Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 31 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 10x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LQFP | | Supplier Device Package | 44-LQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101feafp-v0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Table 1-1. List of Ordering Part Numbers (3/12) | Pin
count | Package | Data flash | Fields of
Application | Ordering Part Number | |--------------|---|----------------|--------------------------|---| | | | | Note | | | 36 pins | 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch) | Mounted | A
G | R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CBALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0 R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CBA#U0, R5F100CBA#U0 R5F100CAGLA#W0, R5F100CAGLA#W0 R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0 | | | | Not
mounted | A | R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CGALA#U0 R5F101CAALA#W0, R5F101CCALA#W0, R5F101CDALA#W0, | | 40 pins | 40-pin plastic HWQFN
(6 × 6 mm, 0.5 mm
pitch) | Mounted | A | R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0 R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, | | | | | D | R5F100EHANA#W0 R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0 | | | | | G | R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EFGNA#W0, R5F100EHGNA#W0 | | | | Not
mounted | A
D | R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, R5F101EHANA#U0 R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EGANA#W0, R5F101EHANA#W0 R5F101EHANA#W0 R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EEDNA#U0, R5F101EEDNA#U0, R5F101EEDNA#U0, R5F101EHDNA#U0 R5F101EADNA#W0, R5F101ECDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, R5F101EDDNA#W0, | Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. # 1.3.2 24-pin products • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$ # 1.3.4 30-pin products • 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. # 1.3.8 44-pin products • 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. # 1.5.9 48-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C - When the high-speed on-chip oscillator clock is selected - During self programming When high-speed system clock is selected # Tcy vs Vdd (LV (low-voltage main) mode) - When the high-speed on-chip oscillator clock is selected During self programming - --- When high-speed system clock is selected # Simplified I²C mode mode connection diagram (during communication at same potential) # Simplified I²C mode serial transfer timing (during communication at same potential) - **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14) - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), - n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13) # (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$ | Parameter | Symbol | ĺ | ≤ VDD ≤ 5.5 V, Vss = | HS (| high-
main)
ode | LS (low | | - | -voltage
Mode | Unit | |------------------------|--|---|-----------------------------------|-------------|-----------------------|-------------|------|-------------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time Note 1 | | $4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$
$2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$ | 24 MHz < fмск | 14/
fмск | | _ | | _ | | ns | | | | | 20 MHz < fмcκ ≤ 24 MHz | 12/
fмск | | | | | | ns | | | | 8 | 8 MHz < fмcк ≤ 20 MHz | 10/
fмск | | _ | | _ | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 8/fмск | | 16/
fмск | | _ | | ns | | | | | fmck ≤ 4 MHz | 6/fмск | | 10/
fмск | | 10/
fмск | | ns | | | $2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$
$2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ | 24 MHz < fмск | 20/
fмск | | _ | | _ | | ns | | | | | 20 MHz < fмcк ≤ 24 MHz | 16/
fмск | | _ | | _ | | ns | | | | | | 16 MHz < fмcк ≤ 20 MHz | 14/
fмск | | _ | | _ | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 12/
fмск | | _ | | _ | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 8/fмск | | 16/
