

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101fgdfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G13 1. OUTLINE

Table 1-1. List of Ordering Part Numbers

(5/12)

Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application	
			Note	
48 pins	48-pin plastic	Mounted	Α	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP (7×7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	Α	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
1				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
				R5F101GLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

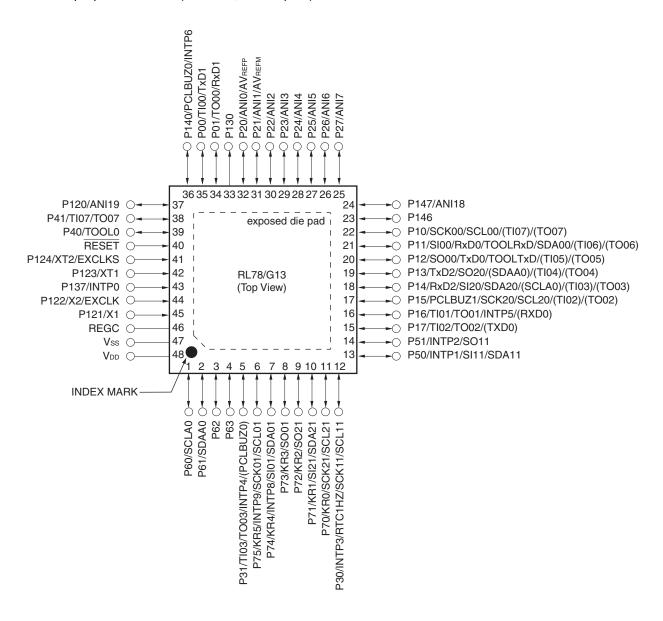
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

RL78/G13 1. OUTLINE

Table 1-1. List of Ordering Part Numbers

(6/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
48 pins	48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)	Mounted	А	R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0, R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0, R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0,
				R5F100GLANA#U0
				R5F100GAANA#W0, R5F100GCANA#W0,
				R5F100GDANA#W0, R5F100GEANA#W0,
				R5F100GFANA#W0, R5F100GGANA#W0,
				R5F100GHANA#W0, R5F100GJANA#W0,
				R5F100GKANA#W0, R5F100GLANA#W0
			D	R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0,
				R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0,
				R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0,
				R5F100GLDNA#U0
				R5F100GADNA#W0, R5F100GCDNA#W0,
				R5F100GDDNA#W0, R5F100GEDNA#W0, R5F100GFDNA#W0, R5F100GGDNA#W0,
				R5F100GHDNA#W0, R5F100GJDNA#W0,
				R5F100GKDNA#W0, R5F100GLDNA#W0
			G	R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0,
				R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0,
				R5F100GHGNA#U0, R5F100GJGNA#U0
				R5F100GAGNA#W0, R5F100GCGNA#W0,
				R5F100GDGNA#W0, R5F100GEGNA#W0,
				R5F100GFGNA#W0, R5F100GGGNA#W0,
				R5F100GHGNA#W0, R5F100GJGNA#W0
		Not	Α	R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0,
		mounted		R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0,
				R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0,
				R5F101GLANA#U0
				R5F101GAANA#W0, R5F101GCANA#W0,
				R5F101GDANA#W0, R5F101GEANA#W0,
				R5F101GFANA#W0, R5F101GGANA#W0,
				R5F101GHANA#W0, R5F101GJANA#W0,
				R5F101GKANA#W0, R5F101GLANA#W0
			D	R5F101GADNA#U0, R5F101GCDNA#U0, R5F101GDDNA#U0,
				R5F101GEDNA#U0, R5F101GFDNA#U0, R5F101GGDNA#U0,
				R5F101GHDNA#U0, R5F101GJDNA#U0, R5F101GKDNA#U0,
				R5F101GLDNA#U0
				R5F101GADNA#W0, R5F101GCDNA#W0,
				R5F101GDDNA#W0, R5F101GEDNA#W0,
				R5F101GFDNA#W0, R5F101GGDNA#W0,
				R5F101GHDNA#W0, R5F101GJDNA#W0,
				R5F101GKDNA#W0, R5F101GLDNA#W0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

RL78/G13 1. OUTLINE

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	І ОН2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	lo _{L2}	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

