

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101fadfp-30

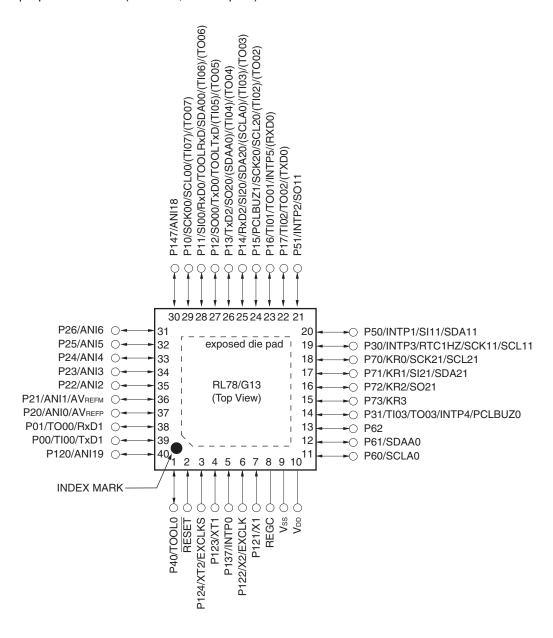
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(4/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
44 pins	44-pin plastic LQFP (10 × 10 mm, 0.8 mm	Mounted	А	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0, R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
	,			R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not	Α	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
		mounted		R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0

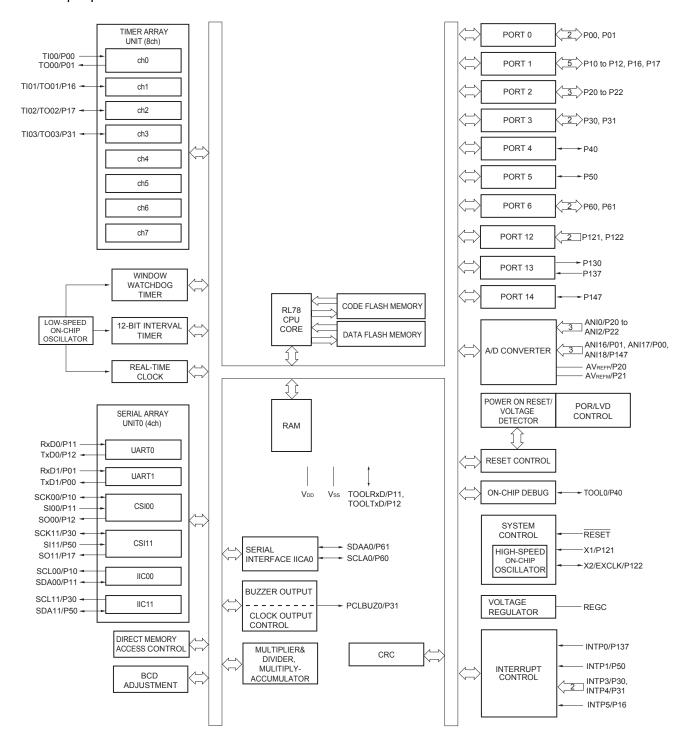

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to Vss.

1.4 Pin Identification

ANI0 to ANI14, REGC: Regulator capacitance RESET: ANI16 to ANI26: Reset Analog input AVREFM: A/D converter reference RTC1HZ: Real-time clock correction clock potential (- side) input (1 Hz) output AVREFP: A/D converter reference RxD0 to RxD3: Receive data potential (+ side) input SCK00, SCK01, SCK10, EVDD0, EVDD1: Power supply for port SCK11, SCK20, SCK21, EVsso, EVss1: Ground for port SCLA0, SCLA1: Serial clock input/output EXCLK: External clock input (Main SCLA0, SCLA1, SCL00, SCL01, SCL10, SCL11, system clock) **EXCLKS**: External clock input SCL20, SCL21, SCL30, (Subsystem clock) SCL31: Serial clock output INTP0 to INTP11: Interrupt request from SDAA0, SDAA1, SDA00, peripheral SDA01, SDA10, SDA11, KR0 to KR7: Key return SDA20,SDA21, SDA30, P00 to P07: Port 0 SDA31: Serial data input/output P10 to P17: Port 1 SI00, SI01, SI10, SI11, P20 to P27: Port 2 SI20, SI21, SI30, SI31: Serial data input P30 to P37: Port 3 SO00, SO01, SO10, P40 to P47: Port 4 SO11, SO20, SO21, P50 to P57: Port 5 SO30, SO31: Serial data output P60 to P67: Port 6 TI00 to TI07, P70 to P77: Port 7 TI10 to TI17: Timer input P80 to P87: Port 8 TO00 to TO07. P90 to P97: Port 9 TO10 to TO17: Timer output P100 to P106: Port 10 TOOL0: Data input/output for tool P110 to P117: Port 11 TOOLRxD, TOOLTxD: Data input/output for external device P120 to P127: Port 12 TxD0 to TxD3: Transmit data P130, P137: Port 13 V_{DD}: Power supply P140 to P147: Port 14 Vss: Ground P150 to P156: Port 15 X1, X2: Crystal oscillator (main system clock) PCLBUZ0, PCLBUZ1: Programmable clock XT1, XT2: Crystal oscillator (subsystem clock) output/buzzer output

