | ns   |
|                               |         | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$          |                              |                      |      |

## (4) During communication at same potential (simplified I<sup>2</sup>C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

Notes 1. The value must also be equal to or less than  $f_{MCK}/4$ .

- 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V<sub>DD</sub> tolerance (for the 20- to 52-pin products)/EV<sub>DD</sub> tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)



### Simplified I<sup>2</sup>C mode mode connection diagram (during communication at same potential)



### Simplified I<sup>2</sup>C mode serial transfer timing (during communication at same potential)



- **Remarks 1.** R<sub>b</sub>[Ω]:Communication line (SDAr) pull-up resistance, C<sub>b</sub>[F]: Communication line (SDAr, SCLr) load capacitance
  - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
    h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
  - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)



| Parameter                     | Symbol    | Conditions                                                                                                                                                          | HS (high-speed main)<br>Mode                  |      | Unit |
|-------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|------|
|                               |           |                                                                                                                                                                     | MIN.                                          | MAX. |      |
| Data setup time (reception)   | tsu:dat   |                                                                                                                                                                     | 1/fмск + 340<br>Note 2                        |      | ns   |
|                               |           | $\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$     | 1/fмск + 340<br>Note 2                        |      | ns   |
|                               |           |                                                                                                                                                                     | 1/f <sub>MCK</sub> + 760<br><sub>Note 2</sub> |      | ns   |
|                               |           | $\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$ | 1/fмск + 760<br>Note 2                        |      | ns   |
|                               |           | $\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$ | 1/fмск + 570<br>Note 2                        |      | ns   |
| Data hold time (transmission) | ) thd:dat |                                                                                                                                                                     | 0                                             | 770  | ns   |
|                               |           | $\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$  | 0                                             | 770  | ns   |
|                               |           |                                                                                                                                                                     | 0                                             | 1420 | ns   |
|                               |           | $\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$ | 0                                             | 1420 | ns   |
|                               |           | $\label{eq:2.4} \begin{split} 2.4 \; V &\leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V &\leq V_b \leq 2.0 \; V, \\ C_b &= 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$    | 0                                             | 1215 | ns   |

### (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I<sup>2</sup>C mode) (2/2) (T<sub>A</sub> = -40 to +105°C, 2.4 V $\leq$ EV<sub>DD0</sub> = EV<sub>DD1</sub> $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, Vss = EV<sub>SS0</sub> = EV<sub>SS1</sub> = 0 V)

Notes 1. The value must also be equal to or less than  $f_{MCK}/4$ .

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V<sub>DD</sub> tolerance (for the 20- to 52-pin products)/EV<sub>DD</sub> tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V<sub>DD</sub> tolerance (for the 20- to 52-pin products)/EV<sub>DD</sub> tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

| <b>(T</b> ₄ | $= -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.$ | 5.5 V, Vss = EVsso = EVss1 = 0 V, Reference voltage (+) | = |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---|
| Vdd,        | , Reference voltage (–) = Vss)                                                                                                              |                                                         |   |

