

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

-	
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101fdafp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(1/12)

Pin	Package	Data	Fields of	Ordering Part Number
count	. askago	flash	Application Note	S. Golffig Fatt Harrison
20 pins	20-pin plastic LSSOP	Mounted	A	R5F1006AASP#V0, R5F1006CASP#V0, R5F1006DASP#V0,
20 piris	(7.62 mm (300), 0.65	Mounted	A	R5F1006AASF#V0, R5F1006CASF#V0, R5F1006DASF#V0,
	mm pitch)			R5F1006AASP#X0, R5F1006CASP#X0, R5F1006DASP#X0,
	min pitch)			R5F1006EASP#X0
			D	R5F1006ADSP#V0, R5F1006CDSP#V0, R5F1006DDSP#V0,
				R5F1006EDSP#V0
				R5F1006ADSP#X0, R5F1006CDSP#X0, R5F1006DDSP#X0,
				R5F1006EDSP#X0
			G	R5F1006AGSP#V0, R5F1006CGSP#V0, R5F1006DGSP#V0,
				R5F1006EGSP#V0
				R5F1006AGSP#X0, R5F1006CGSP#X0, R5F1006DGSP#X0,
				R5F1006EGSP#X0
		Not	Α	R5F1016AASP#V0, R5F1016CASP#V0, R5F1016DASP#V0,
		mounted		R5F1016EASP#V0
				R5F1016AASP#X0, R5F1016CASP#X0, R5F1016DASP#X0,
				R5F1016EASP#X0
			D	R5F1016ADSP#V0, R5F1016CDSP#V0, R5F1016DDSP#V0,
				R5F1016EDSP#V0
				R5F1016ADSP#X0, R5F1016CDSP#X0, R5F1016DDSP#X0,
				R5F1016EDSP#X0
24 pins	24-pin plastic	Mounted	А	R5F1007AANA#U0, R5F1007CANA#U0, R5F1007DANA#U0,
	HWQFN (4 × 4mm,			R5F1007EANA#U0
	0.5 mm pitch)			R5F1007AANA#W0, R5F1007CANA#W0, R5F1007DANA#W0,
				R5F1007EANA#W0
			D	R5F1007ADNA#U0, R5F1007CDNA#U0, R5F1007DDNA#U0,
				R5F1007EDNA#U0
				R5F1007ADNA#W0, R5F1007CDNA#W0, R5F1007DDNA#W0,
				R5F1007EDNA#W0
			G	R5F1007AGNA#U0, R5F1007CGNA#U0, R5F1007DGNA#U0,
				R5F1007EGNA#U0
				R5F1007AGNA#W0, R5F1007CGNA#W0, R5F1007DGNA#W0,
				R5F1007EGNA#W0
		Not	А	R5F1017AANA#U0, R5F1017CANA#U0, R5F1017DANA#U0,
		mounted		R5F1017EANA#U0
				R5F1017AANA#W0, R5F1017CANA#W0, R5F1017DANA#W0,
				R5F1017EANA#W0
			D	R5F1017ADNA#U0, R5F1017CDNA#U0, R5F1017DDNA#U0,
				R5F1017EDNA#U0
				R5F1017ADNA#W0, R5F1017CDNA#W0, R5F1017DDNA#W0,
				R5F1017EDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Table 1-1. List of Ordering Part Numbers