1.5.3 25-pin products

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

												(1/2)
	Item	20-	pin	24-	pin	25	-pin	30-	pin	32-	pin	36-	pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	16 to 64 16 to 64 16 to 128						16 to	128	16 to	128	
Data flash me	mory (KB)	4	_	4	-	4	=	4 to 8	=	4 to 8	-	4 to 8	=
RAM (KB)		2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to 1	2 ^{Note1}	2 to ⁻	12 ^{Note1}	2 to 1	2 ^{Note1}
Address space	е	1 MB	MB										
Main system clock	High-speed system clock	HS (Hig HS (Hig LS (Lov	jh-speed jh-speed v-speed	I main) m I main) m main) m	node: 1 t node: 1 t ode: 1 tc	o 20 MH o 16 MH o 8 MHz	z (V _{DD} = z (V _{DD} = (V _{DD} = 1.	tem cloc 2.7 to 5. 2.4 to 5. 8 to 5.5 1.6 to 5.5	5 V), 5 V), V),	(EXCLK)			
	High-speed on-chip oscillator	HS (Hig LS (Lov	jh-speed v-speed	l main) m main) m	node: 1 t ode: 1 t	:o 16 MH :o 8 MHz	Iz (Vdd =	2.7 to 5. 2.4 to 5. 1.8 to 5.5 1.6 to 5.5	5 V), V),				
Subsystem clo	ock						-	-					
Low-speed on	n-chip oscillator	15 kHz	(TYP.)										
General-purpo	ose registers	(8-bit re	gister ×	8) × 4 ba	nks								
Minimum instr	ruction execution time	0.03125	5 μs (Hig	h-speed	on-chip	oscillato	r: fін = 3	2 MHz op	peration)			
		0.05 μs	(High-s	peed sys	tem cloc	:k: fмx = 1	20 MHz	operatior	۱)				
Instruction set	t	Adde Multip	r and su olication	(8/16 bit btractor/ (8 bits × shift, an	logical o 8 bits)			ts) eset, tes	t, and B	oolean o	peration), etc.	
I/O port	Total	1	6	2	0	2	21	2	6	2	8	3	2
	CMOS I/O	1 (N-ch C [Vpp wit voltag	D.D. I/O thstand	(N-ch C	5 D.D. I/O thstand ge]: 6)	(N-ch (5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V _{DD} wit voltag	D.D. I/O thstand	2 (N-ch ([V _{DD} wi voltag	thstand	(N-ch C [V _{DD} with voltage	thstand
	CMOS input	3	3	;	3	;	3	3	3	;	3	3	3
	CMOS output	-	-	-	-		1	_	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	=	_	2	2	:	2	2	2	(3	3	3
Timer	16-bit timer						8 cha	nnels					
	Watchdog timer						1 cha	annel					
	Real-time clock (RTC)						1 chan	nel Note 2					
	12-bit interval timer (IT)						1 cha	annel					
	Timer output	3 channels (PWM outputs: 3 Note 3) 4 channels (PWM outputs: 3 Note 3), 8 channels (PWM outputs: 7 Note 3) Note 4											
	RTC output						=	=					
· · · · · · · · · · · · · · · · · · ·													

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual).

