

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101faafp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

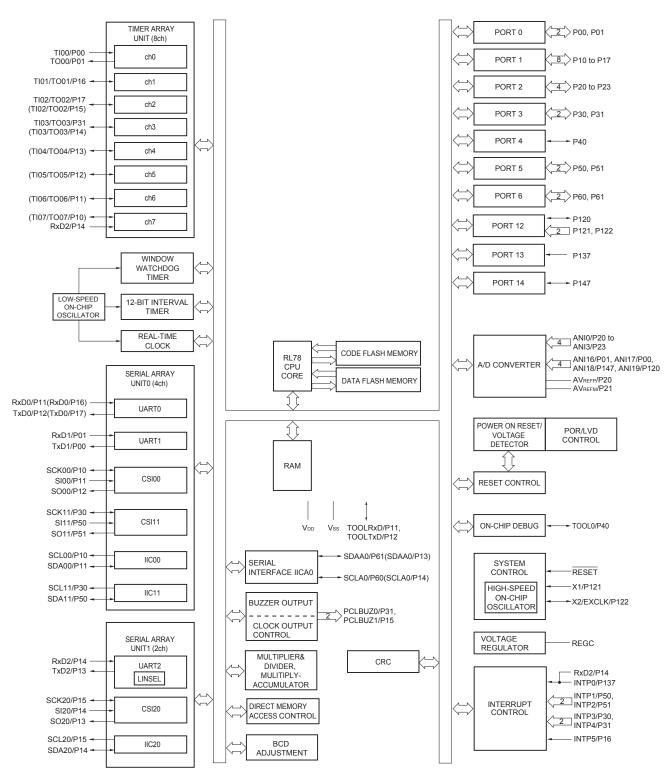
Table 1-1.	List of Ordering Part Numbers
------------	-------------------------------

				(4/12)
Pin count	Package	Data flash	Fields of Application	Ordering Part Number
44 pins	44-pin plastic LQFP	Mounted	А	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0,
	(10 $ imes$ 10 mm, 0.8 mm			R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
				R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not	А	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
		mounted		R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

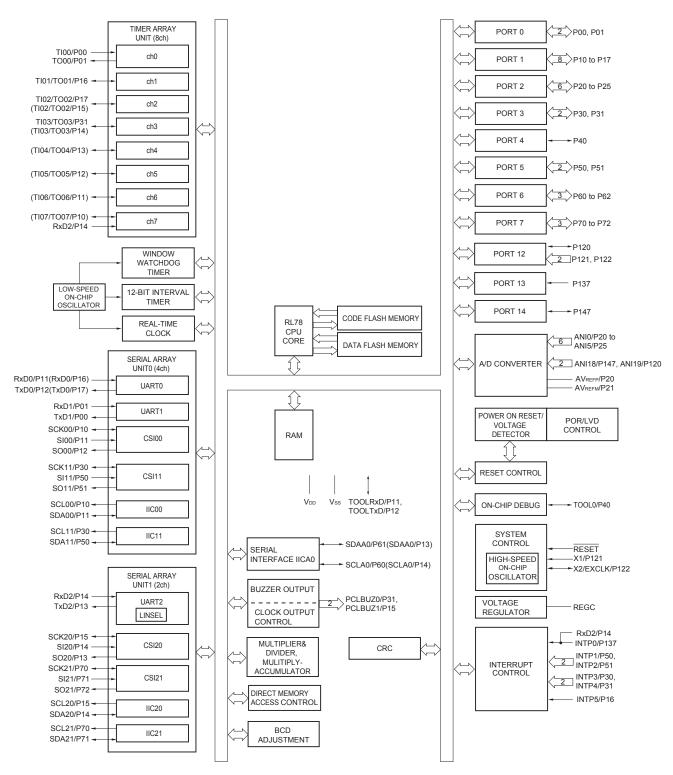
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Table 1-1. List of Ordering Part Numbers

