

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101fadfp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of	Ordering	Part	Numbers
------------	---------	----------	------	---------

				(4/12)
Pin	Package	Data flash	Fields of	Ordering Part Number
count			Application	
44 pins	44-pin plastic LQFP	Mounted	А	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0,
	(10 \times 10 mm, 0.8 mm			R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
				R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not	А	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
		mounted		R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

				(8/12)
Pin count	Package	Data flash	Fields of	Ordering Part Number
			Application Note	
64 pins	64-pin plastic LQFP	Mounted	А	R5F100LCAFA#V0, R5F100LDAFA#V0,
	(12 $ imes$ 12 mm, 0.65			R5F100LEAFA#V0, R5F100LFAFA#V0,
	mm pitch)			R5F100LGAFA#V0, R5F100LHAFA#V0,
				R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0
				R5F100LCAFA#X0, R5F100LDAFA#X0,
				R5F100LEAFA#X0, R5F100LFAFA#X0,
			D	R5F100LGAFA#X0, R5F100LHAFA#X0,
				R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0
				R5F100LCDFA#V0, R5F100LDDFA#V0,
				R5F100LEDFA#V0, R5F100LFDFA#V0,
				R5F100LGDFA#V0, R5F100LHDFA#V0,
				R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0
			G	R5F100LCDFA#X0, R5F100LDDFA#X0,
				R5F100LEDFA#X0, R5F100LFDFA#X0,
				R5F100LGDFA#X0, R5F100LHDFA#X0,
				R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0
				R5F100LCGFA#V0, R5F100LDGFA#V0,
				R5F100LEGFA#V0, R5F100LFGFA#V0
				R5F100LCGFA#X0, R5F100LDGFA#X0,
				R5F100LEGFA#X0, R5F100LFGFA#X0
				R5F100LGGFA#V0, R5F100LHGFA#V0,
				R5F100LJGFA#V0
				R5F100LGGFA#X0, R5F100LHGFA#X0,
				R5F100LJGFA#X0
		Not	А	R5F101LCAFA#V0, R5F101LDAFA#V0,
		mounted		R5F101LEAFA#V0, R5F101LFAFA#V0,
				R5F101LGAFA#V0, R5F101LHAFA#V0,
				R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0
				R5F101LCAFA#X0, R5F101LDAFA#X0,
				R5F101LEAFA#X0, R5F101LFAFA#X0,
			D	R5F101LGAFA#X0, R5F101LHAFA#X0,
				R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0
				R5F101LCDFA#V0, R5F101LDDFA#V0,
				R5F101LEDFA#V0, R5F101LFDFA#V0,
				R5F101LGDFA#V0, R5F101LHDFA#V0,
				R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0
				R5F101LCDFA#X0, R5F101LDDFA#X0,
				R5F101LEDFA#X0, R5F101LFDFA#X0,
				R5F101LGDFA#X0, R5F101LHDFA#X0,
1				R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.4 Pin Identification

