

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101gaafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of Ordering Part Numbers
------------	-------------------------------

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
			Note	
48 pins	48-pin plastic	Mounted	А	R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0,
	HWQFN (7 \times 7 mm,			R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0,
	0.5 mm pitch)			R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0,
				R5F100GLANA#U0
				R5F100GAANA#W0, R5F100GCANA#W0, R5F100GDANA#W0, R5F100GEANA#W0,
				R5F100GFANA#W0, R5F100GGANA#W0,
				R5F100GHANA#W0, R5F100GJANA#W0,
				R5F100GKANA#W0, R5F100GLANA#W0
			D	R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0,
				R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0,
				R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0,
				R5F100GLDNA#U0
				R5F100GADNA#W0, R5F100GCDNA#W0,
				R5F100GDDNA#W0, R5F100GEDNA#W0,
				R5F100GFDNA#W0, R5F100GGDNA#W0,
				R5F100GHDNA#W0, R5F100GJDNA#W0,
				R5F100GKDNA#W0, R5F100GLDNA#W0
			G	R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0
				R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0 R5F100GHGNA#U0, R5F100GJGNA#U0
				R5F100GAGNA#W0, R5F100GCGNA#W0,
				R5F100GDGNA#W0, R5F100GEGNA#W0,
				R5F100GFGNA#W0, R5F100GGGNA#W0,
				R5F100GHGNA#W0, R5F100GJGNA#W0
		Not	А	R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0,
		mounted		R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0,
				R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0,
				R5F101GLANA#U0
				R5F101GAANA#W0, R5F101GCANA#W0,
				R5F101GDANA#W0, R5F101GEANA#W0,
				R5F101GFANA#W0, R5F101GGANA#W0,
				R5F101GHANA#W0, R5F101GJANA#W0,
			D	R5F101GKANA#W0, R5F101GLANA#W0
			D	R5F101GADNA#U0, R5F101GCDNA#U0, R5F101GDDNA#U0, R5F101GEDNA#U0, R5F101GFDNA#U0, R5F101GGDNA#U0,
				R5F101GEDNA#00, R5F101GEDNA#00, R5F101GGDNA#00, R5F101GHDNA#U0, R5F101GJDNA#U0, R5F101GKDNA#U0,
				R5F101GLDNA#U0
				R5F101GADNA#W0, R5F101GCDNA#W0,
				R5F101GDDNA#W0, R5F101GEDNA#W0,
				R5F101GFDNA#W0, R5F101GGDNA#W0,
				R5F101GHDNA#W0, R5F101GJDNA#W0,
				R5F101GKDNA#W0, R5F101GLDNA#W0

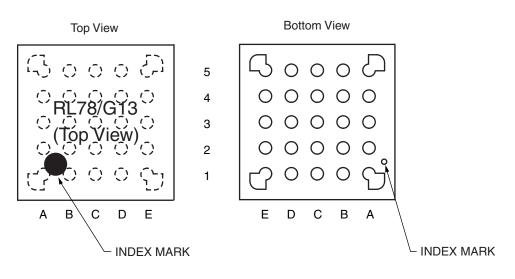
Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Table 1-1.	List of Ordering Part Numbers
------------	-------------------------------

Pin count	Package	Data flash	Fields of Application ^{Note}	Ordering Part Number
64 pins	64-pin plastic LQFP	Mounted	А	R5F100LCAFA#V0, R5F100LDAFA#V0,
	(12 × 12 mm, 0.65			R5F100LEAFA#V0, R5F100LFAFA#V0,
	mm pitch)			R5F100LGAFA#V0, R5F100LHAFA#V0,
	. ,			R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0
				R5F100LCAFA#X0, R5F100LDAFA#X0,
				R5F100LEAFA#X0, R5F100LFAFA#X0,
			D	R5F100LGAFA#X0, R5F100LHAFA#X0,
				R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0
				R5F100LCDFA#V0, R5F100LDDFA#V0,
				R5F100LEDFA#V0, R5F100LFDFA#V0,
				R5F100LGDFA#V0, R5F100LHDFA#V0,
				R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0
			G	R5F100LCDFA#X0, R5F100LDDFA#X0,
				R5F100LEDFA#X0, R5F100LFDFA#X0,
				R5F100LGDFA#X0, R5F100LHDFA#X0,
				R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0
				R5F100LCGFA#V0, R5F100LDGFA#V0,
				R5F100LEGFA#V0, R5F100LFGFA#V0
				R5F100LCGFA#X0, R5F100LDGFA#X0,
				R5F100LEGFA#X0, R5F100LFGFA#X0
				R5F100LGGFA#V0, R5F100LHGFA#V0,
				R5F100LJGFA#V0
				R5F100LGGFA#X0, R5F100LHGFA#X0,
				R5F100LJGFA#X0
		Not	А	R5F101LCAFA#V0, R5F101LDAFA#V0,
		mounted		R5F101LEAFA#V0, R5F101LFAFA#V0,
				R5F101LGAFA#V0, R5F101LHAFA#V0,
				R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0
				R5F101LCAFA#X0, R5F101LDAFA#X0,
				R5F101LEAFA#X0, R5F101LFAFA#X0,
			D	R5F101LGAFA#X0, R5F101LHAFA#X0,
				R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0
				R5F101LCDFA#V0, R5F101LDDFA#V0,
				R5F101LEDFA#V0, R5F101LFDFA#V0,
				R5F101LGDFA#V0, R5F101LHDFA#V0,
				R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0
				R5F101LCDFA#X0, R5F101LDDFA#X0,
				R5F101LEDFA#X0, R5F101LFDFA#X0,
				R5F101LGDFA#X0, R5F101LHDFA#X0,
				R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0

