

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

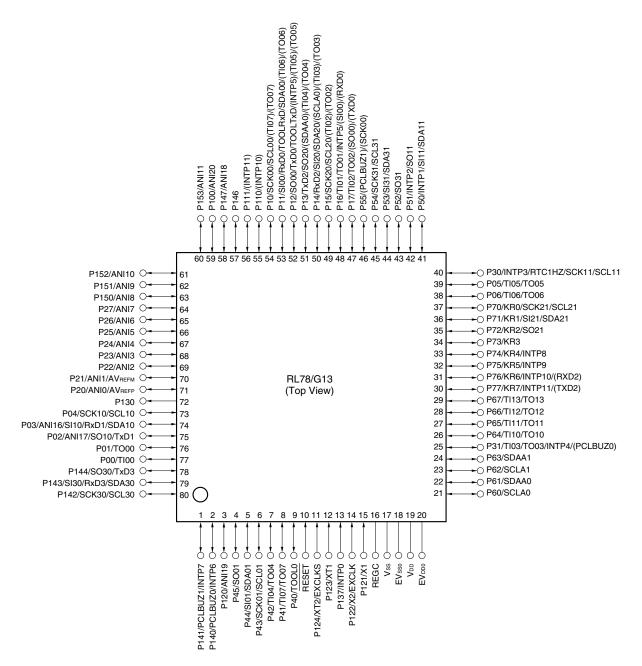
2000	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101ffafp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