fмск | | _ | | ns | | | | | fмск ≤ 4 MHz | 6/ƒмск | | 10/
fмск | | 10/
fмск | | ns | | | | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$ | 24 MHz < fмск | 48/
fмск | | _ | | _ | | ns | | | | 2 | 20 MHz < fмcк ≤ 24 MHz | 36/
fмск | | _ | | _ | | ns | | | | | 16 MHz < fмcк ≤ 20 MHz | 32/
fмск | | _ | | _ | | ns | | | | | 8 MHz < f _{MCK} ≤ 16 MHz | 26/
fмск | | | | | | ns | | | | | 4 MHz < f _{MCK} ≤ 8 MHz | 16/
fмск | | 16/
fмск | | _ | | ns | | | | | fмcк ≤ 4 MHz | 10/
fмск | | 10/
fмск | | 10/
fмск | | ns | (Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.) (3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$ | Parameter | Symbol | Conditio | ns | MIN. | TYP. | MAX. | Unit | |--|---|---|---------------------------------------|--------|----------------|-------------------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | 1.2 | ±7.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | 1.2 | ±10.5 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μS | | | | Target pin: ANI0 to ANI14, ANI16 to ANI26 | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875 | | 39 | μS | | | | ANI16 to ANI26 | $1.8~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ | 57 | | 95 | μS | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375 | | 39 | μS | | | | Target pin: Internal | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625 | | 39 | μS | | | reference voltage, and
temperature sensor output
voltage (HS (high-speed
main) mode) | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±0.85 | %FSR | | Full-scale error ^{Notes 1, 2} | Ers | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±0.85 | %FSR | | Integral linearity errorNote 1 | ILE | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±4.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±6.5 | LSB | | Differential linearity error Note 1 | DLE | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±2.5 | LSB | | Analog input voltage | VAIN | ANI0 to ANI14 | • | 0 | | V _{DD} | V | | | | ANI16 to ANI26 | | 0 | | EV _{DD0} | ٧ | | | | Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) | | | VBGR Note 4 | | V | | | | Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (hi | • | | VTMPS25 Note 4 | 1 | V | Notes 1. Excludes quantization error (±1/2 LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.). - 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics. #### 3.2 Oscillator Characteristics #### 3.2.1 X1, XT1 oscillator characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ | Parameter | Resonator | Conditions | MIN. | TYP. | MAX. | Unit | |--|--------------------|---------------------------------------|------|--------|------|------| | X1 clock oscillation frequency (fx) ^{Note} | Ceramic resonator/ | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 1.0 | | 20.0 | MHz | | | crystal resonator | $2.4~V \leq V_{DD} < 2.7~V$ | 1.0 | | 16.0 | MHz | | XT1 clock oscillation frequency (fx) ^{Note} | Crystal resonator | | 32 | 32.768 | 35 | kHz | **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics. Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used. Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator. #### 3.2.2 On-chip oscillator characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ | Oscillators | Parameters | | Conditions | MIN. | TYP. | MAX. | Unit | |--|------------|----------------|--------------------------------|------|------|------|------| | High-speed on-chip oscillator clock frequency Notes 1, 2 | fін | | | 1 | | 32 | MHz | | High-speed on-chip oscillator | | –20 to +85 °C | $2.4~V \leq V_{DD} \leq 5.5~V$ | -1.0 | | +1.0 | % | | clock frequency accuracy | | –40 to −20 °C | $2.4~V \leq V_{DD} \leq 5.5~V$ | -1.5 | | +1.5 | % | | | | +85 to +105 °C | $2.4~V \leq V_{DD} \leq 5.5~V$ | -2.0 | | +2.0 | % | | Low-speed on-chip oscillator clock frequency | fı∟ | | | | 15 | | kHz | | Low-speed on-chip oscillator clock frequency accuracy | | | | -15 | | +15 | % | **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register. 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time. $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}. \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5) | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------------|--|---|--|-------------------------|------|------|------| | Output voltage,