(9/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
64 pins	64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)	Mounted	A	R5F100LCAFB#V0, R5F100LDAFB#V0, R5F100LEAFB#V0, R5F100LFAFB#V0, R5F100LGAFB#V0, R5F100LHAFB#V0, R5F100LJAFB#V0, R5F100LKAFB#V0, R5F100LCAFB#X0, R5F100LDAFB#X0, R5F100LEAFB#X0, R5F100LFAFB#X0, R5F100LFAFB#X0, R5F100LJAFB#X0, R5F100LJAFB#X0, R5F100LJAFB#X0, R5F100LJAFB#X0, R5F100LJAFB#X0, R5F100LLAFB#X0
			D	R5F100LCDFB#V0, R5F100LDDFB#V0, R5F100LEDFB#V0, R5F100LFDFB#V0, R5F100LFDFB#V0, R5F100LHDFB#V0, R5F100LJDFB#V0, R5F100LJDFB#V0, R5F100LDFB#V0 R5F100LCDFB#X0, R5F100LDDFB#X0, R5F100LEDFB#X0, R5F100LFDFB#X0, R5F100LFDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LLDFB#X0
			G	R5F100LCGFB#V0, R5F100LDGFB#V0, R5F100LEGFB#V0, R5F100LFGFB#V0 R5F100LCGFB#X0, R5F100LDGFB#X0, R5F100LEGFB#X0, R5F100LFGFB#X0 R5F100LGGFB#V0, R5F100LHGFB#V0, R5F100LJGFB#V0
				R5F100LGGFB#X0, R5F100LHGFB#X0, R5F100LJGFB#X0
		Not mounted	A	R5F101LCAFB#V0, R5F101LDAFB#V0, R5F101LEAFB#V0, R5F101LFAFB#V0, R5F101LGAFB#V0, R5F101LHAFB#V0, R5F101LJAFB#V0, R5F101LKAFB#V0, R5F101LCAFB#X0, R5F101LDAFB#X0, R5F101LEAFB#X0,
			D	R5F101LFAFB#X0, R5F101LGAFB#X0, R5F101LHAFB#X0, R5F101LJAFB#X0, R5F101LKAFB#X0, R5F101LLAFB#X0 R5F101LCDFB#V0, R5F101LDDFB#V0, R5F101LEDFB#V0, R5F101LFDFB#V0, R5F101LFDFB#V0, R5F101LJDFB#V0, R5F101LJDFB#V0, R5F101LLDFB#V0, R5F101LCDFB#X0,
				R5F101LFDFB#X0, R5F101LGDFB#X0, R5F101LHDFB#X0, R5F101LJDFB#X0, R5F101LKDFB#X0, R5F101LLDFB#X0
	64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)	Mounted	A	R5F100LCABG#U0, R5F100LDABG#U0, R5F100LEABG#U0, R5F100LFABG#U0, R5F100LGABG#U0, R5F100LHABG#U0, R5F100LJABG#U0 R5F100LCABG#W0, R5F100LDABG#W0, R5F100LEABG#W0,
	picity		G	R5F100LFABG#W0, R5F100LGABG#W0, R5F100LHABG#W0, R5F100LJABG#W0 R5F100LCGBG#U0, R5F100LDGBG#U0, R5F100LEGBG#U0, R5F100LFGBG#U0, R5F100LGGBG#U0, R5F100LHGBG#U0, R5F100LJGBG#U0
				R5F100LCGBG#W0, R5F100LDGBG#W0, R5F100LEGBG#W0, R5F100LFGBG#W0, R5F100LGGBG#W0, R5F100LHGBG#W0, R5F100LJGBG#W0
		Not mounted	A	R5F101LCABG#U0, R5F101LDABG#U0, R5F101LEABG#U0, R5F101LFABG#U0, R5F101LGABG#U0, R5F101LHABG#U0, R5F101LJABG#U0 R5F101LCABG#W0, R5F101LCABG#W0, R5F101LEABG#W0, R5F101LEABG#W0, R5F101LEABG#W0, R5F101LEABG#W0, R5F101LEABG#W0
				R5F101LFABG#W0, R5F101LGABG#W0, R5F101LHABG#W0, R5F101LJABG#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