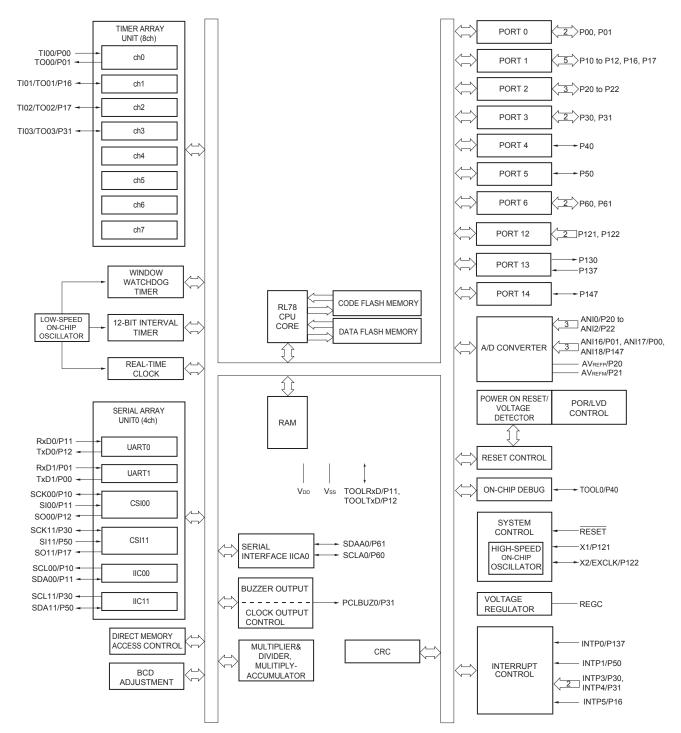
				(2/12)
Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application	
			Note	
25 pins	25-pin plastic	Mounted	А	R5F1008AALA#U0, R5F1008CALA#U0, R5F1008DALA#U0,
_ o po	WFLGA (3×3 mm,	meanea		R5F1008EALA#U0
				R5F1008AALA#W0, R5F1008CALA#W0, R5F1008DALA#W0,
	0.5 mm pitch)			R5F1008EALA#W0
			G	R5F1008AGLA#U0, R5F1008CGLA#U0, R5F1008DGLA#U0,
				R5F1008EGLA#U0
				R5F1008AGLA#W0, R5F1008CGLA#W0, R5F1008DGLA#W0,
				R5F1008EGLA#W0
		Not	А	R5F1018AALA#U0, R5F1018CALA#U0, R5F1018DALA#U0,
		mounted		R5F1018EALA#U0
				R5F1018AALA#W0, R5F1018CALA#W0, R5F1018DALA#W0,
				R5F1018EALA#W0
30 pins	30-pin plastic LSSOP	Mounted	А	R5F100AAASP#V0, R5F100ACASP#V0, R5F100ADASP#V0,
	(7.62 mm (300), 0.65			R5F100AEASP#V0, R5F100AFASP#V0, R5F100AGASP#V0
	mm pitch)			R5F100AAASP#X0, R5F100ACASP#X0, R5F100ADASP#X0
			D	R5F100AEASP#X0, R5F100AFASP#X0, R5F100AGASP#X0
			D	R5F100AADSP#V0, R5F100ACDSP#V0, R5F100ADDSP#V0, R5F100AEDSP#V0, R5F100AFDSP#V0, R5F100AGDSP#V0
				R5F100ADSP#X0, R5F100ACDSP#X0, R5F100ADDSP#X0, R5F100ADDSP#X0,
				R5F100AEDSP#X0, R5F100AFDSP#X0, R5F100AGDSP#X0,
			G	R5F100AAGSP#V0, R5F100ACGSP#V0,
			U	R5F100ADGSP#V0,R5F100AEGSP#V0,
				R5F100AFGSP#V0, R5F100AGGSP#V0
				R5F100AAGSP#X0, R5F100ACGSP#X0,
				R5F100ADGSP#X0,R5F100AEGSP#X0,
				R5F100AFGSP#X0, R5F100AGGSP#X0
		Not	А	R5F101AAASP#V0, R5F101ACASP#V0, R5F101ADASP#V0,
				R5F101AEASP#V0, R5F101AFASP#V0, R5F101AGASP#V0
		mounted		R5F101AAASP#X0, R5F101ACASP#X0, R5F101ADASP#X0,
