

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

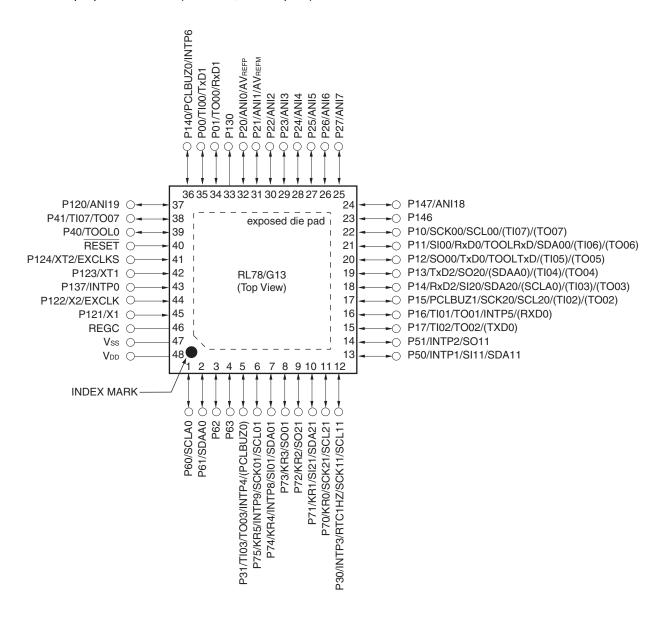
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101fdafp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

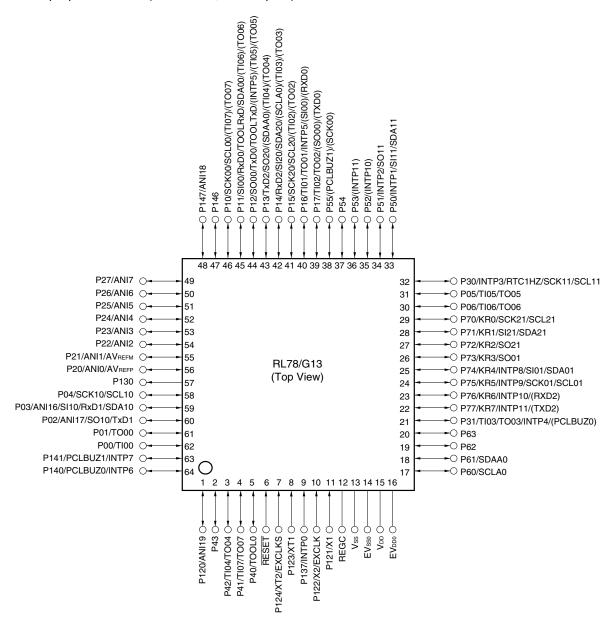
(2/12)