ANI0 to ANI14,		REGC:	Regulator capacitance
ANI16 to ANI26:	Analog input	RESET:	Reset
AVREFM:	A/D converter reference	RTC1HZ:	Real-time clock correction clock
	potential (– side) input		(1 Hz) output
AVREFP:	A/D converter reference	RxD0 to RxD3:	Receive data
	potential (+ side) input	SCK00, SCK01, SCK10,	
EVDD0, EVDD1:	Power supply for port	SCK11, SCK20, SCK21,	
EVsso, EVss1:	Ground for port	SCLA0, SCLA1:	Serial clock input/output
EXCLK:	External clock input (Main	SCLA0, SCLA1, SCL00,	
	system clock)	SCL01, SCL10, SCL11,	
EXCLKS:	External clock input	SCL20,SCL21, SCL30,	
	(Subsystem clock)	SCL31:	Serial clock output
INTP0 to INTP11:	Interrupt request from	SDAA0, SDAA1, SDA00,	
	peripheral	SDA01,SDA10, SDA11,	
KR0 to KR7:	Key return	SDA20,SDA21, SDA30,	
P00 to P07:	Port 0	SDA31:	Serial data input/output
P10 to P17:	Port 1	SI00, SI01, SI10, SI11,	
P20 to P27:	Port 2	SI20, SI21, SI30, SI31:	Serial data input
P30 to P37:	Port 3	SO00, SO01, SO10,	
P40 to P47:	Port 4	SO11, SO20, SO21,	
P50 to P57:	Port 5	SO30, SO31:	Serial data output
P60 to P67:	Port 6	TI00 to TI07,	
P70 to P77:	Port 7	TI10 to TI17:	Timer input
P80 to P87:	Port 8	TO00 to TO07,	
P90 to P97:	Port 9	TO10 to TO17:	Timer output
P100 to P106:	Port 10	TOOL0:	Data input/output for tool
P110 to P117:	Port 11	TOOLRxD, TOOLTxD:	Data input/output for external device
P120 to P127:	Port 12	TxD0 to TxD3:	Transmit data
P130, P137:	Port 13	Vdd:	Power supply
P140 to P147:	Port 14	Vss:	Ground
P150 to P156:	Port 15	X1, X2:	Crystal oscillator (main system clock)
PCLBUZ0, PCLBUZ1:	Programmable clock	XT1, XT2:	Crystal oscillator (subsystem clock)
	output/buzzer output		

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

				-			(1/2)			
	Item	80-	pin	100	-pin	128	3-pin			
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx			
Code flash me	emory (KB)	96 te	o 512	96 to 512		192	to 512			
Data flash me	emory (KB)	8	—	8	-	8	-			
RAM (KB)		8 to 3	2 Note 1	8 to 3	2 Note 1	16 to 3	32 Note 1			
Address spac	e	1 MB				•				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)								
	High-speed on-chip oscillator	HS (High-speed HS (High-speed LS (Low-speed LV (Low-voltage	S (High-speed main) mode: 1 to 32 MHz (V_{DD} = 2.7 to 5.5 V), S (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), S (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V), / (Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V)							
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	l subsystem cloc	k input (EXCLKS	i)				
Low-speed or	n-chip oscillator	15 kHz (TYP.)								
General-purp	ose register	(8-bit register × 8) × 4 banks								
Minimum inst	ruction execution time	0.03125 <i>μ</i> s (Hig	gh-speed on-chip	oscillator: fiн = 3	2 MHz operation)				
		0.05 <i>μ</i> s (High-s	peed system clo	ck: fмx = 20 MHz	operation)					
		30.5 µs (Subsystem clock: fsub = 32.768 kHz operation)								
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 								
I/O port	Total	7	74	ç	92	1	20			
	CMOS I/O	(N-ch O.D. I/O voltag	64 [EV₀₀ withstand ge]: 21)	ہ N-ch O.D. I/O) voltag	32 [EV _{DD} withstand je]: 24)	1 (N-ch O.D. I/O voltag	10 [EV₂₂ withstand ge]: 25)			
	CMOS input		5		5		5			
	CMOS output		1		1		1			
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4			
Timer	16-bit timer	12 cha	annels	12 cha	annels	16 ch	annels			
	Watchdog timer	1 cha	annel	1 cha	annel	1 cha	annel			
	Real-time clock (RTC)	1 cha	annel	1 cha	annel	1 cha	annel			
	12-bit interval timer (IT)	1 cha	annel	1 cha	annel	1 cha	annel			
	Timer output	12 channels (PWM outputs:	10 Note 2)	12 channels (PWM outputs:	10 Note 2)	16 channels (PWM outputs:	14 ^{Note 2})			
	RTC output	1 channel • 1 Hz (subsys	tem clock: fsuв =	32.768 kHz)						

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H

R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library** for RL78 Family (R20UT2944).