				R5F101AEASP#X0, R5F101AFASP#X0, R5F101AGASP#X0
			D	R5F101AADSP#V0, R5F101ACDSP#V0, R5F101ADDSP#V0,
				R5F101AEDSP#V0, R5F101AFDSP#V0, R5F101AGDSP#V0
				R5F101AADSP#X0, R5F101ACDSP#X0, R5F101ADDSP#X0,
				R5F101AEDSP#X0, R5F101AFDSP#X0, R5F101AGDSP#X0
32 pins	32-pin plastic	Mounted	А	R5F100BAANA#U0, R5F100BCANA#U0, R5F100BDANA#U0,
•	HWQFN (5 \times 5 mm,			R5F100BEANA#U0, R5F100BFANA#U0, R5F100BGANA#U0
	0.5 mm pitch)			R5F100BAANA#W0, R5F100BCANA#W0, R5F100BDANA#W0,
	0.0 mm pitch)		_	R5F100BEANA#W0, R5F100BFANA#W0, R5F100BGANA#W0
			D	R5F100BADNA#U0, R5F100BCDNA#U0, R5F100BDDNA#U0,
				R5F100BEDNA#U0, R5F100BFDNA#U0, R5F100BGDNA#U0
				R5F100BADNA#W0, R5F100BCDNA#W0, R5F100BDDNA#W0,
			0	R5F100BEDNA#W0, R5F100BFDNA#W0, R5F100BGDNA#W0
			G	R5F100BAGNA#U0, R5F100BCGNA#U0, R5F100BDGNA#U0,
				R5F100BEGNA#U0, R5F100BFGNA#U0, R5F100BGGNA#U0 R5F100BAGNA#W0, R5F100BCGNA#W0, R5F100BDGNA#W0,
				R5F100BAGNA#W0, R5F100BCGNA#W0, R5F100BDGNA#W0, R5F100BEGNA#W0, R5F100BFGNA#W0, R5F100BGGNA#W0
		Net	A	R5F101BAANA#U0, R5F101BCANA#U0, R5F101BDANA#U0,
		Not		R5F101BAANA#00, R5F101BCANA#00, R5F101BDANA#00, R5F101BEANA#U0, R5F101BFANA#U0, R5F101BGANA#U0
		mounted		R5F101BAANA#W0, R5F101BCANA#W0, R5F101BDANA#W0,
				R5F101BEANA#W0, R5F101BFANA#W0, R5F101BGANA#W0
			D	R5F101BADNA#U0, R5F101BCDNA#U0, R5F101BDDNA#U0,
				R5F101BEDNA#U0, R5F101BFDNA#U0, R5F101BGDNA#U0
				R5F101BADNA#W0, R5F101BCDNA#W0, R5F101BDDNA#W0,
	1	1	1	R5F101BEDNA#W0, R5F101BFDNA#W0, R5F101BGDNA#W0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