				(2/12)
Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application	
			Note	
25 pins	25-pin plastic	Mounted	Α	R5F1008AALA#U0, R5F1008CALA#U0, R5F1008DALA#U0,
25 pins	· · ·	Mounted	7.	R5F1008EALA#U0
	WFLGA (3 \times 3 mm,			R5F1008AALA#W0, R5F1008CALA#W0, R5F1008DALA#W0,
	0.5 mm pitch)			R5F1008EALA#W0
			G	R5F1008AGLA#U0, R5F1008CGLA#U0, R5F1008DGLA#U0,
				R5F1008EGLA#U0
				R5F1008AGLA#W0, R5F1008CGLA#W0, R5F1008DGLA#W0,
				R5F1008EGLA#W0
		Not	Α	R5F1018AALA#U0, R5F1018CALA#U0, R5F1018DALA#U0,
i		mounted		R5F1018EALA#U0
				R5F1018AALA#W0, R5F1018CALA#W0, R5F1018DALA#W0,
				R5F1018EALA#W0
30 pins	30-pin plastic LSSOP	Mounted	Α	R5F100AAASP#V0, R5F100ACASP#V0, R5F100ADASP#V0,
i	(7.62 mm (300), 0.65			R5F100AEASP#V0, R5F100AFASP#V0, R5F100AGASP#V0
	mm pitch)			R5F100AAASP#X0, R5F100ACASP#X0, R5F100ADASP#X0
	min piton)		_	R5F100AEASP#X0, R5F100AFASP#X0, R5F100AGASP#X0
			D	R5F100AADSP#V0, R5F100ACDSP#V0, R5F100ADDSP#V0,
				R5F100AEDSP#V0, R5F100AFDSP#V0, R5F100AGDSP#V0
				R5F100AADSP#X0, R5F100ACDSP#X0, R5F100ADDSP#X0, R5F100AEDSP#X0, R5F100AFDSP#X0, R5F100AGDSP#X0
			G	R5F100AGSP#V0, R5F100ACGSP#V0,
			G	R5F100ADGSP#V0, R5F100ACGSF#V0,
				R5F100AFGSP#V0, R5F100AGGSP#V0,
				R5F100AAGSP#X0, R5F100ACGSP#X0,
				R5F100ADGSP#X0,R5F100AEGSP#X0,
				R5F100AFGSP#X0, R5F100AGGSP#X0
		Not	Α	R5F101AAASP#V0, R5F101ACASP#V0, R5F101ADASP#V0,
				R5F101AEASP#V0, R5F101AFASP#V0, R5F101AGASP#V0
		mounted		R5F101AAASP#X0, R5F101ACASP#X0, R5F101ADASP#X0,
				R5F101AEASP#X0, R5F101AFASP#X0, R5F101AGASP#X0
			D	R5F101AADSP#V0, R5F101ACDSP#V0, R5F101ADDSP#V0,
				R5F101AEDSP#V0, R5F101AFDSP#V0, R5F101AGDSP#V0
				R5F101AADSP#X0, R5F101ACDSP#X0, R5F101ADDSP#X0,
				R5F101AEDSP#X0, R5F101AFDSP#X0, R5F101AGDSP#X0
32 pins	32-pin plastic	Mounted	Α	R5F100BAANA#U0, R5F100BCANA#U0, R5F100BDANA#U0,
	HWQFN (5 × 5 mm,			R5F100BEANA#U0, R5F100BFANA#U0, R5F100BGANA#U0
	0.5 mm pitch)			R5F100BAANA#W0, R5F100BCANA#W0, R5F100BDANA#W0,
	0.5 min pitch)			R5F100BEANA#W0, R5F100BFANA#W0, R5F100BGANA#W0
			D	R5F100BADNA#U0, R5F100BCDNA#U0, R5F100BDDNA#U0,
				R5F100BEDNA#U0, R5F100BFDNA#U0, R5F100BGDNA#U0
				R5F100BADNA#W0, R5F100BCDNA#W0, R5F100BDDNA#W0,
				R5F100BEDNA#W0, R5F100BFDNA#W0, R5F100BGDNA#W0
			G	R5F100BAGNA#U0, R5F100BCGNA#U0, R5F100BDGNA#U0,
				R5F100BEGNA#U0, R5F100BFGNA#U0, R5F100BGGNA#U0
				R5F100BAGNA#W0, R5F100BCGNA#W0, R5F100BDGNA#W0,
			_	R5F100BEGNA#W0, R5F100BFGNA#W0, R5F100BGGNA#W0
		Not	Α	R5F101BAANA#U0, R5F101BCANA#U0, R5F101BDANA#U0,
		mounted		R5F101BEANA#U0, R5F101BFANA#U0, R5F101BGANA#U0
				R5F101BAANA#W0, R5F101BCANA#W0, R5F101BDANA#W0,
			D	R5F101BEANA#W0, R5F101BFANA#W0, R5F101BGANA#W0
			٦ ا	R5F101BADNA#U0, R5F101BCDNA#U0, R5F101BDDNA#U0, R5F101BEDNA#U0, R5F101BEDNA#U0
1				R5F101BADNA#W0, R5F101BCDNA#W0, R5F101BDDNA#W0,
				R5F101BEDNA#W0, R5F101BCDNA#W0, R5F101BBDNA#W0,
			1	TOT TO TOEDINA#WO, NOT TO TOEDINA#WO, NOT TO TOEDINA#WO