high | V _{OH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA | EV _{DD0} – 0.7 | | | V | | | D00 to D07 D100 to D100 D110 to | $\label{eq:loss_problem} \begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$ | EV _{DD0} – 0.6 | | | V | | | | | P140 to P147 | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OH1} = -1.5~mA$ | EV _{DD0} – 0.5 | | | V | | | V _{OH2} | P20 to P27, P150 to P156 | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH2} = -100 \ \mu \text{ A}$ | V _{DD} – 0.5 | | | V | | Output voltage, low | P37, P40 to P47, P50 to P57, P64
to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P106, P110 to | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$ | | | 0.7 | V | | | | | P90 to P97, P100 to P106, P110 to | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$ | | | 0.6 | V | | | | P117, P120, P125 to P127, P130,
P140 to P147 | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$ | | | 0.4 | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$ | | | 0.4 | V | | | V _{OL2} | P20 to P27, P150 to P156 | 2.4 V \leq V _{DD} \leq 5.5 V, I _{DL2} = 400 μ A | | | 0.4 | V | | | Vоьз | | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$ | | | 2.0 | V | | | | | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$ | | | 0.4 | V | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 3.0~mA$ | | | 0.4 | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$ | | | 0.4 | V | Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C #### (3) Peripheral Functions (Common to all products) # $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | MIN. | TYP. | MAX. | Unit | |--|-----------------------|----------------------------|---|------|------|-------|------| | Low-speed on-
chip oscillator
operating
current | FIL
Note 1 | | | | 0.20 | | μΑ | | RTC operating current | IRTC
Notes 1, 2, 3 | | | | 0.02 | | μΑ | | 12-bit interval timer operating current | IIT
Notes 1, 2, 4 | | | | 0.02 | | μА | | Watchdog timer operating current | WDT
Notes 1, 2, 5 | fı∟ = 15 kHz | | | 0.22 | | μΑ | | A/D converter operating | ADC
Notes 1, 6 | When conversion at maximum | Normal mode, AVREFP = VDD = 5.0 V | | 1.3 | 1.7 | mA | | current | | speed | Low voltage mode, AVREFP = VDD = 3.0 V | | 0.5 | 0.7 | mA | | A/D converter
reference
voltage current | IADREF
Note 1 | | | | 75.0 | | μΑ | | Temperature sensor operating current | ITMPS
Note 1 | | | | 75.0 | | μA | | LVD operating current | ILVD
Notes 1, 7 | | | | 0.08 | | μА | | Self
programming
operating
current | FSP
Notes 1, 9 | | | | 2.50 | 12.20 | mA | | BGO operating current | BGO
Notes 1, 8 | | | | 2.50 | 12.20 | mA | | SNOOZE | Isnoz | ADC operation | The mode is performed Note 10 | | 0.50 | 1.10 | mA | | operating current | Note 1 | | The A/D conversion operations are performed, Loe voltage mode, AVREFP = VDD = 3.0 V | | 1.20 | 2.04 | mA | | | | CSI/UART operation | on | | 0.70 | 1.54 | mA | #### Notes 1. Current flowing to the VDD. - 2. When high speed on-chip oscillator and high-speed system clock are stopped. - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock. - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. - **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates. # (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | HS (high-speed | d main) Mode | Unit | | |---|--------|--|---|---|--------------|------|----| | | | | | MIN. | MAX. | | | | SCKp cycle time | tkcy1 | tkcy1 | tkcy1 ≥ 4/fclk | $4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0$ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$ | 600 | | ns | | | | | $2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7$ $V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$ | 1000 | | ns | | | | | | $2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0$ $V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$ | 2300 | | ns | | | SCKp high-level width | tкн1 | | $4.0~V \leq EV_{DDO} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$ | | | ns | | | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$ | | | ns | | | | | $2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$ | | tксу1/2 — 916 | | ns | | | SCKp low-level width | tĸL1 | | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$ | | | ns | | | $C_b = 30 \text{ pF},$ $2.4 \text{ V} \leq \text{EV}_D$ | | $2.7 \text{ V} \leq \text{EV}_{DD}$