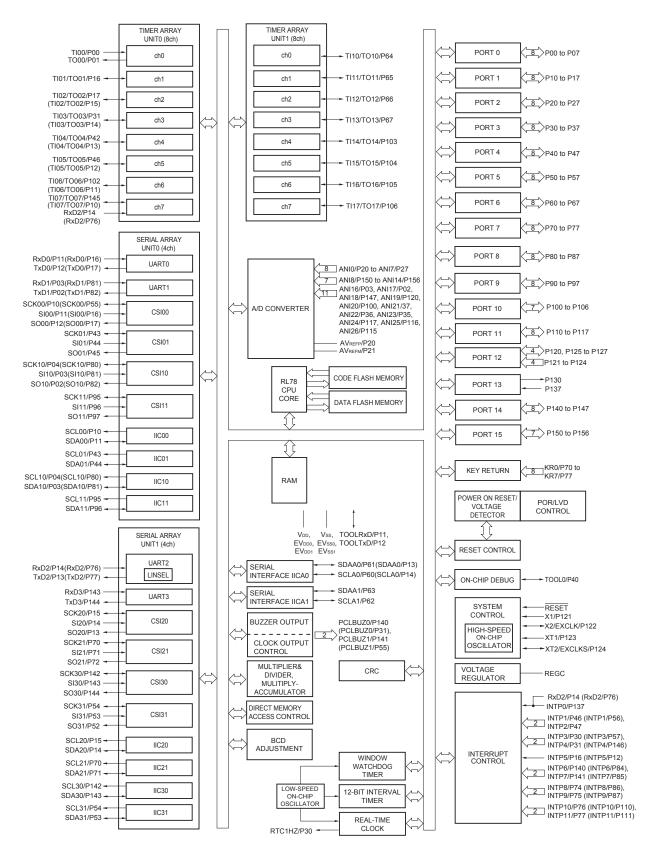
1.3.12 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)



Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the V_{SS} and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.



1.5.3 25-pin products

1.5.14 128-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-p	oin	24-	pin	25	-pin	30-	pin	32-	pin	(1/2 36-	pin
		, ד	Ъ	Я	גר	д	גר	Ъ	דג	Ъ	ភ្ល	Ъ	
		5F1	5F1	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F1(
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	64	16 t	o 64	161	o 64	16 to	128		128	16 to	128
Data flash me	emory (KB)	4	_	4	_	4	_	4 to 8	_	4 to 8	_	4 to 8	-
RAM (KB)		2 to 4									2 to ⁻	2 ^{Note1}	
Address spac	e	1 MB		•		L							
Main system clock	High-speed system clock	X1 (crys HS (High HS (High LS (Low LV (Low	n-speed n-speed -speed	l main) m l main) m main) m	node: 1 t node: 1 t ode: 1 to	o 20 MH o 16 MH o 8 MHz	Iz (V _{DD} = Iz (V _{DD} = (V _{DD} = 1.	2.7 to 5. 2.4 to 5. 8 to 5.5	.5 V), .5 V), V),	EXCLK)			
	High-speed on-chip oscillator	HS (High HS (High LS (Low- LV (Low-	n-speed -speed	l main) m main) m	node: 1 f ode: 1 f	to 16 MH to 8 MHz	Iz (Vdd = 2 (Vdd = 1	2.4 to 5 1.8 to 5.5	.5 V), 5 V),				
Subsystem cl	ock												
Low-speed or	n-chip oscillator	15 kHz (TYP.)										
General-purp	ose registers	(8-bit reg	gister ×	8) × 4 ba	anks								
Minimum inst	ruction execution time	0.03125	μs (Hig	h-speed	on-chip	oscillato	or: fін = 3	2 MHz o	peration)			
		0.05 μs ((High-sp	beed sys	tem cloo	ck: fмx =	20 MHz	operatio	n)				
Instruction set	·	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 											
I/O port	Total	16	;	2	0	2	21	2	6	2	8	3	2
	CMOS I/O	13 (N-ch O [V₀₀ with voltage	.D. I/O nstand	(N-ch C	thstand	(N-ch ([V _{DD} w	5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V⊳⊳ wi voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi [*] voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi voltag	D.D. I/C
	CMOS input	3		:	3		3	:	3	3	3	3	3
	CMOS output	-		-	-		1	-	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	-		2	2		2	2	2	3	3	3	3
Timer	16-bit timer						8 cha	nnels					
	Watchdog timer						1 cha	nnel					
	Real-time clock (RTC)						1 chan	nel Note 2					
	12-bit interval timer (IT)						1 cha	nnel					
Timer output 3 channels 4 channels 4 channels 4 channels (PWM outputs: 3 (PWM outputs: 3 Note 3)) 2 Note 3 2 Note 3) 8 channels (PWM outputs: 7 Note 3)							,						
	RTC output			•				-					
Notes 1.	The flash library us The target products R5F100xD, R5F R5F100xE, R5F For the RAM areas for RL78 Family (I Only the constant	s and sta 101xD (: 101xE () used by R20UT29	$\begin{array}{l} \text{rt addr} \\ x = 6 \ \text{to} \\ x = 6 \ \text{to} \\ \text{the flat} \\ \textbf{944}. \end{array}$	ress of t o 8, A to o 8, A to ash libra	he RAN o C): S o C): S ury, see	A areas Start add Start add Start add Self R	used by dress Ff dress Ff AM list	y the fla F300H EF00H of Flas	sh libra h Self-	ry are s Progra i	hown b mming	Library	

