

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101fedfp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).
- 4. When setting to PIOR = 1

												(2/2	.)
Ite	m	20-	pin	24-	pin	25-	pin	30-	pin	32-	-pin	36	-pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzze	er output		_		1		1		2		2		2
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation)											
8/10-bit resolution	A/D converter	6 channels 6 channels 8 channels 8 channels 8 channels											
Serial interface Multiplier and divid accumulator	 [20-pin, 24-pin, 25-pin products] CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel [30-pin, 32-pin products] CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel [36-pin products] CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel (SI: 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel [36-pin products] CSI: 1 channel/simplified I²C: 2 channel/UART: 1 channel CSI: 2 channel/simplified I²C: 2 channel/UART (UART supporting LIN-bus): 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel CSI: 2 channel 1 channel 2 bits = 32 bits (Unsigned or signed) 32 bits = 32 bits (Unsigned) 												
DMA controller		2 chanı	nels						-				
Vectored interrupt	Internal	2	23	2	24	2	24	2	27	2	27	2	27
sources	External		3		5		5		6		6		6
Key interrupt								-					
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 											
Power-on-reset cir	cuit	Powe	ər-on-res ər-down	set: reset:	I.51 V (1 I.50 V (1	ГҮР.) ГҮР.)							
Voltage detector		RisinFallir	g edge : 1g edge	:	1.67 V to 1.63 V to	o 4.06 V (o 3.98 V ((14 stage (14 stage	es) es)					
On-chip debug fun	iction	Provide	ed .										
Power supply volta	age	V _{DD} = 1	.6 to 5.5	V (T _A =	-40 to +	85°C)							
		$V_{DD} = 2.4$ to 5.5 V (T _A = -40 to +105°C)											
Operating ambient	temperature	T _A = 40 T _A = 40	∙ to +85°) to +105	C (A: Co 5°C (G: Ir	nsumer ndustrial	applicati applicati	ons, D: I ions)	ndustria	l applica	tions)			

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	oply IDD2 HALT		HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.54	1.63	mA
Current	Note 2	mode	mode ^{Note 7}		$V_{DD} = 3.0 V$		0.54	1.63	mA
				$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.44	1.28	mA
					$V_{DD} = 3.0 V$		0.44	1.28	mA
				fiн = 16 MHz ^{Note 4}	VDD = 5.0 V		0.40	1.00	mA
					$V_{DD} = 3.0 V$		0.40	1.00	mA
			LS (low-	fin = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		$V_{DD} = 2.0 V$		260	530	μA
			LV (low-	fı⊢ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode Note 7		$V_{DD} = 2.0 V$		420	640	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA	
			$V_{DD} = 5.0 V$	Resonator connection		0.26	0.67	mA	
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA	
				$V_{DD} = 3.0 V$	Resonator connection		0.26	0.67	mA
			LS (low- speed main) mode ^{Note 7}	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
				VDD = 3.0 V	Resonator connection		145	380	μA
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			Subsystem	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				T _A = +50°C	Resonator connection		0.56	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				T _A = +85°C	Resonator connection		1.01	3.56	μA
	DD3	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	μA
			$T_{A} = +50^{\circ}C$				0.30	1.10	μA
			T _A = +70°C				0.46	1.90	μA
			$T_A = +85^{\circ}C$				0.75	3.30	μA

(Notes and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(7)	Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp internal clock output,
	corresponding CSI00 only) (2/2)

	<i>,</i>								
Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsıkı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	23		110		110		ns
		$C_b = 20 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$							
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	33		110		110		ns
		$C_b = \underline{20 \text{ pF}}, \text{R}_b = 2.7 \text{k}\Omega$							
Slp hold time (from SCKp↓) ^{Note 2}	tksi1		10		10		10		ns
		$C_b = 20 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$							
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	10		10		10		ns
		$C_b=20 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		10		10		10	ns
SOp output Note 2		$C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$							
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		10		10		10	ns
		$C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$							