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

							(2/2)		
Item		80-	pin	100	-pin	128-pin			
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx		
Clock output/buzz	er output	;	2	:	2		2		
		 2.44 kHz, 4.8 (Main system) 256 Hz, 512 H (Subsystem c) 	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 						
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels			
Serial interface		[80-pin, 100-pin	, 128-pin product	ts]					
		 CSI: 2 channe 	els/simplified l ² C: els/simplified l ² C: els/simplified l ² C: els/simplified l ² C:	2 channels/UAR 2 channels/UAR 2 channels/UAR 2 channels/UAR	T: 1 channel T: 1 channel T (UART suppor T: 1 channel	ting LIN-bus): 1 c	hannel		
	I ² C bus	2 channels		2 channels		2 channels			
Multiplier and divid	der/multiply-	• 16 bits × 16 bit	ts = 32 bits (Unsi	igned or signed)					
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)							
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)							
DMA controller		4 channels							
Vectored	Internal	37 37			37	2	41		
interrupt sources	External	1	3	1	3	1	13		
Key interrupt	-	;	8 8 8				8		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 							
Power-on-reset ci	rcuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)							
Voltage detector		Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)							
On-chip debug fur	nction	Provided							
Power supply volt	age	$V_{DD} = 1.6 \text{ to } 5.5$	V ($T_A = -40$ to +8	5°C)					
		$V_{DD} = 2.4$ to 5.5	V ($T_{A} = -40$ to +1	05°C)					
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^{\circ}0$	C (A: Consumer	applications, D: Ir	ndustrial applicat	ions)			
		T _A = 40 to +105	°C (G: Industrial	applications)					

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	crystal resonator $2.4~V \le V_{\text{DD}} < 2.7~V$			16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to **5.4 System Clock Oscillator**.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.0		+5.0	%
		–40 to –20 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \leq V_{\text{DD}} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions	3	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main	HS (high-	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	$1.6~V \le V_{DD} \le 5.5~V$	0.25		1	μs
		Subsystem of	clock (fsua)	$1.8V\!\le\!V_{DD}\!\le\!5.5V$	28.5	30.5	31.3	μS
		operation						
		In the self	HS (high-	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.03125		1	μS
		mode	mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
			LS (low-speed main) mode	$1.8V\!\leq\!V_{DD}\!\leq\!5.5V$	0.125		1	μS
			LV (low- voltage main) mode	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.25		1	μS
External system clock	fex	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	I	1.0		20.0	MHz
frequency		$2.4 V \le V_{DD}$	< 2.7 V		1.0		16.0	MHz
		$1.8 V \le V_{DD}$	< 2.4 V		1.0		8.0	MHz
		$1.6 \text{ V} \leq V_{\text{DD}} < 1.8 \text{ V}$			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
high-level width, low-level width		$2.4 V \le V_{DD}$.	< 2.7 V		30			ns
		$1.8 V \le V_{DD}$	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$					ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$			120			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fтo	HS (high-spe	ed $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$				16	MHz
output frequency		main) mode	2.7 V	$\leq EV_{DD0} < 4.0 V$			8	MHz
			1.8 V	$\leq EV_{DD0} < 2.7 V$			4	MHz
			1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee	ed 1.8 V	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$			4	MHz
			1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LV (low-volta main) mode	age 1.6 V	$\leq EV$ DD0 $\leq 5.5 V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
nequency		main) mode	2.7 V	$\leq EV_{DD0} < 4.0 V$			8	MHz
			1.8 V	$\leq EV_{DD0} < 2.7 V$			4	MHz
		10 //	1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
		LS (IOW-Spee main) mode	ea 1.8 V	$\leq EVDD0 \leq 5.5 V$			4	MIHZ
			1.6 V	$\leq EVDD0 < 1.8 V$			2	
		main) mode	1.8 V	$\geq EVDD0 \leq 5.5 V$			4	IVIHZ M⊔⇒
Interrupt input high-lovel width	tiniti i		1.0 V		1		2	IVII⊓∠ ./e
low-level width	tINTL		1.0 V	< EVDD < 5.5 V	1			μs
Key interrupt input low-level	tkB	KB0 to KR7	1.0 V	$\leq \mathrm{EV}_{\mathrm{DD0}} \leq 5.5 \mathrm{V}$	250			μο ne
width			1.6 V	< EV _{DD0} < 1.8 V	1	1	<u> </u>	45
RESET low-level width	trsl				10			μs

(Note and Remark are listed on the next page.)