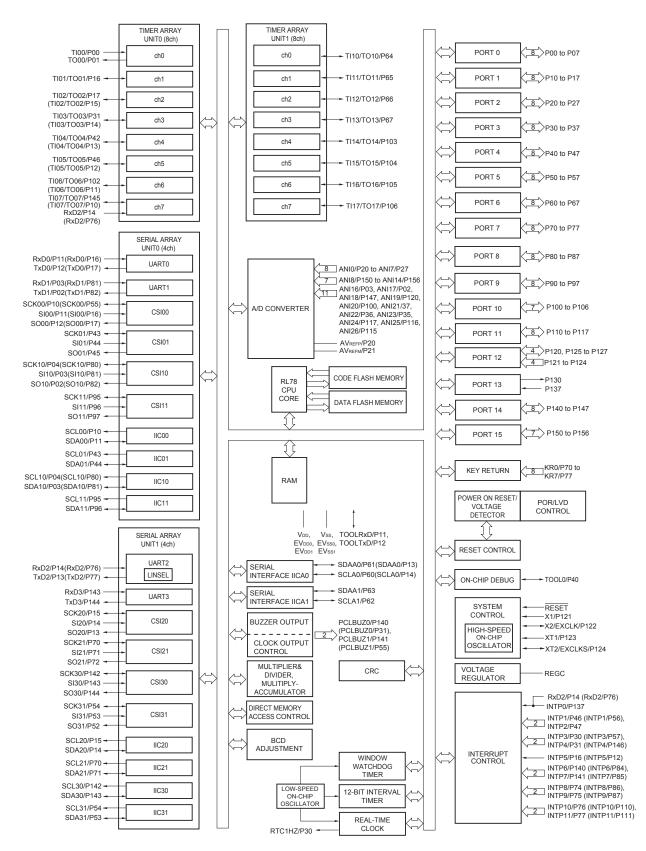

Pin count	Package	Data flash	Fields of	(11/12) Ordering Part Number
	i dokage	Data nash	Application	
100 pins	100-pin plastic	Mounted	А	R5F100PFAFB#V0, R5F100PGAFB#V0, R5F100PHAFB#V0,
	LFQFP (14 $ imes$ 14			R5F100PJAFB#V0, R5F100PKAFB#V0, R5F100PLAFB#V0
	mm, 0.5 mm pitch)			R5F100PFAFB#X0, R5F100PGAFB#X0, R5F100PHAFB#X0,
				R5F100PJAFB#X0, R5F100PKAFB#X0, R5F100PLAFB#X0
			D	R5F100PFDFB#V0, R5F100PGDFB#V0, R5F100PHDFB#V0,
				R5F100PJDFB#V0, R5F100PKDFB#V0, R5F100PLDFB#V0
				R5F100PFDFB#X0, R5F100PGDFB#X0, R5F100PHDFB#X0,
				R5F100PJDFB#X0, R5F100PKDFB#X0, R5F100PLDFB#X0
			G	R5F100PFGFB#V0, R5F100PGGFB#V0, R5F100PHGFB#V0,
				R5F100PJGFB#V0
				R5F100PFGFB#X0, R5F100PGGFB#X0, R5F100PHGFB#X0,
				R5F100PJGFB#X0
		Not	А	R5F101PFAFB#V0, R5F101PGAFB#V0, R5F101PHAFB#V0,
		mounted		R5F101PJAFB#V0, R5F101PKAFB#V0, R5F101PLAFB#V0
				R5F101PFAFB#X0, R5F101PGAFB#X0, R5F101PHAFB#X0,
				R5F101PJAFB#X0, R5F101PKAFB#X0, R5F101PLAFB#X0
			D	R5F101PFDFB#V0, R5F101PGDFB#V0, R5F101PHDFB#V0,
				R5F101PJDFB#V0, R5F101PKDFB#V0, R5F101PLDFB#V0
				R5F101PFDFB#X0, R5F101PGDFB#X0, R5F101PHDFB#X0,
				R5F101PJDFB#X0, R5F101PKDFB#X0, R5F101PLDFB#X0
	100-pin plastic	Mounted	А	R5F100PFAFA#V0, R5F100PGAFA#V0, R5F100PHAFA#V0,
	LQFP (14 $ imes$ 20 mm,			R5F100PJAFA#V0, R5F100PKAFA#V0, R5F100PLAFA#V0
	0.65 mm pitch)			R5F100PFAFA#X0, R5F100PGAFA#X0, R5F100PHAFA#X0,
				R5F100PJAFA#X0, R5F100PKAFA#X0, R5F100PLAFA#X0
			D	R5F100PFDFA#V0, R5F100PGDFA#V0, R5F100PHDFA#V0,
				R5F100PJDFA#V0, R5F100PKDFA#V0, R5F100PLDFA#V0
				R5F100PFDFA#X0, R5F100PGDFA#X0, R5F100PHDFA#X0,
				R5F100PJDFA#X0, R5F100PKDFA#X0, R5F100PLDFA#X0
			G	R5F100PFGFA#V0, R5F100PGGFA#V0, R5F100PHGFA#V0, R5F100PJGFA#V0
				R5F100PFGFA#X0, R5F100PGGFA#X0, R5F100PHGFA#X0,
				R5F100PJGFA#X0
		Not	А	R5F101PFAFA#V0, R5F101PGAFA#V0, R5F101PHAFA#V0,
		mounted		R5F101PJAFA#V0, R5F101PKAFA#V0, R5F101PLAFA#V0
				R5F101PFAFA#X0, R5F101PGAFA#X0, R5F101PHAFA#X0,
				R5F101PJAFA#X0, R5F101PKAFA#X0, R5F101PLAFA#X0
			D	R5F101PFDFA#V0, R5F101PGDFA#V0, R5F101PHDFA#V0,
				R5F101PJDFA#V0, R5F101PKDFA#V0, R5F101PLDFA#V0
				R5F101PFDFA#X0, R5F101PGDFA#X0, R5F101PHDFA#X0,
				R5F101PJDFA#X0, R5F101PKDFA#X0, R5F101PLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.