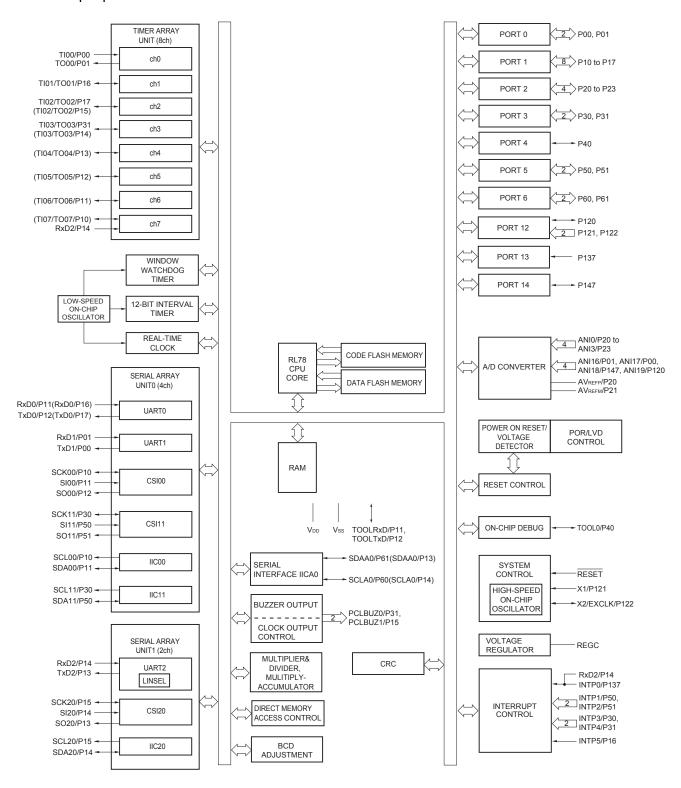
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Table 1-1. List of Ordering Part Numbers

