Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Discontinued at Digi-Key | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 31 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 10x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LQFP | | Supplier Device Package | 44-LQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101fedfp-v0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong • 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$ ### 1.5.6 36-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ### 1.5.9 48-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual). (2/2) | ltom | | 80-pin 100-pin | | | (2/2)
128-pin | | | | |------------------------|----------------------|--|---------------------------------|--|-------------------|--------------------|----------|--| | Ite | em | 80- | | | | | | | | | | R5F100Mx | R5F101Mx | R5F100Px | R5F101Px | R5F100Sx | R5F101Sx | | | Clock output/buzz | er output | | 2 2 2 | | | | | | | | | • 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz | | | | | | | | | | , , | clock: fmain = 20 | | ll= 0.400 ld l= - | 10 004 1-11- 00 7- | 20 141- | | | | | | | .048 kHz, 4.096 k
68 kHz operation) | | 16.384 KHZ, 32.70 | o8 KHZ | | | 8/10-bit resolution | A/D converter | 17 channels | 710011. 100B — 0E.7 | 20 channels | <u>'</u> | 26 channels | | | | Serial interface | TAB CONVOICE | | , 128-pin produc | | | 20 onamoio | | | | ocha interiace | | | | : 2 channels/UAR | T: 1 channal | | | | | | | | • | : 2 channels/UAR | | | | | | | | | • | : 2 channels/UAR | | ting LIN-bus): 1 o | channel | | | | | CSI: 2 channel | els/simplified I ² C | 2 channels/UAR | T: 1 channel | | | | | | I ² C bus | 2 channels | | 2 channels | | 2 channels | | | | Multiplier and divid | der/multiply- | • 16 bits × 16 bi | ts = 32 bits (Uns | igned or signed) | | | | | | accumulator | | • 32 bits ÷ 32 bits = 32 bits (Unsigned) | | | | | | | | | | • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) | | | | | | | | DMA controller | | 4 channels | | | | | | | | Vectored | Internal | 3 | 37 | 3 | 37 | | 41 | | | interrupt sources | External | 1 | 13 | 1 | 3 | | 13 | | | Key interrupt | | | 8 | ; | 8 | | 8 | | | Reset | | Reset by RES | SET pin | | | | | | | | | | by watchdog tim | | | | | | | | | | by power-on-res | | | | | | | | | | by voltage detec | ctor
ction execution Note | | | | | | | | | by RAM parity e | | | | | | | | | Internal reset by library energy access | | | | | | | | Power-on-reset ci | rcuit | Power-on-res | et: 1.51 V (TY | ′P.) | | | | | | | | Power-down-reset: 1.50 V (TYP.) | | | | | | | | Voltage detector | | Rising edge: 1.67 V to 4.06 V (14 stages) | | | | | | | | | | Falling edge: 1.63 V to 3.98 V (14 stages) | | | | | | | | On-chip debug function | | Provided | | | | | | | | Power supply volt | age | $V_{DD} = 1.6 \text{ to } 5.5$ | $V (T_A = -40 \text{ to } +8)$ | 35°C) | | | | | | | | $V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$ | | | | | | | | Operating ambien | t temperature | T _A = 40 to +85°C (A: Consumer applications, D: Industrial applications) | | | | | | | | | | $T_A = 40 \text{ to } +105$ | °C (G: Industrial | applications) | | | | | Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. # 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C) This chapter describes the following electrical specifications. Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$ R5F100xxAxx, R5F101xxAxx D: Industrial applications T_A = −40 to +85°C R5F100xxDxx, R5F101xxDxx G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$ R5F100xxGxx - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}. - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. #### 2.2 Oscillator Characteristics #### 2.2.1 X1, XT1 oscillator characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ | Parameter | Resonator | Conditions | MIN. | TYP. | MAX. | Unit | |--|--------------------|--------------------------------|------|--------|------|------| | X1 clock oscillation | Ceramic resonator/ | $2.7~V \leq V_{DD} \leq 5.5~V$ | 1.0 | | 20.0 | MHz | | frequency (fx) ^{Note} | crystal resonator | $2.4~V \leq V_{DD} < 2.7~V$ | 1.0 | | 16.0 | MHz | | | | $1.8~V \leq V_{DD} < 2.4~V$ | 1.0 | | 8.0 | MHz | | | | $1.6~V \leq V_{DD} < 1.8~V$ | 1.0 | | 4.0 | MHz | | XT1 clock oscillation frequency (fx) ^{Note} | Crystal resonator | | 32 | 32.768 | 35 | kHz | **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics. Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used. Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator. #### 2.2.2 On-chip oscillator characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ | (12 10 10 100 0, 110 1 | 1 | 10 1, 100 0 1, | , | MIN. | | 1 | 1 | |--|------------|----------------|--------------------------------|------|------|------|------| | Oscillators | Parameters | Conditions | | | TYP. | MAX. | Unit | | High-speed on-chip oscillator clock frequency Notes 1, 2 | fıн | | | 1 | | 32 | MHz | | High-speed on-chip oscillator | | –20 to +85 °C | $1.8~V \leq V_{DD} \leq 5.5~V$ | -1.0 | | +1.0 | % | | clock frequency accuracy | | | $1.6~V \le V_{DD} < 1.8~V$ | -5.0 | | +5.0 | % | | | | –40 to –20 °C | $1.8~V \leq V_{DD} \leq 5.5~V$ | -1.5 | | +1.5 | % | | | | | $1.6~V \le V_{DD} < 1.8~V$ | -5.5 | | +5.5 | % | | Low-speed on-chip oscillator clock frequency | fiL | | | | 15 | | kHz | | Low-speed on-chip oscillator clock frequency accuracy | | | | -15 | | +15 | % | **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register. 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time. ## (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products # (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2) | Parameter | Symbol | | | Conditions | | | MIN. | TYP. | MAX. | Unit | |-------------------|------------------|---|--|--|-------------------------|-------------------------|----------|------|-------|------| | Supply | I _{DD1} | Operating | HS (high- | fin = 32 MHz ^{Note 3} | Basic | V _{DD} = 5.0 V | | 2.3 | | mA | | Current
Note 1 | | mode | speed main)
mode Note 5 | | operation | V _{DD} = 3.0 V | | 2.3 | | mA | | | | | modo | | Nomal | V _{DD} = 5.0 V | | 5.2 | 8.5 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 5.2 | 8.5 | mA | | | | | | fin = 24 MHz Note 3 | Nomal | V _{DD} = 5.0 V | | 4.1 | 6.6 | mA | | | | | | ope | operation | V _{DD} = 3.0 V | | 4.1 | 6.6 | mA | | | | operation | Normal | V _{DD} = 5.0 V | | 3.0 | 4.7 | mA | | | | | | | | operation \ | V _{DD} = 3.0 V | | 3.0 | 4.7 | mA | | | | | | LS (low- | f _{IH} = 8 MHz ^{Note 3} Normal | Normal | V _{DD} = 3.0 V | | 1.3 | 2.1 | mA | | | | speed main)
mode Note 5 | | operation | V _{DD} = 2.0 V | | 1.3 | 2.1 | mA | | | | | | LV (low- | fin = 4 MHz Note 3 | Nomal | V _{DD} = 3.0 V | | 1.3 | 1.8 | mA | | | main) mode | | | operation | V _{DD} = 2.0 V | | 1.3 | 1.8 | mA | | | | | HS (high-
speed main)