^{2.} Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fiL) is selected

- The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).
- 4. When setting to PIOR = 1

													
Ite	m	20-	pin	24-	pin	25-	pin	30-	pin	32-	-pin	36	-pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	
Clock output/buzze	er output	-	_		1		1		2		2		2
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMain = 20 MHz operation) 											
8/10-bit resolution	A/D converter	6 chanr	nels	6 chanı	nels	6 chanr	nels	8 chanr	nels	8 chanı	nels	8 chan	nels
Serial interface		 CSI: CSI: [30-pin, CSI: CSI: CSI: (36-pin) CSI: CSI: CSI: CSI: 	1 chann 1 chann 32-pin 1 chann 1 chann 1 chann product 1 chann 1 chann 1 chann	el/simplif products el/simplif el/simplif el/simplif el/simplif el/simplif	fied I ² C: fied I ² C:	1 channe 1 channe 1 channe 1 channe 1 channe 1 channe 1 channe	el/UART el/UART el/UART el/UART el/UART el/UART	: 1 chanr : 1 chanr : 1 chanr (UART s : 1 chanr : 1 chanr	nel nel supportin nel nel	-		channel	
Multiplier and divid	I ² C bus ler/multiply-		_	1 chani	nel	1 chanr	nel	1 chanı	nel	1 chanı	nel	1 chan	nel
accumulator		 16 bits 32 bits 16 bits 	– s × 16 b s ÷ 32 b s × 16 b	1 chanı its = 32 k its = 32 k	nel bits (Uns bits (Uns	1 chanr signed or	nel signed)	1		1 chanı	nel	1 chan	nel
accumulator DMA controller	ler/multiply-	 16 bit 32 bit 16 bit 2 channel 	- s × 16 b s ÷ 32 b s × 16 b nels	1 chanı its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32	1 chann signed or signed) bits (Uns	nel signed) signed o	r signed)	1	I			
accumulator	ler/multiply-	 16 bit 32 bit 16 bit 2 chann 	- s × 16 b s ÷ 32 b s × 16 b nels 3	1 chani its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32 24	1 chann signed or signed) bits (Uns	nel signed) signed o 24	or signed)	27		27		27
accumulator DMA controller Vectored interrupt	ler/multiply-	 16 bit 32 bit 16 bit 2 chann 	- s × 16 b s ÷ 32 b s × 16 b nels	1 chani its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32	1 chann signed or signed) bits (Uns	nel signed) signed o 24 5	or signed)	1				
accumulator DMA controller Vectored interrupt sources	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 2 chann 2 chann 2 chann 2 chann 9 Rese 9 Intern 9 Intern	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 b its = 32 b its + 32 b its + 32 b SET pin by watc by volta by volta by volta by RAM	hel bits (Uns bits (Uns bits = 32 24 5 4 5 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 chann iigned or iigned) bits (Uns 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	nel signed o 24 5	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt	ler/multiply-	16 bit: 32 bit: 16 bit: 2 chann 2 chann 2 Rese Interr Interr Interr Interr Interr Interr Interr Interr Interr Powe	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 t its = 32 t its + 32 t its + 32 t 2 SET pin by watc by powe by volta t by illega by RAM t by illega	hel bits (Uns bits (Uns bits = 32 24 5 5 4 4 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9	1 chann igned or igned) bits (Un: 2 bits (Un: 2 channel of the set ctor ctor exector ctor exector ctor exector ry access TYP.)	nel signed o 24 5	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset	ler/multiply-	16 bit: 32 bit: 16 bit: 2 chann 2 chann 2 Rese Interr Interr Interr Interr Interr Interr Interr Interr Interr Powe	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 b its = 32 b its + 32 b its	hel bits (Uns bits (Uns bits = 32 24 5 24 5 4 5 4 5 4 5 4 5 24 5 5 1 5 1 5 1 5 1 5 1 7 1 5 1 7 1 5 1 7 1 1 5 7 7 1 5 1 7 1 1 5 1 7 1 7	1 chann igned or igned) bits (Un: 2 bits (Un: 2 channel of the set ctor ctor exector ctor exector ctor exector ry access TYP.)	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 4 chann <	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 b its = 32 b its + 32 b its	hel bits (Uns bits (Uns bits = 32 24 5 24 5 4 5 4 5 4 5 4 5 24 5 5 1 5 1 5 1 5 1 5 1 7 1 5 1 7 1 5 1 7 1 1 5 7 7 1 5 1 7 1 1 5 1 7 1 7	1 chann signed or signed) bits (Uns bits (Uns can be channed) bits (Uns can be channed) can be channed can be channed channed channed can be channed channed channed can be channed channed channed can be channed channed channed channed can be channed	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 4 chann 4 chann 5 chann 6 chann 7 chann <	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 b its = 32 b its + 32 b its	hel bits (Uns bits (Uns bits = 32 24 5 4 5 4 5 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 chann igned or igned) bits (Unstantional bits (Unstantional 2 2 	nel signed o 24 5 cution ™ s	r signed)	27		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector On-chip debug fur Power supply volta	Internal External cuit age	 16 bit. 32 bit. 16 bit. 2 chann 4 chann 8 Rese 9 Interr 9 Powee 9 Risin 9 Fallin 9 Powee 9 Powee 9 Nove <	$\frac{-}{s \times 16 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 32 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 16 \text{ b}}$	1 chann its = 32 t its = 32 t its = 32 t its + 32 t 2 SET pin t by watc by volta t by illega by RAM t by illega set: 1 reset: 1 f v ($T_a = -$ V ($T_a = -$	nel pits (Uns pits (Uns pits = 32 24 5 hdog tim er-on-res ge detect al instruct l parity e al-memo l.51 V (1 l.50 V (1 l.63 V to l.63 V to -40 to +1 40 to +1	1 chann igned or igned) bits (Unstantional bits (Unstantional constantional	tel signed o 24 5 cution [№] s	r signed)	27 6		27		27
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector On-chip debug fur	Internal External cuit age	• 16 bit • 32 bit • 16 bit 2 chann 2 • Rese • Interr • Interr • Interr • Interr • Interr • Interr • Risin • Rese • Interr • Interr • Interr • Rese • Interr • Interr • Interr • Powe • Risin • Fallin Provide V_{DD} = 1 V_{DD} = 2. T_A = 40	$\frac{-}{s \times 16 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 32 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 16 \text{ b}}$ $s \times 1$	1 channel its = 32 t its = 32 t its = 32 t its = 32 t its + 32 t its + 32 t SET pin by watc by power by volta by illegat by illegat set: 1 it 1	nel pits (Uns pits (Uns pits (Uns pits = 32 24 5 	1 chann igned or igned) bits (Un: 2 2 her set ctor ry access rry - ry - (YP.) 0 4.06 V (0 3.98 V (B5°C)	nel signed o 24 5 cution ^{№t} s 14 stage 14 stage 14 stage	r signed)	27 6		27		27