1.5.4 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.


1.5.6 36-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.14 128-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-p	oin	24-	pin	25	-pin	30-	pin	32-	pin	(1/2 36-	pin
		, ד	Ъ	Я	גר	ק ק				<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		រុរ្ត រុរ្ត	
		5F1	5F1	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F1(
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	64	16 t	o 64	161	o 64	16 to	128		128	16 to	128
Data flash me	emory (KB)	4	_	4	_	4	_	4 to 8	_	4 to 8	_	4 to 8	_
RAM (KB)		2 to 4	Note1	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to ⁻	12 ^{Note1}	2 to 1	2 ^{Note1}	2 to ⁻	2 ^{Note1}
Address spac	e	1 MB		•		L							
Main system clock	High-speed system clock	X1 (crys HS (High HS (High LS (Low LV (Low	n-speed n-speed -speed	l main) m l main) m main) m	node: 1 t node: 1 t ode: 1 to	o 20 MH o 16 MH o 8 MHz	Iz (V _{DD} = Iz (V _{DD} = (V _{DD} = 1.	2.7 to 5. 2.4 to 5. 8 to 5.5	.5 V), .5 V), V),	EXCLK)			
	High-speed on-chip oscillatorHS (High-speed main) mode: 1 to 32 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)												
Subsystem cl	ock												
Low-speed or	n-chip oscillator	15 kHz (TYP.)										
General-purp	ose registers	$(8-bit register \times 8) \times 4$ banks											
Minimum inst	ruction execution time	0.03125 μ s (High-speed on-chip oscillator: f _H = 32 MHz operation)											
				0.05 µs (High-speed system clock: f _{MX} = 20 MHz operation)									
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 											
I/O port	Total	16	;	2	0	2	21	2	6	2	8	3	2
	CMOS I/O	13 (N-ch O [V₀₀ with voltage	.D. I/O nstand	(N-ch C	thstand	(N-ch ([V _{DD} w	5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V⊳⊳ wi voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi [*] voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi voltag	D.D. I/C
	CMOS input	3		:	3		3	:	3	3	3	3	3
	CMOS output	-		-	-		1	-	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	-		2	2		2	2	2	3	3	3	3
Timer	16-bit timer						8 cha	nnels					
	Watchdog timer	1 channel											
	Real-time clock (RTC)	1 channel Note 2											
	12-bit interval timer (IT)	1 channel											
	Timer output	3 channe (PWM ou 2 ^{№0€ 3})		4 chanr (PWM	nels outputs:	3 ^{Note 3})			``	M output M output	,		
	RTC output			•				-					
Notes 1.	The flash library us The target products R5F100xD, R5F R5F100xE, R5F For the RAM areas for RL78 Family (I Only the constant	s and sta 101xD (: 101xE () used by R20UT29	$\begin{array}{l} \text{rt addr} \\ x = 6 \ \text{to} \\ x = 6 \ \text{to} \\ \text{the flat} \\ \textbf{944}. \end{array}$	ress of t o 8, A to o 8, A to ash libra	he RAN o C): S o C): S ury, see	A areas Start add Start add Start add Self R	used by dress Ff dress Ff AM list	y the fla F300H EF00H of Flas	sh libra h Self-	ry are s Progra i	hown b mming	Library	