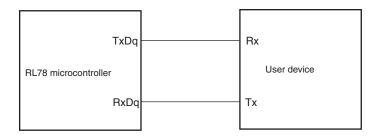
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

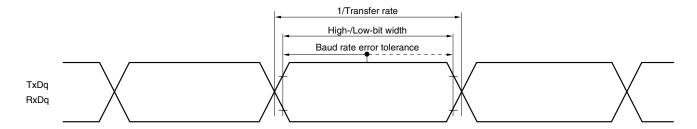
(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions	,	_	MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	Operating	HS (high-	fih = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.6		mA
current		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.6		mA
					Normal	$V_{DD} = 5.0 \text{ V}$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 \text{ V}$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		4.8	7.4	mA
					operation	$V_{DD} = 3.0 \text{ V}$		4.8	7.4	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		3.5	5.3	mA
					operation	$V_{DD} = 3.0 \text{ V}$		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Nomal	$V_{DD} = 3.0 \text{ V}$		1.5	2.3	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.3	mA
			LV (low-		Normal	V _{DD} = 3.0 V		1.5	2.0	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA
			speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.9	6.1	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	3.7	mA
		$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.5	3.7	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA
			speed main) mode Note 5	$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		5.4	6.5	μΑ
			clock operation	T _A = -40°C	operation	Resonator connection		5.5	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.5	6.5	μΑ
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.6	9.4	μΑ
				TA = +50°C	operation	Resonator connection		5.7	9.5	μΑ
				fsuB = 32.768 kHz	Normal	Square wave input		5.9	12.0	μΑ
		Not	Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μΑ	
		Į,		fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μΑ
			Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μΑ	

(Notes and Remarks are listed on the next page.)



- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 4 \text{ MHz}$

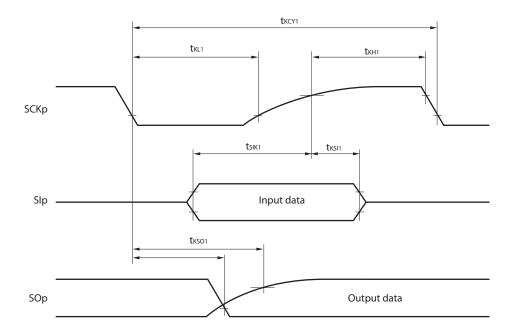
- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

UART mode connection diagram (during communication at same potential)

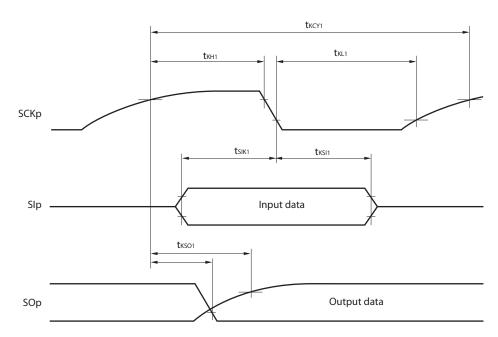
UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13))


(5) During communication at same potential (simplified I²C mode) (1/2)

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol	Conditions	` `	h-speed Mode	`	v-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V \leq EV _{DD0} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		250 Note 1		250 Note 1		250 Note 1	kHz
		1.6 V \leq EV _{DD0} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ		_		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	_		1850		1850		ns
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		1.8 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	_		1850		1850		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$

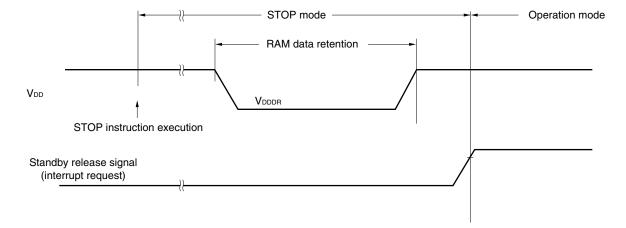
Parameter	Symbol	ĺ	≤ VDD ≤ 5.5 V, Vss =	HS (high- main) ode	LS (low			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1		$4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$	24 MHz < fмск	14/ fмск		_		_		ns
			20 MHz < fмcκ ≤ 24 MHz	12/ fмск						ns
			8 MHz < fмcк ≤ 20 MHz	10/ fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fmck ≤ 4 MHz	6/fмск		10/ fмск		10/ fмск		ns
	$2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$	$2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	24 MHz < fмск	20/ fмск		_		_		ns
		20 MHz < fмcк ≤ 24 MHz	16/ fмск		_		_		ns	
			16 MHz < fмcк ≤ 20 MHz	14/ fмск		_		_		ns
			8 MHz < fмcк ≤ 16 MHz	12/ fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fмск ≤ 4 MHz	6/ƒмск		10/ fмск		10/ fмск		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$	24 MHz < fмск	48/ fмск		_		_		ns
		2	20 MHz < fмcк ≤ 24 MHz	36/ fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	32/ fмск		_		_		ns
			8 MHz < f _{MCK} ≤ 16 MHz	26/ fмск						ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/ fмск		16/ fмск		_		ns
			fмcк ≤ 4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	Svdd				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.46 ^{Note}		5.5	٧