$C_b = 30 \text{ pF, F}$ | 0 < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, $R_b = 2.7 \text{ k}\Omega$ | tkcy1/2 - 36 | | ns | | | | | $2.4 \text{ V} \leq \text{EV}_{DD}$
$C_b = 30 \text{ pF, F}$ | $_{0} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V,$ $R_{b} = 5.5 \ k\Omega$ | tксу1/2 — 100 | | ns | | Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vpd tolerance (for the 20- to 52-pin products)/EVpd tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed two pages after the next page.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. # 4.5 32-pin Products R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F100BGGNA, R5F100BGNA, R5F100BGN | JEITA Package code | RENESAS code | Previous code | MASS (TYP.)[g] | |--------------------|--------------|----------------|----------------| | P-HWQFN32-5x5-0.50 | PWQN0032KB-A | P32K8-50-3B4-5 | 0.06 | | Referance | Dimens | ion in Mil | limeters | |----------------|--------|------------|----------| | Symbol | Min | Nom | Max | | D | 4.95 | 5.00 | 5.05 | | E | 4.95 | 5.00 | 5.05 | | Α | | | 0.80 | | A ₁ | 0.00 | _ | | | b | 0.18 | 0.25 | 0.30 | | е | | 0.50 | | | Lp | 0.30 | 0.40 | 0.50 | | х | | | 0.05 | | у | | | 0.05 | | Z _D | | 0.75 | | | Z _E | | 0.75 | | | C ₂ | 0.15 | 0.20 | 0.25 | | D ₂ | | 3.50 | _ | | E ₂ | | 3.50 | | \bigcirc 2013 Renesas Electronics Corporation. All rights reserved. R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LKAFB, R5F100LLAFB R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB, R5F101LJAFB, R5F101LKAFB, R5F101LLAFB R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LDFB, R5F100LKDFB, R5F100LKDFB Previous Code MASS (TYP.) [g] R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB, R5F101LJDFB, R5F101LKDFB, R5F101LLDFB JEITA Package Code R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB **RENESAS** Code | | 0E11711 dollago oodo | 1121120/10 0000 | 1 1011040 0040 | 1417 (50 (1111) [9] | | |----|--|-----------------|-----------------------|---|----------------------| | | P-LFQFP64-10x10-0.50 | PLQP0064KF-A | P64GB-50-UEU-2 | 0.35 | 1 | | | | I. | | | _ | | | | | | | | | - | HD | | - | | | | | D— | - | | | | | | Ī | | | | | | | | | + | detail of lead | end | | | | | | | | | | 48 | 33 | |) | | | | 49 | 32 | _ | | A3 | | | | | 5 | | c — | | | | | \supset $ $ $ $ $ $ | / , \ |] | | | | | 그 느 | | - | | | | | _ | 1 1 | † | | | | | | $\theta \rightarrow \uparrow $ | ⊢ L | | | <u> </u> | | E HE | | ⊷ Lp | | | | | | | -r | | | | | = | ← L1 → | | | | | | | | | | | | | = | | | | | | | | | (UNIT:mm) | | | | 17 | | ITEM DIM | IENSIONS | | | 64 | 17 | _ | | 0.00±0.20 | | | 1 | 16 | , | E 10 | 0.00±0.20 | | | | | | HD 12 | 2.00±0.20 | | ZE | | │ | <u> </u> | | 2.00±0.20 | | | | | | | 60 MAX. | | - | - ZD | <u>→</u> e | | | 10±0.05 | | | - b | x M S | | | 40±0.05 | | | <u>Ψ</u> | | А¬ | | 22±0.05 | | | | | A2 ¬ | | 145 +0.055
-0.045 | | | 1 | | | L 0. | | | | |) | | In o | 60±0.15 | | 6 | (| нннннн — | \ | | 00±0.15
00±0.20 | | | | | | | +5°