mode Note 5 | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Nomal | Square wave input | | 3.4 | 5.5 | mA | | | | | | speed r | V _{DD} = 5.0 V | operation | Resonator connection | | 3.6 | 5.7 | mA | | | | | mode ······ | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal | Square wave input | | 3.4 | 5.5 | mA | | | | | | V _{DD} = 3.0 V | operation | Resonator connection | | 3.6 | 5.7 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Normal | Square wave input | | 2.1 | 3.2 | mA | | | | | VDD = 5.0 V | operation | Resonator connection | | 2.1 | 3.2 | mA | | | | | | | $f_{MX} = 10 \text{ MHz}^{Note 2},$ | Nomal | Square wave input | | 2.1 | 3.2 | mA | | | | | | V _{DD} = 3.0 V | operation | Resonator connection | | 2.1 | 3.2 | mA | | | | | LS (low- | $f_{MX} = 8 MHz^{Note 2},$ | Normal | Square wave input | | 1.2 | 2.0 | mA | | | | | speed main)
mode Note 5 | V _{DD} = 3.0 V | operation | Resonator connection | | 1.2 | 2.0 | mA | | | | | modo | $f_{MX} = 8 MHz^{Note 2}$ | Normal | Square wave input | | 1.2 | 2.0 | mA | | | | | | V _{DD} = 2.0 V | operation | Resonator connection | | 1.2 | 2.0 | mA | | | | | Subsystem | fsub = 32.768 kHz | Nomal | Square wave input | | 4.8 | 5.9 | μΑ | | | | | clock
operation | T _A = -40°C | operation | Resonator connection | | 4.9 | 6.0 | μA | | | | | | fsub = 32.768 kHz | Nomal | Square wave input | | 4.9 | 5.9 | μΑ | | | | | | T _A = +25°C | operation | Resonator connection | | 5.0 | 6.0 | μA | | | | | | fsuB = 32.768 kHz | Nomal | Square wave input | _ | 5.0 | 7.6 | μΑ | | | | | | Note 4 | operation | Resonator connection | | 5.1 | 7.7 | μΑ | | | | | T _A = +50°C | No. | 0 | | F 0 | 0.0 | | | | | | fsub = 32.768 kHz Normal operation | Square wave input Resonator connection | | 5.2
5.3 | 9.3
9.4 | μA
μA | | | | | | | | T _A = +70°C | | | | 0.0 | 0.4 | par C | | | | | | | fsub = 32.768 kHz | Normal | Square wave input | | 5.7 | 13.3 | μА | | | | | | T _A = +85°C | operation | Resonator connection | | 5.8 | 13.4 | μA | | | l | 1 | 1 | 1 | 1 | l . | | I | ı | l | (Notes and Remarks are listed on the next page.) # (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | , 0 | h-speed
Mode | , | /-speed
Mode | , | -voltage
Mode | Unit | |--------------------------------------|---------------|---|------|-----------------|------|-----------------|------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SIp setup time (to SCKp↑) Note 1 | tsıĸı | $\begin{array}{l} 4.0~V \leq EV_{DD0} \leq 5.5~V, \\ 2.7~V \leq V_b \leq 4.0~V, \end{array}$ | 81 | | 479 | | 479 | | ns | | | | $C_b = 30$ pF, $R_b = 1.4$ k Ω | | | | | | | | | | | | 177 | | 479 | | 479 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $ \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $ | 479 | | 479 | | 479 | | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | | SIp hold time
(from SCKp↑) Note 1 | t KSI1 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | | Delay time from SCKp↓ to | tkso1 | $ \begin{array}{c} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $ | | 100 | | 100 | | 100 | ns | | SOp output Note 1 | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | $ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $ | | 195 | | 195 | | 195 | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | | 483 | | 483 | | 483 | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | Notes - 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. - 2. Use it with $EV_{DD0} \ge V_b$. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the page after the next page.) # 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C) This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to +105°C R5F100xxGxx - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS. - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability. Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C). There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications". | Parameter | Ар | plication | |--|--|--| | | A: Consumer applications, D: Industrial applications | G: Industrial applications | | Operating ambient temperature | T _A = -40 to +85°C | T _A = -40 to +105°C | | Operating mode Operating voltage range | HS (high-speed main) mode: $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 16 \text{ MHz}$ $LS \text{ (low-speed main) mode:}$ $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 8 \text{ MHz}$ $LV \text{ (low-voltage main) mode:}$ $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 4 \text{ MHz}$ | HS (high-speed main) mode only: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~32~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$ | | High-speed on-chip oscillator clock accuracy | 1.8 V \leq V _{DD} \leq 5.5 V
\pm 1.0%@ TA = -20 to +85°C
\pm 1.5%@ TA = -40 to -20°C
1.6 V \leq V _{DD} $<$ 1.8 V
\pm 5.0%@ TA = -20 to +85°C
\pm 5.5%@ TA = -40 to -20°C | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$
$\pm 2.0\%@ \text{ T}_{A} = +85 \text{ to } +105^{\circ}\text{C}$
$\pm 1.0\%@ \text{ T}_{A} = -20 \text{ to } +85^{\circ}\text{C}$
$\pm 1.5\%@ \text{ T}_{A} = -40 \text{ to } -20^{\circ}\text{C}$ | | Serial array unit | UART CSI: fclk/2 (supporting 16 Mbps), fclk/4 Simplified I ² C communication | UART CSI: fclk/4 Simplified I ² C communication | | IICA | Normal mode Fast mode Fast mode plus | Normal mode
Fast mode | | Voltage detector | Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels) | Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels) | (Remark is listed on the next page.) #### (3) Peripheral Functions (Common to all products) ### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | MIN. | TYP. | MAX. | Unit | |--|-----------------------|----------------------------|---|------|------|-------|------| | Low-speed on-
chip oscillator
operating
current | FIL
Note 1 | | | | 0.20 | | μΑ | | RTC operating current | IRTC
Notes 1, 2, 3 | | | | 0.02 | | μΑ | | 12-bit interval timer operating current | IIT
Notes 1, 2, 4 | | | | 0.02 | | μА | | Watchdog timer operating current | WDT
Notes 1, 2, 5 | fı∟ = 15 kHz | | | 0.22 | | μΑ | | A/D converter operating | ADC
Notes 1, 6 | When conversion at maximum | Normal mode, AVREFP = VDD = 5.0 V | | 1.3 | 1.7 | mA | | current | | speed | Low voltage mode, AVREFP = VDD = 3.0 V | | 0.5 | 0.7 | mA | | A/D converter
reference
voltage current | IADREF
Note 1 | | | | 75.0 | | μΑ | | Temperature sensor operating current | ITMPS
Note 1 | | | | 75.0 | | μA | | LVD operating current | ILVD
Notes 1, 7 | | | | 0.08 | | μА | | Self
programming
operating
current | FSP
Notes 1, 9 | | | | 2.50 | 12.20 | mA | | BGO operating current | BGO
Notes 1, 8 | | | | 2.50 | 12.20 | mA | | SNOOZE | Isnoz | ADC operation | The mode is performed Note 10 | | 0.50 | 1.10 | mA | | operating current | Note 1 | | The A/D conversion operations are performed, Loe voltage mode, AVREFP = VDD = 3.0 V | | 1.20 | 2.04 | mA | | | | CSI/UART operation | on | | 0.70 | 1.54 | mA | #### Notes 1. Current flowing to the VDD. - 2. When high speed on-chip oscillator and high-speed system clock are stopped. - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock. - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. - **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates. ## **TI/TO Timing** # **Interrupt Request Input Timing** ## **Key Interrupt