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

- n: Channel number (mn = 00))
- 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (higl main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 4/fc∟к	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$, $C_{1} = 20 pE_{1} P_{2} = 1.4 kC$	300		1150		1150		ns
			$C_0 = 30 \text{ pr}$, $H_0 = 1.4 \text{ KS2}$ 2.7 V \leq EV _{DD0} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 30 pE B _b = 2.7 kQ	500		1150		1150		ns
			$\begin{split} & 0.5 = 0.0 \ \text{pr} \ \text{, the} = 2.0 \ \text{Nat} \\ & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note}}, \end{split}$	1150		1150		1150		ns
			$C_{\text{b}}=30 \text{ pF}, \text{R}_{\text{b}}=5.5 \text{k}\Omega$							
SCKp high-level width	tкнı			tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns
		$C_b = 30 \text{ pF}, I$	R _b = 1.4 kΩ							
	$2.7 V \le E$ $2.3 V \le V$ $C_{b} = 30$		2.7 V \leq EV _{DD0} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 30 pF, R _b = 2.7 k Ω			tксү1/2 – 170		tксү1/2 – 170		ns
		$1.8 V \le EV_{DE}$ $1.6 V \le V_b \le C_b = 30 \text{ pE}.$	1.8 V \leq EV _{DD0} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note} ,			tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	tĸ∟1	$4.0 V \le EV_{DE}$ $2.7 V \le V_b \le C_b = 30 pF, I$	∞ ≤ 5.5 V, 4.0 V, Rь = 1.4 kΩ	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DE}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 30 \text{ pF}, \text{ I}$	∞ < 4.0 V, 2.7 V, R₀ = 2.7 kΩ	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq EV_{DL} \\ 1.6 \ V \leq V_b \leq \\ C_b = 30 \ pF, \end{array}$	∞ < 3.3 V, 2.0 V ^{Note} , R⊳ = 5.5 kΩ	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions	HS (higl main)	h-speed Mode	LS (low main)	r-speed Mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıкı	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array}$	44		110		110		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	44		110		110		ns
		C_{b} = 30 pF, R_{b} = 2.7 $k\Omega$							
		$ \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{split} $	110		110		110		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↓) ^{№ te 1}	tksi1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{aligned} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{aligned} $	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		25		25		25	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

1	$(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \text{ V} \le \text{EV}_{DD} = \text{EV}_{D1} \le \text{V}_{D2} \le 5.5$	5 V	$V_{SS} = FV_{SS0} = FV_{SS1} = 0 V$
١.	$(1A = -40 10 + 05 0, 1.0 4 \le 24000 = 24001 \le 400 \le 5.5$, v ;	$, v_{33} - \Box v_{330} - \Box v_{331} - O v_{j}$

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Parameter	Symbol	Conditions	HS (higi main)	n-speed Mode	LS (low main)	-speed Mode	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 _{Note 3}		1/f _{MCK} + 190 _{Note 3}		kHz
			1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	1/fмск + 190 ^{Note 3}		1/fмск + 190 _{Note 3}		1/fмск + 190 _{Note 3}		kHz
Data hold time (transmission)	thd:dat		0	305	0	305	0	305	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:2.7} \begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	0	355	0	355	0	355	ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than f_MCK/4.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

<R>

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - $\label{eq:scalar} \begin{array}{l} \textbf{3. When } AV_{\text{REFP}} < V_{\text{DD}} \text{, the MAX. values are as follows.} \\ \text{Overall error: } Add \pm 1.0 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Zero-scale error/Full-scale error: } Add \pm 0.05\%\text{FSR} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Integral linearity error/ Differential linearity error: } Add \pm 0.5 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \end{array}$
 - 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
 - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fс∟к	$1.8~V \leq V\text{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 years Ta = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, V _{OH1} P00 to P07, P10 to P17, P30 to high P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.7			V		
	to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.6			V	
	P140 to P147	$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EV _{DD0} - 0.5			V	
	V _{OH2} P20 to P27, P150 to P156		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	Vdd - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DL1}$			0.7	V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DL1}$			0.6	V
			$eq:local_$			0.4	V
			$eq:local_$			0.4	V
	Vol2	P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array}$			2.0	V
		$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V	
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ Iol3 = 3.0 mA			0.4	V	
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array} \label{eq:DD1}$			0.4	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5)