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{H} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.62	1.86	mA
current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fiH = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fiH = 16 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.11	mA
					$V_{DD} = 3.0 V$		0.44	1.11	
			10//						mA
			LS (low- speed main) mode ^{Note 7}	$f_{IH} = 8 MHz^{Note 4}$	$V_{DD} = 3.0 V$ $V_{DD} = 2.0 V$		290 290	620 620	μΑ μΑ
			LV (low-	file = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA
			voltage main) mode		V _{DD} = 2.0 V		440	680	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	1.28	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.28	mA
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.63	mA	
			$V_{DD} = 5.0 V$	Resonator connection		0.28	0.71	mA	
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA	
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		0.28	0.71	mA
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	420	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 2.0 V	Resonator connection		160	420	μA
			Subsystem	fs∪в = 32.768 kHz ^{№te 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.53	0.80	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.60	2.49	μA
				fs∪в = 32.768 kHz ^{№te 5}	Square wave input	1	0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				$T_{A} = +85^{\circ}C$	Resonator connection		1.28	8.23	μA
	DD3 ^{Note 6}	STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA
		mode ^{Note 8}	T _A = +25°C			1	0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			$T_{A} = +85^{\circ}C$				1.00	7.95	μA

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	(HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 \geq 2/fclк	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$4.0 V \le EV_{DI}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _D	$500 \leq 5.5 \text{ V}$	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp [↑])	tsik1	$4.0 \ V \le EV_{DI}$	$00 \leq 5.5 \text{ V}$	23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	33		110		110		ns
Slp hold time (from SCKp↑) ^{Note 2}	tksii	2.7 V ≤ EV _D	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF ^{Not}	te 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

Parameter	Symbo I		Conditions	HS (higl main)		LS (low-sp Mo	eed main) de	LV (low-vol Mo	•	Unit		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.			
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	2.7 V ≤ E	$EV_{DD0} \leq 5.5 V$	1/fмск+2 0		1/fмск+30		1/fмск+30		ns		
		1.8 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	1/fмск+3 0		1/fмск+30		1/fмск+30		ns		
		1.7 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	1/fмск+4 0		1/fмск+40		1/fмск+40		ns		
		1.6 V ≤	$EV_{DD0} \leq 5.5 V$			1/fмск+40		1/fмск+40		ns		
SIp hold time (from SCKp↑)	tksi2	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+3 1		1/fмск+31		1/fмск+31		ns		
Note 2				1.7 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	1/fмск+ 250		1/fмск+ 250		1/fмск+ 250		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		—		1/fмск+ 250		1/fмск+ 250		ns		
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/f _{мск+} 44		2/f _{мск+} 110		2/f _{мск+} 110	ns		
SOp output Note 3			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 75		2/fмск+ 110		2/fмск+ 110	ns		
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 110		2/fмск+ 110		2/fмск+ 110	ns		
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 220		2/fмск+ 220		2/fмск+ 220	ns		
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		_		2/fмск+ 220		2/fмск+ 220	ns		

(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } \pm 85^{\circ}\text{C} = 1.6 \text{ V} \leq \text{EV}_{DD0} = \text{EV}_{DD1} \leq \text{V}_{DD1} \leq 5.5 \text{ V}_{D0} \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.0 \text{ V}_{D1}$

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol		Conditions		speed	high- main) ode		/-speed Mode	voltage	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{b} \leq 4.0 \ V \end{array}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$: MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

3. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate.

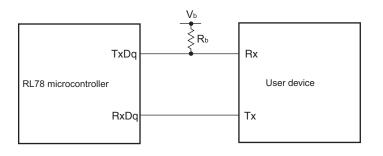
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- $\textbf{5.} \quad \textbf{Use it with } EV_{DD0} \geq V_{b}.$
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.


Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іонт	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins	<u> </u>	5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

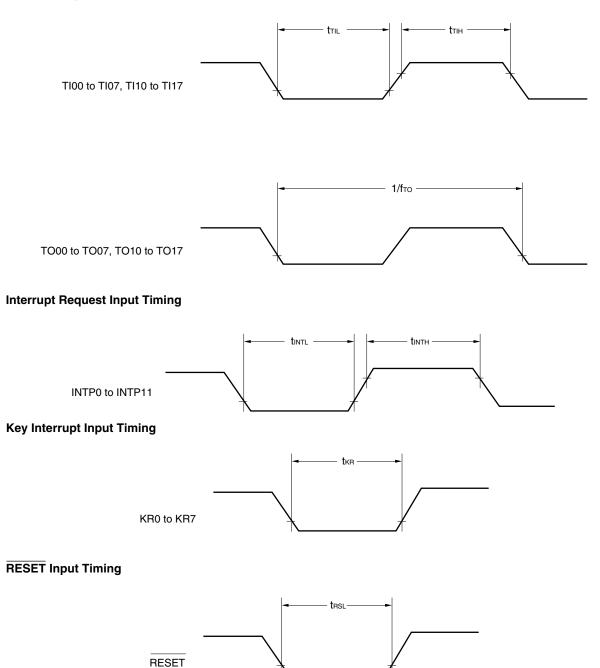
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C


- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

TI/TO Timing

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) ($T_A = -40$ to $+105^{\circ}C$, 2.4 V $\leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5$ V. Vss = $EV_{SS0} = EV_{SS1} = 0$ V)

Parameter	Symbol		Conditic	. –	speed main) ode	Unit	
					MIN.	MAX.	
Transfer rate		Reception	$4.0 \ V \ \leq \ EV_{\text{DD0}} \ \leq \ 5.5$			fмск/12 ^{Note 1}	bps
			V, $2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps
			$2.7 V \leq EV_{DD0} < 4.0$			fмск/12 ^{Note 1}	bps
			V, $2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps
			$\begin{array}{l} 2.4 \hspace{0.1 cm} V \hspace{0.1 cm} \leq \hspace{0.1 cm} \text{EV}_{\text{DD0}} \hspace{0.1 cm} < \hspace{0.1 cm} 3.3 \\ \text{V}, \end{array}$			fмск/12 Notes 1,2	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The following conditions are required for low voltage interface when E_{VDD0} < $V_{DD}.$ 2.4 V \leq EV_{DD0} < 2.7 V : MAX. 1.3 Mbps
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	<u> </u>
SCKp cycle time ^{Note 1}	tkCY2	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ \text{V}, \end{array}$	24 MHz < fмск	28/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	24/f мск		ns
		$2.7 V \le V_b \le 4.0 V$	$8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \\ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	24 MHz < fмск	40/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	32/f мск		ns
			$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/fмск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/f мск		ns
		$2.4 V \le EV_{DD0} < 3.3$ V, $1.6 V \le V_b \le 2.0 V$	24 MHz < fмск	96/f мск		ns
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	72/f мск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	64/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	52/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	32/f мск		ns
			fмск \leq 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tк∟2	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \\ \hline \\ 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V \end{array}$		tkcy2/2 - 24		ns
				tkcy2/2 - 36		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{\text{DD0}} < 3. \\ 1.6 \; V \leq V_{\text{b}} \leq 2.0 \; V \end{array}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note2}		$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		1/fмск + 40		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		1/fмск + 40		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№te 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso2	$ \begin{split} 4.0 \ V &\leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{split} $			2/fмск + 240	ns
		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4. \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 2 \end{array}$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ		2/fмск + 428	ns
			3 V, 1.6 V \leq Vb \leq 2.0 V		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

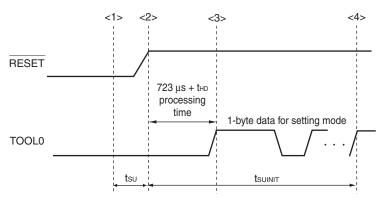
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $	1/fмск + 340 Note 2		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1/fмск + 340 Note 2		ns
			1/fмск + 760 Note 2		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1/fмск + 760 Note 2		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

Davi			Description		
Rev.	Date	Page 81	Summary		
3.00	3.00 Aug 02, 2013		Modification of figure of AC Timing Test Points		
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)		
		83	Modification of description in (2) During communication at same potential (CSI mode)		
		84	Modification of description in (3) During communication at same potential (CSI mode)		
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)		
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)		
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)		
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)		
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)		
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)		
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)		
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)		
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)		
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)		
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)		
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)		
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)		
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)		
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)		
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)		
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)		
		109	Addition of (1) I ² C standard mode		
		111	Addition of (2) I ² C fast mode		
		112	Addition of (3) I ² C fast mode plus		
		112	Modification of IICA serial transfer timing		
		113	Addition of table in 2.6.1 A/D converter characteristics		
		113	Modification of description in 2.6.1 (1)		
		114	Modification of notes 3 to 5 in 2.6.1 (1)		
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)		
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)		
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)		