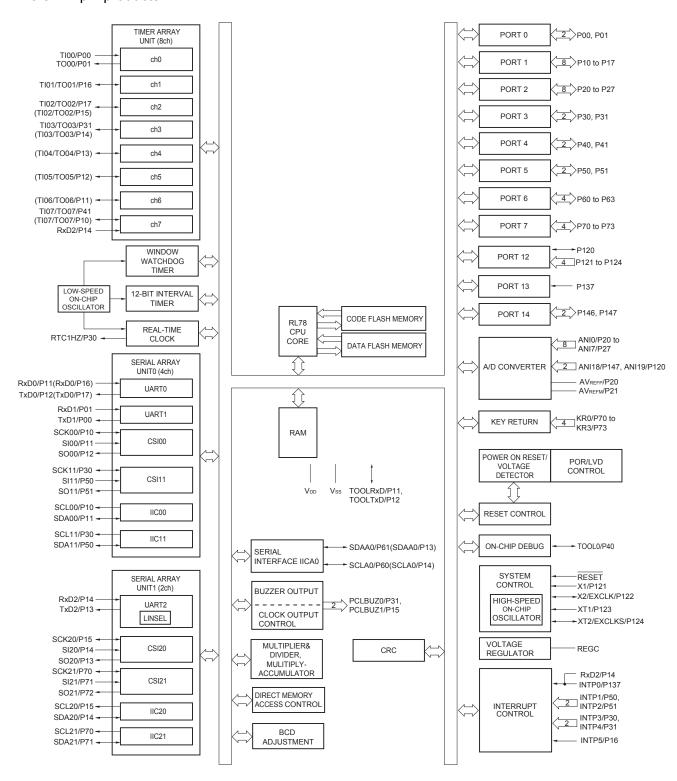
(10/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
80 pins	80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)	Mounted	А	R5F100MFAFA#V0, R5F100MGAFA#V0, R5F100MHAFA#V0, R5F100MJAFA#V0, R5F100MKAFA#V0, R5F100MLAFA#V0 R5F100MFAFA#X0, R5F100MGAFA#X0, R5F100MHAFA#X0, R5F100MJAFA#X0, R5F100MKAFA#X0, R5F100MLAFA#X0
			D	R5F100MFDFA#V0, R5F100MGDFA#V0, R5F100MHDFA#V0, R5F100MJDFA#V0, R5F100MKDFA#V0, R5F100MFDFA#X0, R5F100MFDFA#X0, R5F100MFDFA#X0, R5F100MJDFA#X0, R5F100MKDFA#X0, R5F100MLDFA#X0
			G	R5F100MFGFA#V0, R5F100MGGFA#V0, R5F100MHGFA#V0, R5F100MJGFA#V0 R5F100MFGFA#X0, R5F100MGGFA#X0, R5F100MJGFA#X0, R5F100MJGFA#X0
		Not mounted	A	R5F101MFAFA#V0, R5F101MGAFA#V0, R5F101MHAFA#V0, R5F101MJAFA#V0, R5F101MKAFA#V0, R5F101MLAFA#V0 R5F101MFAFA#X0, R5F101MGAFA#X0, R5F101MJAFA#X0, R5F101MKAFA#X0, R5F101MLAFA#X0
			D	R5F101MFDFA#V0, R5F101MGDFA#V0, R5F101MHDFA#V0, R5F101MJDFA#V0, R5F101MKDFA#V0, R5F101MLDFA#V0 R5F101MFDFA#X0, R5F101MGDFA#X0, R5F101MHDFA#X0, R5F101MJDFA#X0, R5F101MKDFA#X0, R5F101MJDFA#X0
	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	Mounted	A	R5F100MFAFB#V0, R5F100MGAFB#V0, R5F100MHAFB#V0, R5F100MJAFB#V0, R5F100MKAFB#V0, R5F100MHAFB#V0 R5F100MFAFB#X0, R5F100MGAFB#X0, R5F100MJAFB#X0, R5F100MKAFB#X0, R5F100MLAFB#X0
			D	R5F100MFDFB#V0, R5F100MGDFB#V0, R5F100MHDFB#V0, R5F100MJDFB#V0, R5F100MKDFB#V0, R5F100MLDFB#V0 R5F100MFDFB#X0, R5F100MGDFB#X0, R5F100MHDFB#X0, R5F100MJDFB#X0, R5F100MKDFB#X0, R5F100MLDFB#X0
			G	R5F100MFGFB#V0, R5F100MGGFB#V0, R5F100MHGFB#V0, R5F100MJGFB#V0 R5F100MFGFB#X0, R5F100MGGFB#X0, R5F100MJGFB#X0, R5F100MJGFB#X0
		Not mounted	А	R5F101MFAFB#V0, R5F101MGAFB#V0, R5F101MHAFB#V0, R5F101MJAFB#V0, R5F101MKAFB#V0, R5F101MFAFB#X0, R5F101MGAFB#X0, R5F101MHAFB#X0, R5F101MJAFB#X0, R5F101MKAFB#X0, R5F101MLAFB#X0
			D	R5F101MFDFB#V0, R5F101MGDFB#V0, R5F101MHDFB#V0, R5F101MJDFB#V0, R5F101MKDFB#V0, R5F101MLDFB#V0 R5F101MFDFB#X0, R5F101MGDFB#X0, R5F101MHDFB#X0, R5F101MJDFB#X0, R5F101MKDFB#X0, R5F101MLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.4 Pin Identification