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy		–20 to +85 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
		–40 to −20 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}		Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	2.4 V ≤ EV _{DD0} ≤ 5.5 V			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA
		P125 to P127, P130, P140 to P145	$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V}$			-10.0	mA
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, 4 P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty \leq 70% Note 3)				-30.0	mA
			$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
Іон2			2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \le EV_{DD0} \le 5.5~V$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$2,4~V \leq V_{DD} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{DD} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

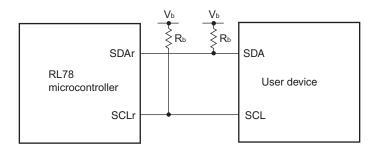
• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OH} = -10.0$ mA

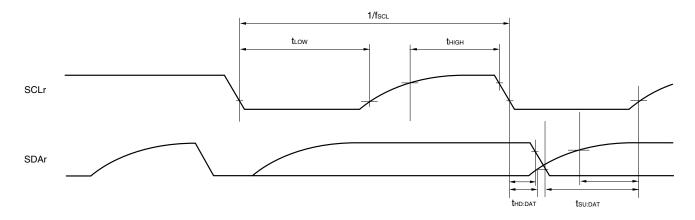
Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.


Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)


Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$		400 Note 1	kHz
		$2.7 \; V \leq EV_{DD0} < 4.0 \; V,$ $2.3 \; V \leq V_b \leq 2.7 \; V,$ $C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega$		400 Note 1	kHz
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $		100 Note 1	kHz
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$		100 Note 1	kHz
		$\begin{aligned} &2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	1200		ns
		$\begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
		$\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	4600		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	4600		ns
		$2.4 \ V \leq EV_{DD0} < 3.3 \ V,$ $1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	4650		ns
Hold time when SCLr = "H"	tніан	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	620		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	500		ns
		$\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	2700		ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	2400		ns
		$2.4 \ V \leq EV_{DD0} < 3.3 \ V,$ $1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1830		ns

(${f Notes}$ and ${f Caution}$ are listed on the next page, and ${f Remarks}$ are listed on the page after the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01, 02, 10, 12, 13)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage				
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = V _{BGR}		
Input channel	Reference voltage (–) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AVREFM		
ANI0 to ANI14	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .		
ANI16 to ANI26	Refer to 3.6.1 (2) .				
Internal reference voltage	Refer to 3.6.1 (1) .		_		
Temperature sensor output					
voltage					

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AVREFP = VDD Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode) Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
					VTMPS25 Note	4	V

(Notes are listed on the next page.)

3.8 Flash Memory Programming Characteristics

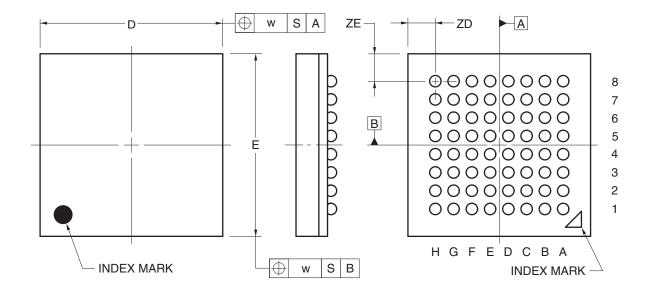
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