-3° | | | | | | e 0. | | | | └─ y S | | A1 [_] | x 0. | | | | | | | y 0. | | | | | | | 70 4 | 0.5 | ©2012 Renesas Electronics Corporation. All rights reserved. ZD ZΕ 1.25 1.25 NOTE Each lead centerline is located within 0.08 mm of its true position at maximum material condition. # 4.12 80-pin Products R5F100MFAFA, R5F100MGAFA, R5F100MHAFA, R5F100MJAFA, R5F100MKAFA, R5F100MLAFA R5F101MFAFA, R5F101MGAFA, R5F101MHAFA, R5F101MJAFA, R5F101MKAFA, R5F101MLAFA R5F100MFDFA, R5F100MGDFA, R5F100MHDFA, R5F100MJDFA, R5F100MKDFA, R5F101MLDFA R5F101MFDFA, R5F101MGDFA, R5F101MHDFA, R5F101MJDFA, R5F101MKDFA, R5F101MLDFA R5F100MFGFA, R5F100MGGFA, R5F100MHGFA, R5F100MJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP80-14x14-0.65 | PLQP0080JB-E | P80GC-65-UBT-2 | 0.69 | S detail of lead end | Referance | Dimension in Millimeters | | | | | |-----------|--------------------------|-------|-------|--|--| | Symbol | Min Nom M | | Max | | | | D | 13.80 | 14.00 | 14.20 | | | | Е | 13.80 | 14.00 | 14.20 | | | | HD | 17.00 | 17.20 | 17.40 | | | | HE | 17.00 | 17.20 | 17.40 | | | | Α | | | 1.70 | | | | A1 | 0.05 | 0.125 | 0.20 | | | | A2 | 1.35 | 1.40 | 1.45 | | | | A3 | | 0.25 | | | | | bp | 0.26 | 0.32 | 0.38 | | | | С | 0.10 | 0.145 | 0.20 | | | | L | | 0.80 | | | | | Lp | 0.736 | 0.886 | 1.036 | | | | L1 | 1.40 | 1.60 | 1.80 | | | | θ | 0° | 3° | 8° | | | | е | | 0.65 | | | | | х | | | 0.13 | | | | У | | | 0.10 | | | | ZD | | 0.825 | | | | | ZE | | 0.825 | | | | © 2012 Renesas ElectronicsCorporation. All rights reserved. # RL78/G13 Data Sheet | | Description | | | | |------|-------------------|--|---|--| | Rev. | Date | Page | Summary | | | 1.00 | Feb 29, 2012 | - | First Edition issued | | | 2.00 | 2.00 Oct 12, 2012 | 7 | Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected. | | | | | 25 | 1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected. | | | | | 40, 42, 44 | 1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-
oscillator, and General-purpose register corrected. | | | | | 41, 43, 45 | 1.6 Outline of Functions: Lists of Descriptions changed. | | | | | 59, 63, 67 | Descriptions of Note 8 in a table corrected. | | | | | 68 | (4) Common to RL78/G13 all products: Descriptions of Notes corrected. | | | | | 69 | 2.4 AC Characteristics: Symbol of external system clock frequency corrected. | | | | 96 to 98 | 2.6.1 A/D converter characteristics: Notes of overall error corrected. | | | | | | 100 | 2.6.2 Temperature sensor characteristics: Parameter name corrected. | | | | | 104 | 2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected. | | | | | 116 | 3.10 52-pin products: Package drawings of 52-pin products corrected. | | | | | 120 | 3.12 80-pin products: Package drawings of 80-pin products corrected. | | | 3.00 | Aug 02, 2013 | 1 | Modification of 1.1 Features | | | | | 3 | Modification of 1.2 List of Part Numbers | | | | | 4 to 15 | Modification of Table 1-1. List of Ordering Part Numbers, note, and caution | | | | | 16 to 32 | Modification of package type in 1.3.1 to 1.3.14 | | | | | 33 | Modification of description in 1.4 Pin Identification | | | | | 48, 50, 52 | Modification of caution, table, and note in 1.6 Outline of Functions | | | | | 55 | Modification of description in table of Absolute Maximum Ratings (T _A = 25°C) | | | | | 57 | Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics | | | | | 57 | Modification of table in 2.2.2 On-chip oscillator characteristics | | | | | 58 | Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics | | | | | 59 | | | | | | | Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics | | | | | 63 | Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | 64 | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | 65 | Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | 66 | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products | | | | | 68 | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products | | | | | 70 | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products | | | | | 72 | Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products | | | | | 74 | Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products | | | | | 75 | Modification of (4) Peripheral Functions (Common to all products) | | | | | 77 | Modification of table in 2.4 AC Characteristics | | | | | 78, 79 | Addition of Minimum Instruction Execution Time during Main System Clock Operation | | | | | 80 | Modification of figures of AC Timing Test Points and External System Clock Timing | |