Parameter	Symbol		Conditions			high- main) ode	LS (low main)	/-speed Mode	LV (voltage Mo	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps		
			$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_{b} \le 2.7 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
	$2.3 V \leq V_b \leq 2.7 V$		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps	
1.8 V ≤ E 1.6 V ≤ V		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps	
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps		

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$: MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

Unit

ns

60

130

tput,

(7) Communica correspondi	tion at di	ifferent poter) only) (1/2)	ntial (2.5 V, 3 V) (CSI	mode) (r	naster i	node, S	СКр і	nternal o	clock ou
Parameter	Symbol		0 = EVDD1 S VDD S 3.3 Conditions	HS (high main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
SCKp cycle time	t ксү1	tксү1 ≥ 2 /fclк	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	200		1150		1150	
	$C_{b} = 20 \text{ pF}, \text{ R}_{b} = 1.4 \text{ k}\Omega$		$\label{eq:cb} \begin{split} C_b &= 20 \text{ pF}, R_b = 1.4 \\ k\Omega \end{split}$						
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$		300		1150		1150	
C _b = 20 p kΩ		C_b = 20 pF, R_b = 2.7 $k\Omega$							
SCKp high-level width	tкнı			tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50	
Cb =		$C_{b} = 20 \text{ pF}, \text{ f}$	$C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$						
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120	
		C₀ = 20 pF, I	R _b = 2.7 kΩ						
SCKp low-level width	tĸ∟1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$	₀ ≤ 5.5 V, 4.0 V,	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50	
		$C_{b} = 20 \text{ pF}, \text{ F}$	R₀ = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	₀ < 4.0 V, 2.7 V,	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50	
		$C_b = 20 \text{ pF}, \text{ f}$	R _b = 2.7 kΩ						
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	₀ ≤ 5.5 V, 4.0 V,	58		479		479	
		$C_{b} = 20 \text{ pF}, \text{ f}$	R _b = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	₀ < 4.0 V, 2.7 V,	121		479		479	
		C _b = 20 pF, I	R _b = 2.7 kΩ						
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 V \le EV_{DD}$ $2.7 V \le V_{h} \le$	o ≤ 5.5 V, 4.0 V.	10		10		10	

 $2.3~V \leq V_b \leq 2.7~V,$

 $C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $2.3~V \leq V_b \leq 2.7~V,$ $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$

 $2.7~V \leq V_{b} \leq 4.0~V,$

 $C_{\text{b}}=20 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$

(Notes, Caution, and Remarks are listed on the next page.)

Delay time from

 $\mathsf{SCKp}{\downarrow} \text{ to } \mathsf{SOp}$

output Note 1

tks01

10

60

130

10

60

130

10

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

$(T_A = -40 \text{ to } +85^\circ C)$, 1.8 V ≤ EVDD0 =	$=$ EVDD1 \leq VDD \leq 5.5 V, V	Vss = EVsso = EVss1 = 0 V) (2/2)
---------------------------------------	-------------------	--------------------------------------	---------------------------	---------

Parameter	Symbol	Conditions		HS (high- speed main) Mode		-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	tксү2/2 - 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	tксү₂/2 − 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{№ote 3}	tsık2	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tĸso2	$\label{eq:VDD} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\label{eq:V_def} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{split} & 1.8 \ V \leq E V_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

<R>

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}_{\text{SS1}} = 0 \text{ V}_{$
Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note}}$		1.2	±8.5	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin : ANI16 to	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
		ANI26	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution EVDD0 = AV _{REFP} = V_{DD} ^{Notes 3, 4}	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
			$\begin{array}{l} 1.6 \ V \leq AV_{\text{REFP}} \leq 5.5 \ V^{\text{Note}} \\ {}_{5} \end{array}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		EVDD0 = AVREFP = VDD NOTES 3, 4	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note}}$			±0.60	%FSR
Integral linearity error ^{Note}	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
1		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3,4}$	$\begin{array}{l} 1.6 \ V \leq AV_{\text{REFP}} \leq 5.5 \ V^{\text{Note}} \\ {}_5 \end{array}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
error ^{Note 1}		$EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note}}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI26		0		AVREFP and EVDD0	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fськ	$1.8~V \leq V\text{dd} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years Ta = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