^{2.} Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fiL) is selected

2.3 DC Characteristics

2.3.1 Pin characteristics

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-55.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
		$(\text{When duty} \le 70\%^{\text{Note 3}})$	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to				-80.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
		P117, P146, P147	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-5.0	mA
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

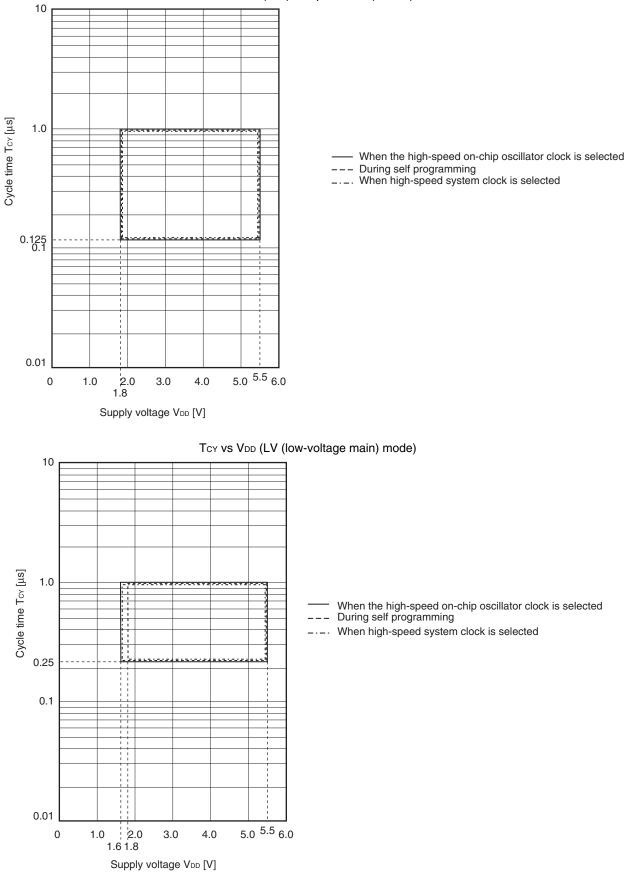
<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.
- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$