4. When setting to PIOR = 1

11	n	n	١
14	ر2	_	ı

Ite	m	20-	pin	24-	pin	25-	pin	30-	-pin	32	-pin	36	pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzze	er output		_		1		1		2		2		2
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation)											
8/10-bit resolution	A/D converter	6 chanr	nels	6 chanı	nels	6 chanı	nels	8 chan	nels	8 chan	nels	8 chan	nels
Serial interface		[20-pin,	24-pin,	25-pin p	roducts]								
		• CSI:	1 chann	el/simpli	fied I ² C:	1 channe	el/UART	: 1 chanı	nel				
		• CSI:	1 chann	el/simpli	fied I ² C:	1 channe	el/UART	: 1 chanı	nel				
		[30-pin,	32-pin	products]								
		• CSI:	1 chann	el/simplit el/simplit el/simplit	fied I ² C:	1 channe	el/UART	: 1 chanı	nel	ng LIN-bi	us): 1 ch	annel	
		[36-pin	products	s]									
		• CSI:	1 chann	el/simplit el/simplit els/simpl	fied I ² C:	1 channe	el/UART	: 1 chanı	nel	rtina LIN	-bus): 1	channel	
CSI: 2 channels/simplified I ² C: 2 channels/UART (UART supporting LIN-bus) l ² C bus 1 channel 1 channel 1 channel 1 channel									1 channel				
Multiplier and divid	der/multiply-	• 32 bit	 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 										
DMA controller		2 chanr	nels										
Vectored interrupt	Internal	2	23	2	24	2	24	2	27	2	27	2	27
sources	External	;	3		5		5		6		6		6
Key interrupt				•				_					
Reset Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access													
Power-on-reset cir	cuit		er-on-res er-down-	set: 1	I.51 V (T I.50 V (T	,							
Voltage detector			g edge : ig edge			4.06 V (3.98 V (_						
On-chip debug fun	ection	Provide	ed										
Power supply volta	age	V _{DD} = 1	.6 to 5.5	V (T _A =	-40 to +8	35°C)							
		$V_{DD} = 2$	4 to 5.5	V (T _A = -	40 to +1	05°C)							
Operating ambient	Operating ambient temperature $T_A = 40 \text{ to } +85^{\circ}\text{C}$ (A: Consumer applications, D: Industrial applications) $T_A = 40 \text{ to } +105^{\circ}\text{C}$ (G: Industrial applications)												
		14 - 40	.∪ ⊤ 100	. o (a. 11	idudilidi	αργιισατι	0110)						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \le EV_{DD0} \le 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-55.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{DD0} < 4.0~V$			-10.0	mA
		$(When duty \le 70\%^{Note 3})$	$1.8~V \leq EV_{DD0} < 2.7~V$			-5.0	mA
		,	$1.6~V \leq EV_{DD0} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31,				-80.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to	$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
		P117, P146, P147	$1.8~V \leq EV_{DD0} < 2.7~V$			-10.0	mA
		(When duty $\leq 70\%$ Note 3)	$1.6~V \leq EV_{DD0} < 1.8~V$			-5.0	mA
		Total of all pins (When duty ≤ 70% Note 3)	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-135.0 Note 4	mA
	І он2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{DD} \leq 5.5~V$			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$1.6~V \leq V_{DD} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and loh = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Notes 1. Total current flowing into V_{DD} and EV_{DDO}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDO} or V_{SS}, EV_{SSO}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

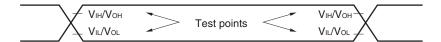
HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$

LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V @ 1 MHz to 4 MHz

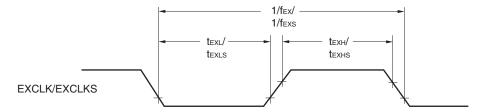
- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

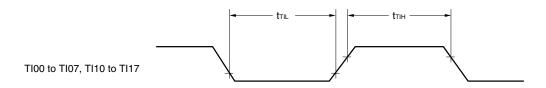
(4) Peripheral Functions (Common to all products)

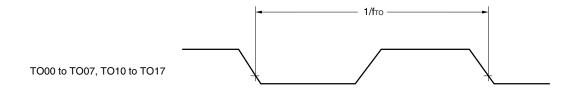
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$


Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL ^{Note 1}				0.20		μΑ
RTC operating current	RTC Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μА
Watchdog timer operating current	IWDT Notes 1, 2, 5	fıL = 15 kHz			0.22		μА
A/D converter	IADC Notes 1, 6	When	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current		conversion at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μА
Temperature sensor operating current	ITMPS Note 1				75.0		μΑ
LVD operating current	LVI Notes 1, 7				0.08		μΑ
Self- programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{\text{REFP}} = V_{\text{DD}} = 3.0 \text{ V}$		1.20	1.44	mA
		CSI/UART opera	tion		0.70	0.84	mA

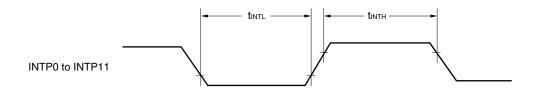
Notes 1. Current flowing to VDD.


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.

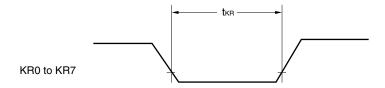

AC Timing Test Points

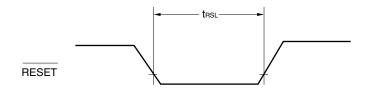


External System Clock Timing



TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	(Conditions	` `	h-speed Mode	,	r-speed Mode	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t KCY1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{DD0} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV _{DI}	oo ≤ 5.5 V	tксү1/2 — 7		tксү1/2 – 50		tксү1/2 — 50		ns
		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑)	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	23		110		110		ns
Note 1		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp [↑]) Note 2	tksı1	2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF No	te 4		10		10		10	ns