•	,		,		,		
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL Note 1				0.20		μA
RTC operating current	RTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter		When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	Notes 1, 0	at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz	ADC operation	The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, Loe voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	2.04	mA
		CSI/UART operatio	on		0.70	1.54	mA

(3) Peripheral Functions (Common to all products) (TA = -40 to $+105^{\circ}$ C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Items	Symbol		Conditio	ns		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main	HS (high-spe	ed 2	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.03125		1	μS
instruction execution time)		system clock (fmain) operation	main) mode	:	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
		Subsystem clock (f_{SUB}) 2.4 V \leq V _{DD} \leq 5 operation		$2.4 V \le V_{DD} \le 5.5 V$	28.5	30.5	31.3	μS	
		In the self	HS (high-spe	ed 2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.03125		1	μS
		programming mode	main) mode	main) mode 2	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
External system clock frequency	fex	$2.7 \ V \leq V_{DD} \leq$	≤ 5.5 V			1.0		20.0	MHz
		$2.4 V \le V_{DD}$ <	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			1.0		16.0	MHz
	fexs					32		35	kHz
External system clock input high-	texh, texl	xL $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		24			ns		
level width, low-level width		$2.4 V \le V_{DD}$ <	< 2.7 V			30			ns
	texhs, texls			13.7			μS		
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟					1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	eed 4.0	V≤	$EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
output frequency		main) mode	2.7	V≤	$EV_{DD0} < 4.0 V$			8	MHz
			2.4	$2.4 \text{ V} \le EV_{\text{DD0}} < 2.7 \text{ V}$				4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0	V≤	$EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
frequency		main) mode	2.7	V≤	$EV_{DD0} < 4.0 V$			8	MHz
			2.4	V≤	EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4	V≤	$V_{\text{DD}} \leq 5.5 ~\text{V}$	1			μS
low-level width	t INTL	INTP1 to INT	P11 2.4	V≤	$EV_{\text{DD0}} \leq 5.5 \text{ V}$	1			μS
Key interrupt input low-level width	t ĸĸ	KR0 to KR7	2.4	V≤	$EV_{DD0} \leq 5.5 V$	250			ns
RESET low-level width	trsl					10			μS

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

 $\label{eq:rescaled} \textbf{Remark} \quad \text{f_{MCK}: Timer array unit operation clock frequency}$

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{KCY1} \ge 4/f_{CLK}$ 2.7 V $\le EV_{DD0} \le 5.5$ V		250		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq EV_{\text{DD}}$	$_{0} \leq 5.5 \text{ V}$	tксү1/2 – 24		ns
	tĸ∟1	$2.7 \ V \le EV_{DD}$	$2.7 V \le EV_{DD0} \le 5.5 V$ 2.4 V \le EV_{DD0} \le 5.5 V			ns
		$2.4 \ V \le EV_{DD}$				ns
SIp setup time (to SCKp↑) Note 1	tsik1	$4.0~V \leq EV_{\text{DD}}$	$_{0} \leq 5.5 \text{ V}$	66		ns
		$2.7 \ V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	66		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	$_{0} \leq 5.5 \text{ V}$	113		ns
SIp hold time (from SCKp \uparrow) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note}	C = 30 pF Note 4		50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EVpp0 = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
		$\begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		100 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow		1200		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
			4600		ns
		$\begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	4600		ns
		$\label{eq:2.4} \begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн		620		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	500		ns
			2700		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	2400		ns
		$\label{eq:VDD} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1830		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

(T ₄	$= -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.$	5.5 V, Vss = EVsso = EVss1 = 0 V, Reference voltage (+)	=
Vdd,	, Reference voltage (–) = Vss)		

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time tconv	tconv	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI26	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
	(high-speed main) mode)						
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14 ANI16 to ANI26 Internal reference voltage output		0		Vdd	V
				0		EVDD0	V
				VBGR Note 3			V
	-	(2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)					
Temperature sensor output voltage (2.4 V \leq VpD \leq 5.5 V, HS (high-speed main) models and the sensor of the sen			ltage speed main) mode)	VTMPS25 Note 3			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- $\ensuremath{\textbf{2.}}$ This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

4.11 64-pin Products

R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LLDFA

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