2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions	;	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-	$2.7V{\leq}V_{DD}{\leq}5.5V$	0.03125		1	μS
nstruction execution time)		system clock (fмаім)	speed main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8V\!\le\!V_{DD}\!\le\!5.5V$	0.125		1	μS
			LV (low- voltage main) mode	$1.6 V \le V_{DD} \le 5.5 V$	0.25		1	μS
		Subsystem of operation	clock (fsuв)	$1.8 V \! \le \! V_{DD} \! \le \! 5.5 V$	28.5	30.5	31.3	μS
		In the self	HS (high-	$2.7V{\leq}V_{\text{DD}}{\leq}5.5V$	0.03125		1	μS
		programming mode	speed main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μS
			LS (low-speed main) mode	$1.8V\!\leq\!V_{DD}\!\leq\!5.5V$	0.125		1	μS
			LV (low- voltage main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.25		1	μS
External system clock	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq$		1	1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} <			1.0		16.0	MHz
		1.8 V ≤ V _{DD} <			1.0		8.0	MHz
		1.6 V ≤ V _{DD} <			1.0		4.0	MHz
	fexs		32		35	kHz		
External system clock input	texh, texl	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			24			ns
high-level width, low-level width		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			30			ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$			60			ns
		1.6 V ≤ V _{DD} <		120			ns	
	texhs, texls		13.7			μS		
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fтo	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
output frequency		main) mode		\leq EV _{DD0} < 4.0 V			8	MHz
			1.8 V	\leq EV _{DD0} < 2.7 V			4	MHz
			1.6 V	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-spee	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage 1.6 main) mode		$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			1.8 V	\leq EV _{DD0} < 2.7 V			4	MHz
			1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LS (low-spee	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LV (low-volta	age 1.8 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
		main) mode	1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level width,	tintн,	INTP0	1.6 V	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INT	[P11 1.6 V	$\leq EV_{DD0} \leq 5.5 V$	1			μS
Key interrupt input low-level	tкв	KR0 to KR7	1.8 V	$\leq EV_{DD0} \leq 5.5 V$	250			ns
width			1.6 V	$\leq EV_{DD0} < 1.8 V$	1			μS
RESET low-level width	trsl				10			μS

(Note and Remark are listed on the next page.)

TCY vs VDD (LS (low-speed main) mode)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol	Conditions		、 U	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DI}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns	
	$C_b = 30 \text{ pF}, \text{ F}$ $2.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.3 \text{ V} \leq \text{V}_b \leq 2$ $C_b = 30 \text{ pF}, \text{ F}$		00 < 4.0 V,	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$1.8 V \le EV_{DI}$ $1.6 V \le V_b \le C_b = 30 \text{ pF},$	2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	tĸ∟ı	$4.0 \text{ V} \leq \text{EV}_{\text{DI}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 30 \text{ pF},$	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns	
		$\begin{array}{l} 2.7 \ V \leq EV_{DI} \\ 2.3 \ V \leq V_b \leq \end{array}$	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns	
		$\label{eq:cb} \begin{split} &C_{\rm b} = 30 \ p F, \\ &1.8 \ V \leq E V_{\rm DI} \\ &1.6 \ V \leq V_{\rm b} \leq \\ &C_{\rm b} = 30 \ p F, \end{split}$	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns	

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions	HS (high- speed main) Mode		LS (low	-speed Mode	LV (low main)	Unit	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsiк2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Slp hold time (from SCKp↑) ^{Note 4}	tksı2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tĸso2	$\label{eq:V_def} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \\ V, \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\label{eq:V} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{split} 1.8 \ V &\leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$
Reference voltage (+) = AVREFP, Reference voltage (–) = AVREFM = 0 V)

Parameter	Symbol	Conditi	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$		1.2	±8.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μs
		Target ANI pin : ANI16 to	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI26	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note}}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution EVDD0 = AV _{REFP} = V _{DD} ^{Notes 3, 4}	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
			$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$			±0.60	%FSR
Integral linearity error ^{Note}	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
1		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
error ^{Note 1}		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI26	·	0		AVREFP and EVDD0	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 3.1 to 3.10.