ANI0 to ANI14, REGC: Regulator capacitance RESET: ANI16 to ANI26: Reset Analog input AVREFM: A/D converter reference RTC1HZ: Real-time clock correction clock potential (- side) input (1 Hz) output AVREFP: A/D converter reference RxD0 to RxD3: Receive data potential (+ side) input SCK00, SCK01, SCK10, EVDD0, EVDD1: Power supply for port SCK11, SCK20, SCK21, EVsso, EVss1: Ground for port SCLA0, SCLA1: Serial clock input/output EXCLK: External clock input (Main SCLA0, SCLA1, SCL00, SCL01, SCL10, SCL11, system clock) **EXCLKS**: External clock input SCL20,SCL21, SCL30, (Subsystem clock) SCL31: Serial clock output INTP0 to INTP11: Interrupt request from SDAA0, SDAA1, SDA00, peripheral SDA01, SDA10, SDA11, KR0 to KR7: Key return SDA20,SDA21, SDA30, P00 to P07: Port 0 SDA31: Serial data input/output P10 to P17: Port 1 SI00, SI01, SI10, SI11, P20 to P27: Port 2 SI20, SI21, SI30, SI31: Serial data input P30 to P37: Port 3 SO00, SO01, SO10, P40 to P47: Port 4 SO11, SO20, SO21, P50 to P57: Port 5 SO30, SO31: Serial data output P60 to P67: Port 6 TI00 to TI07, P70 to P77: Port 7 TI10 to TI17: Timer input P80 to P87: Port 8 TO00 to TO07. P90 to P97: Port 9 TO10 to TO17: Timer output P100 to P106: Port 10 TOOL0: Data input/output for tool P110 to P117: Port 11 TOOLRxD, TOOLTxD: Data input/output for external device P120 to P127: Port 12 TxD0 to TxD3: Transmit data P130, P137: Port 13 V_{DD}: Power supply P140 to P147: Port 14 Vss: Ground P150 to P156: Port 15 X1, X2: Crystal oscillator (main system clock) PCLBUZ0, PCLBUZ1: Programmable clock XT1, XT2: Crystal oscillator (subsystem clock) output/buzzer output

1.5.4 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
	EV _{DD0} , EV _{DD1}	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vıı	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		V
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo ₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		٧
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2,3}	V
	V _{Al2}	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (4/5)$