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)

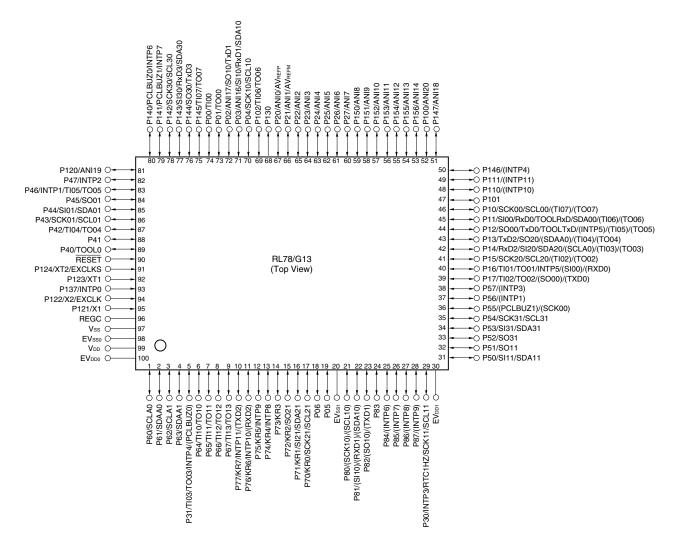

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$

1.3.11 64-pin products

- 64-pin plastic LQFP (12 x 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)



- Cautions 1. Make EVsso pin the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDDO pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

• 100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch)

- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EVsso and EVss1 pins to separate ground lines.
 - 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

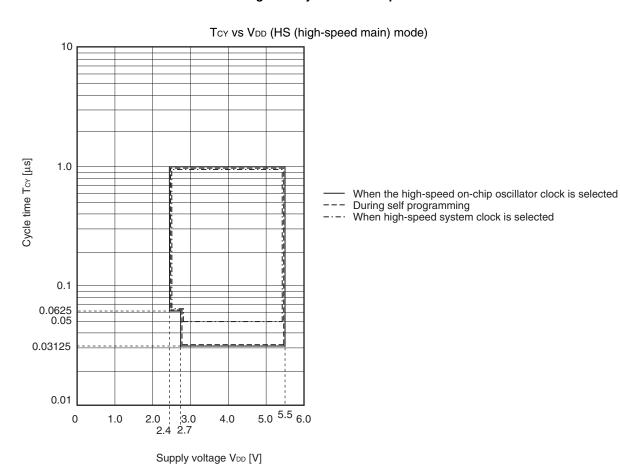
HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

Note The following conditions are required for low voltage interface when EVDDO < VDD


 $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V} : \text{MIN. } 250 \text{ ns}$

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Condit	ions	, ,	h-speed Mode	,	/-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	20 MHz < fмск	8/fмск		_		_		ns
Note 5		V	fмск ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5$	16 MHz < fмск	8/fмск		_		_		ns
		V	fмск ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
	1.8 V ≤ EV _{DD0} ≤ 5.5 V			6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tkH2, tkL2	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 7		tксү2/2 - 7		tkcy2/2 -7		ns
		$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксу2/2 — 8		tксу2/2 - 8		tkcy2/2 -8		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 18		tксу2/2 - 18		tксу2/2 - 18		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 — 66		tксү2/2 - 66		tkcy2/2 - 66		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		tксү2/2 - 66		tkcy2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

(5) During communication at same potential (simplified I²C mode) (1/2)

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	` `	h-speed Mode	`	v-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V \leq EV _{DD0} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		250 Note 1		250 Note 1		250 Note 1	kHz
		1.6 V \leq EV _{DD0} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ		_		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	_		1850		1850		ns
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		1.8 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	_		1850		1850		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions		speed	high- I main) ode		/-speed Mode	voltage	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fack Note 4		5.3		1.3		0.6	Mbps
			$1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. Use it with EVDD0≥Vb.
- 3. The following conditions are required for low voltage interface when $E_{VDDO} < V_{DD}$.