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	–0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	–0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and –0.3 to V_{DD} +0.3 ^{Note 2}	
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Voi	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV_DD0 +0.3 and -0.3 to AV_{REF}(+) +0.3 $^{\text{Notes 2, 3}}$	V
	Vai2	ANI0 to ANI14	-0.3 to V_DD +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2,3}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{∾te 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$2.4~V \leq EV_{DD0} \leq 5.5~V$			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-30.0	mA
		P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
			$2.4~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to				-30.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
		P117, P146, P147 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq EV_{DD0} < 2.7~V$			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{№te 3})	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	2,4 V \leq V_{DD} \leq 5.5 V			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and $I_{OH} = -10.0$ mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	HS (high-speed main) Mode	
				MIN.	MAX.	
SCKp cycle time	tKCY1	$t_{KCY1} \geq 4/f_{CLK}$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		ns
			$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкнı,	$4.0 \ V \leq EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	tксү1/2 – 24		ns
	tĸ∟ı	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tĸcy1/2 – 36		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$4.0 \ V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	66		ns
		$2.7 \ V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	66		ns
		$2.4 \ V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	113		ns
SIp hold time (from SCKp^) $^{\mbox{Note 2}}$	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	$C = 30 \text{ pF}^{Note 4}$			50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Conditions		HS (high-speed ma	Unit	
				MIN.	MAX.	
SCKp cycle time Note 5	tkCY2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$	20 MHz < fмск	16/f мск		ns
		V	fмск ≤ 20 MHz	12/f мск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	16/f мск		ns
		V	fмск \leq 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		16/fмск		ns
				12/fмск and 1000		ns
SCKp high-/low-level	tĸн₂, tĸ∟₂	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 14		ns
width		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 16		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 36		ns
SIp setup time	tsik2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑) ^{Note 1}		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi2	$2.4~V \leq EV_{\text{DD0}} \leq 5.5$	V	1/fмск+62		ns
Delay time from SCKp↓ to SOp output _{Note 3}	tkso2	C = 30 pF Note 4	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+66	ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+113	ns

(3)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } \pm 105^{\circ}\text{C} 24 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 55 \text{ V}_{D0} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.\text{ V}_{D1}$


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), p: Changel number (n = 0, ta 2) an EMA number (n = 0, 1, 4, 5, 0, 14)
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	88		ns
(to SCKp↓) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le EV_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	220		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 5.5 \text{k}\Omega$			
SIp hold time (from SCKp↓) ™	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 2.7 \text{k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 5.5 \text{k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		50	ns
SOp output ^{№te}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \ V \le EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \le V_b \le 2.7 \ V,$		50	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$			

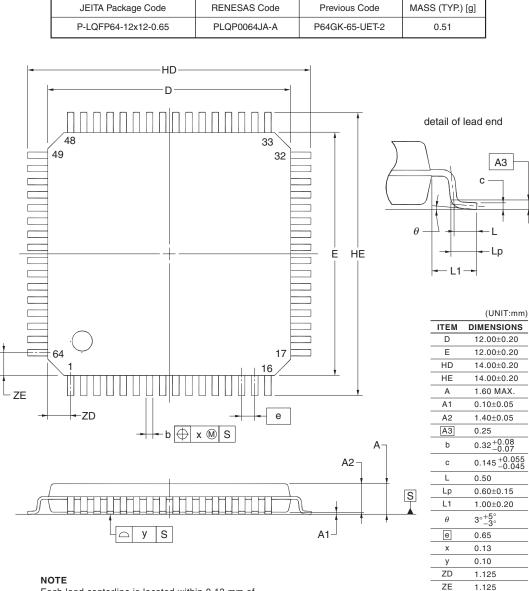
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

4.11 64-pin Products


R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LLDFA

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/G13 Data Sheet

			Description
Rev.	Date	Page	Summary
1.00	Feb 29, 2012	-	First Edition issued
2.00	Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.
		59, 63, 67	Descriptions of Note 8 in a table corrected.
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.
3.00	Aug 02, 2013	1	Modification of 1.1 Features
		3	Modification of 1.2 List of Part Numbers
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution
		16 to 32	Modification of package type in 1.3.1 to 1.3.14
		33	Modification of description in 1.4 Pin Identification
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions
		55	Modification of description in table of Absolute Maximum Ratings ($T_A = 25^{\circ}C$)
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics
		57	Modification of table in 2.2.2 On-chip oscillator characteristics
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100- pin products
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products
		75	Modification of (4) Peripheral Functions (Common to all products)
		77	Modification of table in 2.4 AC Characteristics
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		80	Modification of figures of AC Timing Test Points and External System Clock Timing