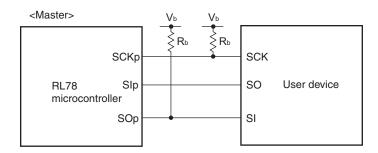
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

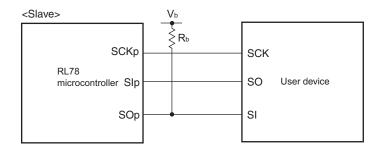
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol		Conditions	HS (hig	h-speed Mode	LS (low	r-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{split} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 & \ pF, \ R_b = 1.4 \ k\Omega \end{split}$	300		1150		1150		ns
			$\begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		1150		1150		ns
			$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{Note}, \end{aligned}$	1150		1150		1150		ns
SCKp high-level width	tкн1	$4.0 \text{ V} \le \text{EV}_{DD}$ $2.7 \text{ V} \le \text{V}_{b} \le \text{C}_{b} = 30 \text{ pF},$	4.0 V,	tксү1/2 – 75		tксү1/2 – 75		tксу1/2 — 75		ns
		$2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксу1/2 — 170		tксу1/2 — 170		tксу1/2 — 170		ns
		$1.8 \text{ V} \le \text{EV}_{DD}$ $1.6 \text{ V} \le \text{V}_{b} \le \text{C}_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	t _{KL1}	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$	00 ≤ 5.5 V, 4.0 V,	tксу1/2 —		tксү1/2 — 50		tксү1/2 — 50		ns
		$C_b = 30 \text{ pF},$ $2.7 \text{ V} \leq \text{EVor}$ $2.3 \text{ V} \leq \text{V}_b \leq$ $C_b = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		$1.8 \text{ V} \leq \text{EV}_{DD}$ $1.6 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 — 50		tксү1/2 – 50		tксу1/2 — 50		ns

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed two pages after the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode connection diagram (during communication at different potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - **2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.
 - Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .
 - Zero-scale error/Full-scale error: Add $\pm 0.05\%FSR$ to the MAX. value when AV_{REFP} = V_{DD}.
 - Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
 - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD0 = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		V _{BGR} Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.3		mA
Current Note 1		mode	speed main) mode Note 5		operatio n	V _{DD} = 3.0 V		2.3		mA
					Normal	V _{DD} = 5.0 V		5.2	9.2	mA
					operatio n	V _{DD} = 3.0 V		5.2	9.2	mA
				fih = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	7.0	mA
					operatio n	V _{DD} = 3.0 V		4.1	7.0	mA
				fin = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	5.0	mA
					operatio n	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
				V _{DD} = 3.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
				V _{DD} = 5.0 V	operatio n	Resonator connection		2.1	3.5	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
				V _{DD} = 3.0 V	operatio n	Resonator connection		2.1	3.5	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		4.8	5.9	μΑ
			clock operation	$T_A = -40^{\circ}C$	operatio n	Resonator connection		4.9	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μΑ
				T _A = +25°C	operatio n	Resonator connection		5.0	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		5.0	7.6	μΑ
				T _A = +50°C	operatio n	Resonator connection		5.1	7.7	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		5.2	9.3	μΑ
				Note 4 TA = +70°C	operatio n	Resonator connection		5.3	9.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		5.7	13.3	μΑ
				Note 4 $T_A = +85^{\circ}C$	operatio n	Resonator connection		5.8	13.4	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		10.0	46.0	μΑ
				Note 4 TA = +105°C	operatio n	Resonator connection		10.0	46.0	μΑ

(Notes and Remarks are listed on the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = V _{BGR}
Input channel	Reference voltage (–) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AVREFM
ANI0 to ANI14	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .
ANI16 to ANI26	Refer to 3.6.1 (2) .		
Internal reference voltage	Refer to 3.6.1 (1) .		-
Temperature sensor output			
voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AVREFP = VDD Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
	Temperature sensor output voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)			VTMPS25 Note 4			V

(Notes are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, Ta = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient FVTMPS		Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

	Description		
Rev.	Date	Page	Summary
3.00	3.00 Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		118	Modification of table and note in 2.6.3 POR circuit characteristics
		119	Modification of table in 2.6.4 LVD circuit characteristics
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes
		123	Modification of caution 1 and description
		124	Modification of table and remark 3 in Absolute Maximum Ratings (T _A = 25°C)
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics
		126	Modification of table in 3.2.2 On-chip oscillator characteristics
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2)
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2)
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)
		140	Modification of (3) Peripheral Functions (Common to all products)
		142	Modification of table in 3.4 AC Characteristics
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		143	Modification of figure of AC Timing Test Points
		143	Modification of figure of External System Clock Timing
		145	Modification of figure of AC Timing Test Points
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)
		146	Modification of description in (2) During communication at same potential (CSI mode)
		147	Modification of description in (3) During communication at same potential (CSI mode)
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)