Input Timing** # **RESET** Input Timing # CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13) ### Simplified I²C mode mode connection diagram (during communication at same potential) ### Simplified I²C mode serial transfer timing (during communication at same potential) Remarks 1. $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13) # (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | HS (high-speed | d main) Mode | Unit | |-----------------------|--------|---|---|----------------|--------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time | tkcy1 | tkcy1 ≥ 4/fclk | $4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0$ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$ | 600 | | ns | | | | | $2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7$ $V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$ | 1000 | | ns | | | | | $2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0$ $V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$ | 2300 | | ns | | SCKp high-level width | tкн1 | | $4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$ | | | ns | | | | 2.7 V ≤ EV _{DD} | $0 < 4.0 \text{ V}, 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V},$ $R_b = 2.7 \text{ k}\Omega$ | tkcy1/2 - 340 | | ns | | | | 2.4 V ≤ EV _{DD}
C _b = 30 pF, F | $_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R_{b} = 5.5 k Ω | tксу1/2 — 916 | | ns | | SCKp low-level width | tĸL1 | | 4.0 V \leq EV _{DDO} \leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,
C _b $=$ 30 pF, R _b $=$ 1.4 k Ω | | | ns | | | | $2.7 \text{ V} \leq \text{EV}_{DD}$
$C_b = 30 \text{ pF, F}$ | 0 < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, $R_b = 2.7 \text{ k}\Omega$ | tkcy1/2 - 36 | | ns | | | | $2.4 \text{ V} \leq \text{EV}_{DD}$
$C_b = 30 \text{ pF, F}$ | $_{0} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V,$ $R_{b} = 5.5 \ k\Omega$ | tксу1/2 — 100 | | ns | Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vpd tolerance (for the 20- to 52-pin products)/EVpd tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed two pages after the next page.) # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. # (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | C | Conditions | HS (high-spe | ed main) Mode | Unit | |---|---------------|--|--|---------------|---------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time Note 1 | tkCY2 | $4.0~V \leq EV_{DD0} \leq 5.5$ | 24 MHz < fмск | 28/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 24/fмск | | ns | | | | $2.7~V \leq V_b \leq 4.0~V$ | 8 MHz < fмcк ≤ 20 MHz | 20/fмск | | ns | | | | | 4 MHz < fmck ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | $2.7 \text{ V} \le EV_{DD0} < 4.0$ | 24 MHz < fмск | 40/fмск | | ns | | | | V, | $20~\text{MHz} < \text{fmck} \le 24~\text{MHz}$ | 32/fмск | | ns | | | | $2.3~V \leq V_b \leq 2.7~V$ | 16 MHz < fмcк ≤ 20 MHz | 28/fмск | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 24/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | $2.4~V \leq EV_{DD0} < 3.3$ | 24 MHz < fмск | 96/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 72/fмск | | ns | | | | $1.6 \ V \le V_b \le 2.0 \ V$ | 16 MHz < fмcк ≤ 20 MHz | 64/fмск | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 52/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 32/fмск | | ns | | | | | fмcк ≤ 4 MHz | 20/fмск | | ns | | SCKp high-/low-level width | tкн2,