| Parameter                              | Symbol | Conditions                                                                                                                                                                                                                                                              |                                     | MIN.        | TYP.           | MAX.  | Unit |
|----------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|----------------|-------|------|
| Resolution                             | RES    |                                                                                                                                                                                                                                                                         |                                     | 8           |                | 10    | bit  |
| Overall error <sup>Note 1</sup>        | AINL   | 10-bit resolution                                                                                                                                                                                                                                                       | $2.4~V \leq V \text{DD} \leq 5.5~V$ |             | 1.2            | ±7.0  | LSB  |
| Conversion time too                    | tconv  | 10-bit resolution<br>Target pin: ANI0 to ANI14,<br>ANI16 to ANI26                                                                                                                                                                                                       | $3.6~V \leq V \text{DD} \leq 5.5~V$ | 2.125       |                | 39    | μs   |
|                                        |        |                                                                                                                                                                                                                                                                         | $2.7~V \leq V \text{DD} \leq 5.5~V$ | 3.1875      |                | 39    | μS   |
|                                        |        |                                                                                                                                                                                                                                                                         | $2.4~V \leq V \text{DD} \leq 5.5~V$ | 17          |                | 39    | μs   |
|                                        |        | 10-bit resolution<br>Target pin: Internal reference<br>voltage, and temperature<br>sensor output voltage (HS                                                                                                                                                            | $3.6~V \leq V \text{DD} \leq 5.5~V$ | 2.375       |                | 39    | μs   |
|                                        |        |                                                                                                                                                                                                                                                                         | $2.7~V \leq V \text{DD} \leq 5.5~V$ | 3.5625      |                | 39    | μs   |
|                                        |        |                                                                                                                                                                                                                                                                         | $2.4~V \leq V \text{DD} \leq 5.5~V$ | 17          |                | 39    | μs   |
| (high-speed main) n                    |        | (high-speed main) mode)                                                                                                                                                                                                                                                 |                                     |             |                |       |      |
| Zero-scale error <sup>Notes 1, 2</sup> | Ezs    | 10-bit resolution                                                                                                                                                                                                                                                       | $2.4~V \leq V \text{DD} \leq 5.5~V$ |             |                | ±0.60 | %FSR |
| Full-scale error <sup>Notes 1, 2</sup> | Ers    | 10-bit resolution                                                                                                                                                                                                                                                       | $2.4~V \leq V \text{DD} \leq 5.5~V$ |             |                | ±0.60 | %FSR |
| Integral linearity errorNote 1         | ILE    | 10-bit resolution                                                                                                                                                                                                                                                       | $2.4~V \leq V \text{DD} \leq 5.5~V$ |             |                | ±4.0  | LSB  |
| Differential linearity error           | DLE    | 10-bit resolution                                                                                                                                                                                                                                                       | $2.4~V \leq V \text{DD} \leq 5.5~V$ |             |                | ±2.0  | LSB  |
| Analog input voltage                   | VAIN   | ANI0 to ANI14                                                                                                                                                                                                                                                           |                                     | 0           |                | Vdd   | V    |
| ANI16 to ANI26                         |        |                                                                                                                                                                                                                                                                         | 0                                   |             | EVDD0          | V     |      |
|                                        |        | Internal reference voltage output                                                                                                                                                                                                                                       |                                     | VBGR Note 3 |                |       | V    |
|                                        |        | $\label{eq:constraint} \begin{array}{l} (2.4 \ V \leq V \mbox{DD} \leq 5.5 \ V, \mbox{HS} \ (high-speed \ main) \ mode) \\ \\ \hline Temperature \ sensor \ output \ voltage \\ (2.4 \ V \leq V \mbox{DD} \leq 5.5 \ V, \ HS \ (high-speed \ main) \ mode) \end{array}$ |                                     |             |                |       |      |
|                                        |        |                                                                                                                                                                                                                                                                         |                                     |             | VTMPS25 Note 3 |       |      |

Notes 1. Excludes quantization error ( $\pm 1/2$  LSB).

- $\ensuremath{\textbf{2.}}$  This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.



|      |              | Description   |                                                                                                                                                       |  |
|------|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rev. | Date         | Page          | Summary                                                                                                                                               |  |
| 3.00 | Aug 02, 2013 | 118           | Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics                                                          |  |
|      |              | 118           | Modification of table and note in 2.6.3 POR circuit characteristics                                                                                   |  |
|      |              | 119           | Modification of table in 2.6.4 LVD circuit characteristics                                                                                            |  |
|      |              | 120           | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode                                                                              |  |
|      |              | 120           | Renamed to 2.6.5 Power supply voltage rising slope characteristics                                                                                    |  |
|      |              | 122           | Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes                                           |  |
|      |              | 123           | Modification of caution 1 and description                                                                                                             |  |
|      |              | 124           | Modification of table and remark 3 in Absolute Maximum Ratings (T <sub>A</sub> = 25°C)                                                                |  |
|      |              | 126           | Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics                                                          |  |
|      |              | 126           | Modification of table in 3.2.2 On-chip oscillator characteristics                                                                                     |  |
|      |              | 127           | Modification of note 3 in 3.3.1 Pin characteristics (1/5)                                                                                             |  |
|      |              | 128           | Modification of note 3 in 3.3.1 Pin characteristics (2/5)                                                                                             |  |
|      |              | 133           | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)                                                           |  |
|      |              | 135           | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-<br>pin products (2/2)                                                   |  |
|      |              | 137           | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-<br>pin products (1/2)                                                     |  |
|      |              | 139           | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)                                                     |  |
|      |              | 140           | Modification of (3) Peripheral Functions (Common to all products)                                                                                     |  |
|      |              | 142           | Modification of table in 3.4 AC Characteristics                                                                                                       |  |
|      |              | 143           | Addition of Minimum Instruction Execution Time during Main System Clock Operation                                                                     |  |
|      |              | 143           | Modification of figure of AC Timing Test Points                                                                                                       |  |
|      |              | 143           | Modification of figure of External System Clock Timing                                                                                                |  |
|      |              | 145           | Modification of figure of AC Timing Test Points                                                                                                       |  |
|      |              | 145           | Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)                                            |  |
|      |              | 146           | Modification of description in (2) During communication at same potential (CSI mode)                                                                  |  |
|      |              | 147           | Modification of description in (3) During communication at same potential (CSI mode)                                                                  |  |
|      |              | 149           | Modification of table, note 1, and caution in (4) During communication at same potential (simplified I <sup>2</sup> C mode)                           |  |
|      |              | 151           | Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)                          |  |
|      |              | 152 to<br>154 | Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5)<br>Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) |  |
|      |              | 155           | Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)                                                |  |
|      |              | 156           | Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)                                    |  |
|      |              | 157, 158      | Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)                  |  |
|      |              | 160, 161      | Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)                                          |  |