 $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 2.6 Mbps $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. $V_b[V]$: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

(Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high main)	•	,	/-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ &1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ &C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{aligned} $	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
Data hold time (transmission)	thd:dat	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	0	405	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		V _{DD}	٧
		ANI16 to ANI26		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	gh-speed main) mode)		V _{BGR} Note 4		V
		Temperature sensor output (2.4 V ≤ VDD ≤ 5.5 V, HS (hi	-		VTMPS25 Note 4	1	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (2/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P37,	$2.7~V \leq EV_{DD0} < 4.0~V$			15.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (When duty ≤ 70% Note 3)	$2.4~\text{V} \leq \text{EV}_{\text{DD0}} < 2.7~\text{V}$			8.5 Note 2 15.0 Note 2 40.0	mA
		Total of P05, P06, P10 to P17, P30,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P31, P50 to P57, P60 to P67,	$2.7~V \leq EV_{DD0} < 4.0~V$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 $ (\text{When duty} \leq 70\%^{\text{Note 3}}) $	$2,4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				80.0	mA
	lo _{L2}	Per pin for P20 to P27, P150 to P156			_	0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.4~V \leq V_{DD} \leq 5.5~V$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (3/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD0}		EV _{DD0}	V
	V _{IH2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	2.2		EV _{DD0}	٧
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	2.0		EV _{DD0}	V
			TTL input buffer 2.4 V ≤ EVDD0 < 3.3 V	1.5		EV _{DD0}	V
	V _{IH3}	P20 to P27, P150 to P156		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60 to P63		0.7EV _{DD0}		6.0	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0.8V _{DD}		V _{DD}	V
Input voltage, low	V _{IL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD0}	V
	V _{IL2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	٧
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	V _{IL3}	P20 to P27, P150 to P156		0		0.3V _{DD}	V
Input voltage,	VIL4	P60 to P63		0		0.3EV _{DD0}	V
	V _{IL5}	P121 to P124, P137, EXCLK, EXCL	(S, RESET	0		0.2V _{DD}	V

Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

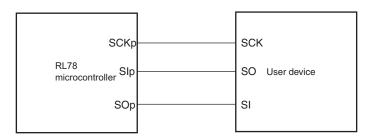
- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

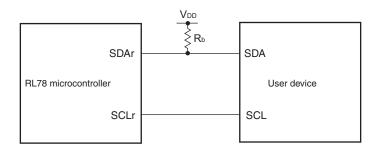
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	HS (high-speed ma	in) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	16/fмск		ns
		V	fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5	16 MHz < fмск	16/fмск		ns
		V	fмck ≤ 16 MHz	12/fмск		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		16/fмск		ns
				12/fмcк and 1000		ns
SCKp high-/low-level	t кн2,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ M}$	V	tkcy2/2 – 14		ns
width	t _{KL2}	$2.7~V \leq EV_{DD0} \leq 5.5$	V	tkcy2/2 – 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5	V	tkcy2/2 - 36		ns
SIp setup time	tsık2	$2.7~V \leq EV_{DD0} \leq 5.5$	V	1/fмск+40		ns
(to SCKp↑) Note 1		$2.4~V \leq EV_{DD0} \leq 5.5$	V	1/fмск+60		ns
SIp hold time (from SCKp↑) Note 2	tksi2	2.4 V ≤ EV _{DD0} ≤ 5.5	V	1/fмск+62		ns
Delay time from SCKp↓ to SOp output	tkso2	C = 30 pF Note 4	$2.7~V \leq EV_{DD0} \leq 5.5$ V		2/fмск+66	ns
Note 3			$2.4~V \leq EV_{DD0} \leq 5.5$ V		2/fмск+113	ns