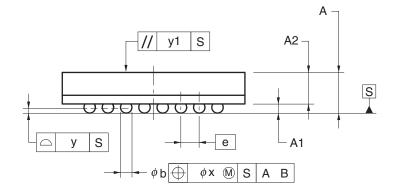
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4~V \leq V \text{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years TA = 85°C Note 4	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C Note 4	100,000			
		Retained for 20 years TA = 85°C Note 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library.
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

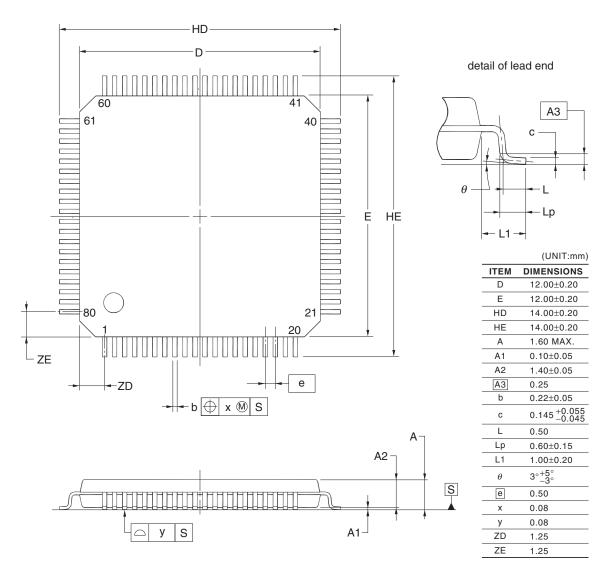

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps


R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03

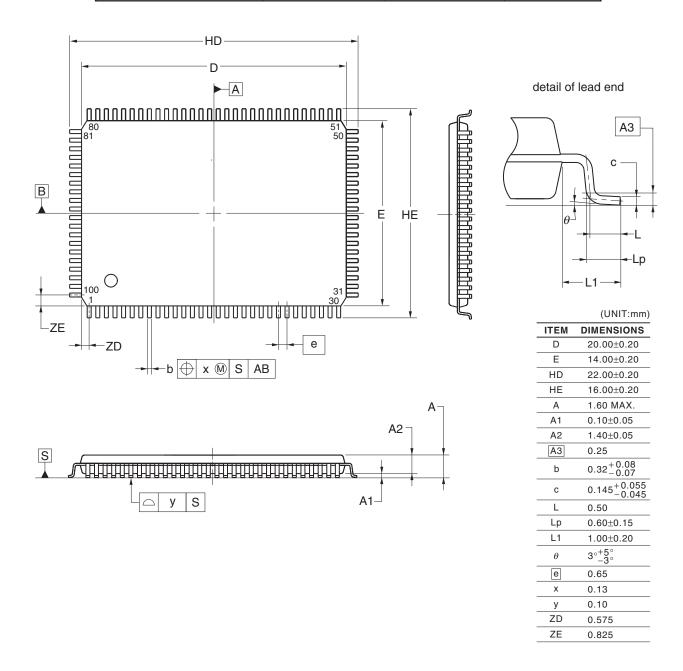


	(UNIT:mm)
ITEM	DIMENSIONS
D	4.00±0.10
Е	4.00±0.10
W	0.15
Α	0.89±0.10
A1	0.20±0.05
A2	0.69
е	0.40
b	0.25±0.05
х	0.05
у	0.08
y1	0.20
ZD	0.60
ZE	0.60

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, R5F100MJAFB, R5F100MKAFB, R5F100MLAFB R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, R5F101MJAFB, R5F101MKAFB, R5F101MLAFB R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, R5F100MJDFB, R5F100MKDFB, R5F100MLDFB R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, R5F101MJDFB, R5F101MKDFB, R5F101MLDFB R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, R5F100MJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53


NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

R5F100PFAFA, R5F100PGAFA, R5F100PHAFA, R5F100PJAFA, R5F100PKAFA, R5F100PLAFA R5F101PFAFA, R5F101PGAFA, R5F101PHAFA, R5F101PJAFA, R5F101PKAFA, R5F101PLAFA R5F100PFDFA, R5F100PGDFA, R5F100PHDFA, R5F100PJDFA, R5F100PKDFA, R5F101PLDFA R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA R5F100PFGFA, R5F100PGGFA, R5F100PHGFA, R5F100PJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

 \odot 2012 Renesas Electronics Corporation. All rights reserved.