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high		P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO				1	μΑ
	Іцн2	P20 to P27, P137, P150 to P156, RESET	$V_{\text{I}} = V_{\text{DD}}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vi = Vdd	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Luci	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVsso				-1	μΑ
	Ilil2	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso	, In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	,		Conditions	,		MIN.	TYP.	, MAX.	Unit
Supply		Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
Current Note 1		mode	speed main) mode ^{Note 5}		operatio n	V _{DD} = 3.0 V		2.3		mA
					Normal	$V_{DD} = 5.0 V$		5.2	9.2	mA
					operatio n	VDD = 3.0 V		5.2	9.2	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		4.1	7.0	mA
			operatio n	VDD = 3.0 V		4.1	7.0	mA		
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		3.0	5.0	mA
					operatio n	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
			speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.4	5.9	mA
		$V_{DD} = 3.0 V$	operatio n	Resonator connection		3.6	6.0	mA		
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.5	mA	
	$V_{DD} = 5.0 V$	operatio n	Resonator connection		2.1	3.5	mA			
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.5	mA
			$V_{DD} = 3.0 V$	operatio n	Resonator connection		2.1	3.5	mA	
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA
			clock operation	$T_A = -40^{\circ}C$	operatio n	Resonator connection		4.9	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				$T_{A} = +25^{\circ}C$	operatio n	Resonator connection		5.0	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
		$T_{A} = +50^{\circ}C$	operatio n	Resonator connection		5.1	7.7	μA		
				fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
		Note 4	operatio n	Resonator		5.3	9.4	μA		
		$f_{A} = +70^{\circ}C$ $f_{SUB} = 32.768 \text{ kHz}$ Normal operatio			57	13.3	Δ			
			operatio	Resonator		5.8	13.4	μ η μΑ		
			T _A = +85°C	n	connection		0.0	10.7	<i>μ</i> . (
				ts∪b = 32.768 kHz Note 4	Normal	Square wave input		10.0	46.0	μA
				T _A = +105°C	n	Resonator connection		10.0	46.0	μA

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	$V_{\rm VSS} = EV_{\rm SS0} = EV_{\rm SS1} = 0 V$ (1/2)

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conditions	peed main) de	Unit	
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$		400 ^{Note1}	kHz
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$		100 ^{Note1}	kHz
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "L"	t∟ow	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1/fмск + 220		ns
		$C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{ k}\Omega$	Note2		
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V,$	1/fмск + 580		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note2		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	770	ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			

(4) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

(IA – – 40	10 + 103	$0, 2.4 \vee \ge L$		$\leq 3.3 \text{ V}, \text{ VSS} = \text{LVSSU} - \text{LVSS}$		r			
Parameter	Symbol		Conditions		Conditions HS (high-speed main) M				Unit
					MIN.	MAX.			
Transfer rate		Transmission	$4.0 V \leq EV_{DD0} \leq 5.5$			Note 1	bps		
			V, $2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.6 Note 2	Mbps		
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$	I		Note 3	bps		
			V, $2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{ k}\Omega, \text{V}_b = 2.3$		1.2 Note 4	Mbps		
				V					
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3$			Note 5	bps		
			v, 1.6 V \leq V _b \leq 2.0 V	Theoretical value of the maximum transfer rate		0.43 Note 6	Mbps		
				$\begin{array}{l} C_{\rm b} = 50 \; pF, \; R_{\rm b} = 5.5 \; k\Omega, \; V_{\rm b} = 1.6 \\ V \end{array}$					

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV _DD0 \leq 5.5 V and 2.7 V \leq V _b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

$(T_A = -40 \text{ to } +105^{\circ}\text{C},$	$2.4 V \leq EV$	$V_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 V, V_{SS} = EV_{SS}$	$0 = EV_{SS1} = 0$	V)	1	
Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	e Unit	
			MIN.	MAX.		
Slp setup time (to SCKp↓) ^{№te}	tsik1	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	88		ns	
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$				
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$	88		ns	
		$C_b=30 \text{ pF}, R_b=2.7 k\Omega$				
		$2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	220		ns	
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$				
SIp hold time (from SCKp↓) ^{№te}	tksi1	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	38		ns	
		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$				
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$	38		ns	
		$C_b=30 \text{ pF}, R_b=2.7 k\Omega$				
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$	38		ns	
		C_b = 30 pF, R_b = 5.5 k Ω				
Delay time from SCKp [↑] to	tkso1	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$		50	ns	
SOp output ^{№te}		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$				
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		50	ns	
		$C_b=30 \text{ pF}, R_b=2.7 k\Omega$				
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$		50	ns	
		C _b = 30 pF. R _b = 5.5 kΩ				

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

Parameter	Symbol	Conditions	HS (high-sp Mo	beed main) de	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/fмск + 340 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 340 Note 2		ns
			1/f _{MCK} + 760 _{Note 2}		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1/fмск + 760 Note 2	ns	
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	0	1420	ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

4.10 52-pin Products

R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JLAFA

R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JGAFA, R5F101JHAFA, R5F101JJAFA, R5F101JLAFA

R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JGDFA, R5F100JHDFA, R5F100JJDFA, R5F100JLDFA

R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JGDFA, R5F101JHDFA, R5F101JJDFA, R5F101JLDFA

R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

4.11 64-pin Products

R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LLDFA

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LLAFB

R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB,

R5F101LJAFB, R5F101LKAFB, R5F101LLAFB

R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LJDFB, R5F100LLDFB

R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB, R5F101LJDFB, R5F101LKDFB, R5F101LLDFB

R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