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -10.0 mA	EV _{DD0} –			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	EV _{DD0} – 0.7			V
		P117, P120, P125 to P127, P130, P140 to P147	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -2.0 mA	EV _{DD0} – 0.6			V
			$\label{eq:loss_loss} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EV _{DD0} – 0.5			٧
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $I_{\text{OH1}} = -1.0 \text{ mA}$	EV _{DD0} – 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	1.6 V \leq V _{DD} \leq 5.5 V, Іон2 = $-100~\mu$ A	V _{DD} - 0.5			V
Output voltage, low	V _{OL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 20~mA$			1.3	٧
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\label{eq:loss_state} \begin{cases} 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ \\ \text{Iol1} = 8.5 \text{ mA} \end{cases}$			0.7	>
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 3.0~\text{mA}$			0.6	>
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$\label{eq:local_decomposition} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OL1}} = 0.6 \ mA \end{array}$			0.4	V
			$1.6~V \leq EV_{DD0} < 5.5~V,$ $I_{OL1} = 0.3~mA$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	1.6 V \leq VDD \leq 5.5 V, lol2 = 400 μ A			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $I_{\text{OL3}} = 15.0 \text{ mA}$			2.0	٧
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V
			$2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD0} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 3.0~\textrm{mA}$			0.4	V
			$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $\text{Iol3} = 1.0 \text{ mA}$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (5/5)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μΑ
	ILIH2	P20 to P27, P1 <u>37,</u> P150 to P156, RESET	$V_I = V_{DD}$				1	μΑ
	I_{LIH3} P121 to P124 $V_{I} = V_{DD}$ In input port or external clock input					1	μΑ	
				In resonator connection			10	μΑ
Input leakage current, low	lut1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EVsso				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	R∪	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vı = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
Current Note 1		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		2.3		mA
			modo		Nomal	V _{DD} = 5.0 V		5.2	8.5	mA
					operation	V _{DD} = 3.0 V		5.2	8.5	mA
				fin = 24 MHz Note 3	Nomal	V _{DD} = 5.0 V		4.1	6.6	mA
					operation	V _{DD} = 3.0 V		4.1	6.6	mA
				fin = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	4.7	mA
					operation	V _{DD} = 3.0 V		3.0	4.7	mA
		LS (low- f _{IH} = 8 MHz Note 3 Normal	V _{DD} = 3.0 V		1.3	2.1	mA			
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.3	2.1	mA
			LV (low-	fin = 4 MHz Note 3	Nomal	V _{DD} = 3.0 V		1.3	1.8	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.3	1.8	mA
		speed r	HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.5	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.6	5.7	mA
			mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.5	mA
			V _{DD} = 3.0 V	operation	Resonator connection		3.6	5.7	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.2	mA
			V _{DD} = 5.0 V	operation	Resonator connection		2.1	3.2	mA	
			f _{MX} = 10 MHz ^{Note 2} , Normal	_	Square wave input		2.1	3.2	mA	
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.2	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2},$	MHz ^{Note 2} , Normal	Square wave input		1.2	2.0	mA
			speed main) mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.0	mA
			modo	$f_{MX} = 8 MHz^{Note 2}$	Normal	Square wave input		1.2	2.0	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	mA
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		4.8	5.9	μA
			clock operation	T _A = -40°C	operation	Resonator connection		4.9	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μΑ
				T _A = +25°C	operation	Resonator connection		5.0	6.0	μΑ
				fsuB = 32.768 kHz	Normal	Square wave input		5.0	7.6	μΑ
				Note 4	operation	Resonator connection		5.1	7.7	μΑ
				T _A = +50°C	Nies 1	0		5 0	0.0	
			$\begin{aligned} f_{SUB} &= 32.768 \text{ kHz} \\ \text{Note 4} \end{aligned}$ $T_{A} &= +70^{\circ}\text{C}$ $f_{SUB} &= 32.768 \text{ kHz} \\ \text{Note 4} \end{aligned}$	Normal operation	Square wave input		5.2	9.3	μA	
				T _A = +70°C	Sporador1	Resonator connection		5.3	9.4	μΑ
					Normal operation	Square wave input		5.7	13.3	μA
				T _A = +85°C	υρειαιιστ	Resonator connection		5.8	13.4	μA

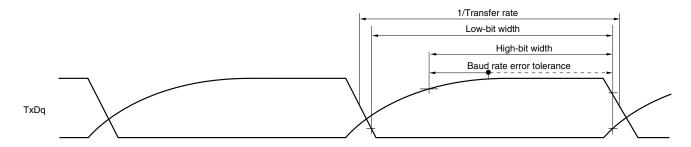
(Notes and Remarks are listed on the next page.)

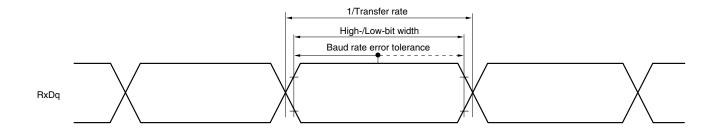
- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz


- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C


- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 4 \text{ MHz}$

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

UART mode bit width (during communication at different potential) (reference)

- $\begin{tabular}{ll} \begin{tabular}{ll} \bf R_b[\Omega]: Communication line (TxDq) pull-up resistance, \\ C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage \\ \end{tabular}$
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(2) I2C fast mode

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \le EV_{DD0} \le 5.5~V$	0	400	0	400	0	400	kHz
		fc∟κ≥ 3.5 MHz	1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	400	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
		$1.8~V \le EV_{DD0} \le 5.5~V$		0.6		0.6		0.6		μS
Hold time when SCLA0 =	tLOW	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1.3		1.3		1.3		μS
" <u>L</u> "		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1.3		1.3		1.3		μS
Hold time when SCLA0 =	t HIGH	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
"H"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μS
Data setup time	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	100		100		100		μS
(reception)		1.8 V ≤ EV _{DD0} ≤ 5.8	5 V	100		100		100		μS
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
(transmission)Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
Setup time of stop	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.$	5 V	0.6		0.6		0.6		μS
condition		1.8 V ≤ EVDD0 ≤ 5.5 V		0.6		0.6		0.6		μS
Bus-free time	t BUF	2.7 V ≤ EV _{DD0} ≤ 5.5 V		1.3		1.3		1.3		μS
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.8$	5 V	1.3		1.3		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