tкL2 | $4.0 \ V \le EV_{DD0} \le 5.$ $2.7 \ V \le V_b \le 4.0 \ V$ | 5 V, | tkcy2/2 - 24 | | ns | | | | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$ | | tkcy2/2 - 36 | | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$ | | tkcy2/2 - 100 | | ns | | SIp setup time (to SCKp↑) Note2 | tsık2 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $ | 5 V, | 1/fмск + 40 | | ns | | | | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$ | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$
$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ | | | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$ | 3 V, | 1/fмск + 60 | | ns | | Slp hold time
(from SCKp [↑]) Note 3 | tksi2 | | | 1/fmck + 62 | | ns | | Delay time from SCKp↓
to SOp output Note 4 | t KSO2 | tiksoz $4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$ | | | 2/fмск + 240 | ns | | | | | 0 V, 2.3 V \leq V _b \leq 2.7 V, .7 kΩ | | 2/fмск + 428 | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $C_b = 30 \ pF, \ R_b = 5$ | 3 V, 1.6 V ≤ V _b ≤ 2.0 V
.5 kΩ | | 2/fмск + 1146 | ns | (Notes, Caution and Remarks are listed on the next page.) ### 4.8 44-pin Products R5F100FAAFP, R5F100FCAFP, R5F100FDAFP, R5F100FEAFP, R5F100FFAFP, R5F100FGAFP, R5F100FHAFP, R5F100FJAFP, R5F100FKAFP, R5F100FLAFP R5F101FAAFP, R5F101FCAFP, R5F101FDAFP, R5F101FEAFP, R5F101FFAFP, R5F101FGAFP, R5F101FHAFP, R5F101FJAFP, R5F101FKAFP, R5F101FLAFP R5F100FADFP, R5F100FCDFP, R5F100FDDFP, R5F100FEDFP, R5F100FFDFP, R5F100FGDFP, R5F100FHDFP, R5F100FJDFP, R5F100FKDFP, R5F100FLDFP R5F101FADFP, R5F101FCDFP, R5F101FDDFP, R5F101FEDFP, R5F101FFDFP, R5F101FGDFP, R5F101FHDFP, R5F101FJDFP, R5F101FKDFP, R5F101FLDFP R5F100FAGFP, R5F100FCGFP, R5F100FDGFP, R5F100FEGFP, R5F100FFGFP, R5F100FGGFP, R5F100FHGFP, R5F100FJGFP | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP44-10x10-0.80 | PLQP0044GC-A | P44GB-80-UES-2 | 0.36 | © 2012 Renesas Electronics Corporation. All rights reserved. ### 4.10 52-pin Products R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JJAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP52-10x10-0.65 | PLQP0052JA-A | P52GB-65-GBS-1 | 0.3 | © 2012 Renesas Electronics Corporation. All rights reserved. (UNIT:mm) ### 4.11 64-pin Products R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA Previous Code MASS (TYP.) [g] R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA RENESAS Code JEITA Package Code ©2012 Renesas Electronics Corporation. All rights reserved. ### 4.12 80-pin Products R5F100MFAFA, R5F100MGAFA, R5F100MHAFA, R5F100MJAFA, R5F100MKAFA, R5F100MLAFA R5F101MFAFA, R5F101MGAFA, R5F101MHAFA, R5F101MJAFA, R5F101MKAFA, R5F101MLAFA R5F100MFDFA, R5F100MGDFA, R5F100MHDFA, R5F100MJDFA, R5F100MKDFA, R5F101MLDFA R5F101MFDFA, R5F101MGDFA, R5F101MHDFA, R5F101MJDFA, R5F101MKDFA, R5F101MLDFA R5F100MFGFA, R5F100MGGFA, R5F100MHGFA, R5F100MJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP80-14x14-0.65 | PLQP0080JB-E | P80GC-65-UBT-2 | 0.69 | S detail of lead end | Referance
Symbol | Dimension in Millimeters | | | | |---------------------|--------------------------|-------|-------|--| | | Min | Nom | Max | | | D | 13.80 | 14.00 | 14.20 | | | Е | 13.80 | 14.00 | 14.20 | | | HD | 17.00 | 17.20 | 17.40 | | | HE | 17.00 | 17.20 | 17.40 | | | Α | | | 1.70 | | | A1 | 0.05 | 0.125 | 0.20 | | | A2 | 1.35 | 1.40 | 1.45 | | | A3 | | 0.25 | | | | bp | 0.26 | 0.32 | 0.38 | | | С | 0.10 | 0.145 | 0.20 | | | L | | 0.80 | | | | Lp | 0.736 | 0.886 | 1.036 | | | L1 | 1.40 | 1.60 | 1.80 | | | θ | 0° | 3° | 8° | | | е | | 0.65 | | | | х | | | 0.13 | | | У | | | 0.10 | | | ZD | | 0.825 | | | | ZE | | 0.825 | | | © 2012 Renesas ElectronicsCorporation. All rights reserved.