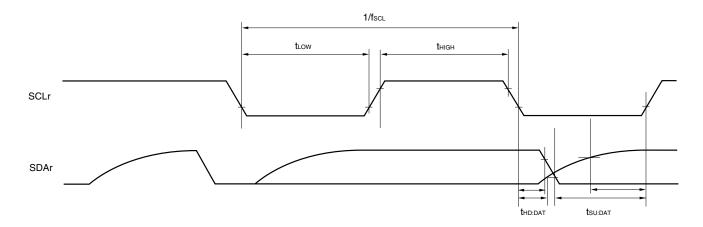
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency


 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10 to 13))


CSI mode connection diagram (during communication at same potential)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance

- 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
- 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

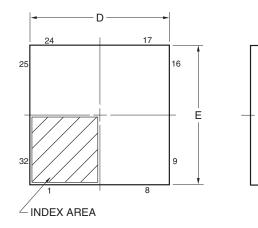
3.8 Flash Memory Programming Characteristics

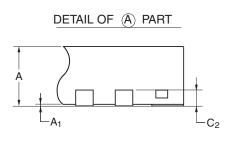
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

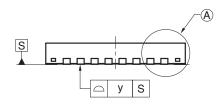
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4~V \le VDD \le 5.5~V$	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years TA = 85°C Note 4	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C Note 4	100,000			
		Retained for 20 years TA = 85°C Note 4	10,000			

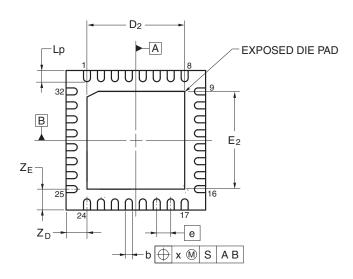
- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library.
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps


4.5 32-pin Products


R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F100BGGNA, R5F100BGNA, R5F100BGN

JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

Referance Symbol	Dimension in Millimeters			
	Min	Nom	Max	
D	4.95	5.00	5.05	
E	4.95	5.00	5.05	
А			0.80	
A ₁	0.00	_		
b	0.18	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
х			0.05	
у			0.05	
Z _D	_	0.75	_	
Z _E		0.75		
C ₂	0.15	0.20	0.25	
D ₂		3.50	_	
E ₂		3.50		

©2013 Renesas Electronics Corporation. All rights reserved.

RL78/G13 Data Sheet

			Description	
Rev.	Date	Page	Summary	
1.00	Feb 29, 2012	-	First Edition issued	
2.00	Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count	
		25	corrected.	
		25 40, 42, 44	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.	
			1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-choscillator, and General-purpose register corrected.	
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.	
		59, 63, 67	Descriptions of Note 8 in a table corrected.	
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.	
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.	
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.	
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.	
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.	
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.	
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.	
3.00	Aug 02, 2013	1	Modification of 1.1 Features	
		3	Modification of 1.2 List of Part Numbers	
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution	
		16 to 32	Modification of package type in 1.3.1 to 1.3.14	
		33	Modification of description in 1.4 Pin Identification	
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions	
		55	Modification of description in table of Absolute Maximum Ratings (T _A = 25°C)	
			Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics	
		57	Modification of table in 2.2.2 On-chip oscillator characteristics	
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics	
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics	
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products	
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products	
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100- pin products	
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products	
		75	Modification of (4) Peripheral Functions (Common to all products)	
		77	Modification of table in 2.4 AC Characteristics	
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		80	Modification of figures of AC Timing Test Points and External System Clock Timing	

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- nt may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc.

4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141