<R>

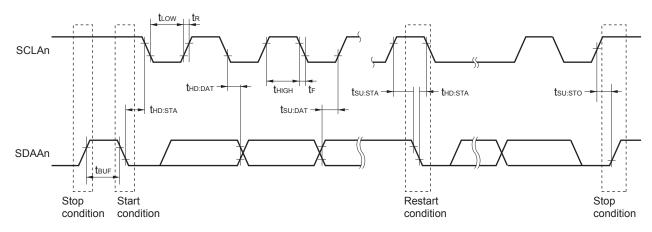
<R>

(3) I2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Con	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fcLK≥ 10 MHz	$2.7~V \le EV_{DD0} \le 5.5~V$	0	1000		-	_	_	kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5$	5 V	0.26		_		_	_	μS
Hold time ^{Note 1}	thd:STA	$2.7~V \leq EV_{DD0} \leq 5.5$	5 V	0.26		_		_		μS
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD0} ≤ 5.5 V		0.5		_		_		μs
Hold time when SCLA0 = "H"	tнідн	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.26		_	-	_		μS
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	50		_	-	_		μS
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \le EV_{DD0} \le 5.5$	5 V	0	0.45	_	-	_		μS
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.26			-	_		μS
Bus-free time	t BUF	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.5		_	-		_	μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \ pF, \ R_b = 1.1 \ k\Omega$

IICA serial transfer timing

Remark n = 0, 1

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Conditions HS (high-speed main) Mode			. ,	Unit
					MIN.	MAX.	
Transfer rate		Reception	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$			fmck/12 Note 1	bps
			V , $2.7 \ V \le V_b \le 4.0 \ V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fMcK = fclk		2.6	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$	2.7 V ≤ EV _{DD0} < 4.0		fmck/12 Note 1	bps
			$V,$ $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps
	2.4 V ≤ EV _{DD0} < 3.3 V,				fMCK/12 Notes 1,2	bps	
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when EVDDO < VDD.

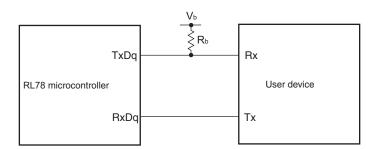
 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

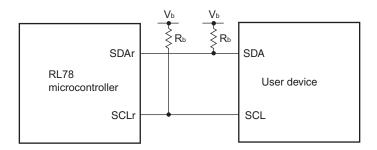
- Remarks 1. V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

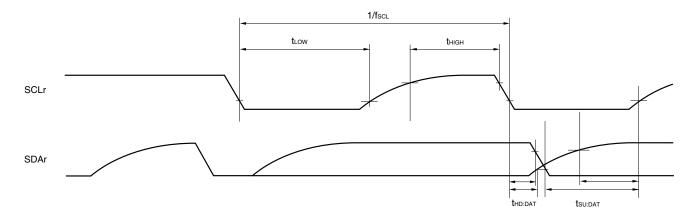
Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


UART mode connection diagram (during communication at different potential)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01, 02, 10, 12, 13)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage							
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = V _{BGR}						
Input channel	Reference voltage (–) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AVREFM						
ANI0 to ANI14	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .						
ANI16 to ANI26	Refer to 3.6.1 (2) .								
Internal reference voltage	Refer to 3.6.1 (1) .		-						
Temperature sensor output									
voltage									

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2 to ANI14	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AVREFP = VDD Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	Vain	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 4			V

(Notes are listed on the next page.)

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.