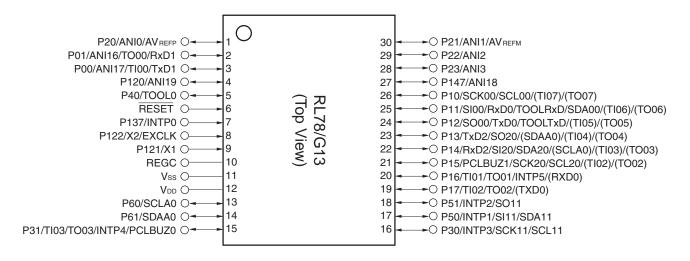
Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.3 25-pin products

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)

	А	В	С	D	E	_
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AVrefm	P10/SCK00/ SCL00	4
3	P121/X1	Vdd	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/Tl02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	А	В	С	D	E	


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-p	oin	24-	pin	25	-pin	30-	pin	32-	pin	(1/2 36-	pin			
		, ד	Ъ	Я	גר	д	גר	Ъ	דג	Ъ	ភ្ល	Ъ				
		5F1	5F1	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F1(
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	01Bx		R5F101Cx			
Code flash me	emory (KB)	16 to	64	16 t	o 64	161	o 64	16 to	128			16 to				
Data flash me	emory (KB)	4	_	4	_	4	_	4 to 8	_	4 to 8	_	4 to 8	_			
RAM (KB)		2 to 4	Note1	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to ⁻	12 ^{Note1}	2 to 1	2 ^{Note1}	2 to ⁻	2 ^{Note1}			
Address spac	e	1 MB		•		L										
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz ($V_{DD} = 1.6$ to 5.5 V)														
	High-speed on-chip oscillator	HS (High HS (High LS (Low- LV (Low-	n-speed -speed	l main) m main) m	node: 1 f ode: 1 f	to 16 MH to 8 MHz	Iz (Vdd = 2 (Vdd = 1	2.4 to 5 1.8 to 5.5	.5 V), 5 V),							
Subsystem cl	ock															
Low-speed or	n-chip oscillator	15 kHz (TYP.)													
General-purp	ose registers	(8-bit reg	gister ×	8) × 4 ba	anks											
Minimum inst	ruction execution time	0.03125	μs (Hig	h-speed	on-chip	oscillato	or: fін = 3	2 MHz o	peration)						
		0.05 μs ((High-sp	beed sys	tem cloo	ck: fмx =	20 MHz	operatio	n)							
Instruction set	·	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 														
I/O port	Total	16	;	2	0	2	21	2	6	2	8	3	2			
	CMOS I/O	13 (N-ch O [V₀₀ with voltage	.D. I/O nstand	(N-ch C	thstand	(N-ch ([V _{DD} w	5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V⊳⊳ wi voltag	D.D. I/O thstand	(N-ch C [V _{DD} wi [*]	D.D. I/O thstand	(N-ch C [V _{DD} wi [*]	D.D. I/C			
	CMOS input	3		:	3		3	:	3	3	Image: second	3				
	CMOS output	-		-	-		1	-	-	-	-	-	-			
	N-ch O.D. I/O (withstand voltage: 6 V)	-		2	2		2	2	2	3	3	3	3			
Timer	16-bit timer						8 cha	nnels								
	Watchdog timer						1 cha	nnel								
	Real-time clock (RTC)						1 chan	nel Note 2								
	12-bit interval timer (IT)						1 cha	nnel								
	Timer output	3 channels (PWM outputs: (PWM outputs: 3 ^{Note 3})						4 channels (PWM outputs: 3 ^{Note 3}), 8 channels (PWM outputs: 7 ^{Note 3})								
	RTC output			•				-								
Notes 1.	The target products R5F100xD, R5F R5F100xE, R5F For the RAM areas for RL78 Family (I	s and sta 101xD (: 101xE () used by R20UT29	$\begin{array}{l} \text{rt addr} \\ x = 6 \ \text{to} \\ x = 6 \ \text{to} \\ \text{the flat} \\ \textbf{944}. \end{array}$	ress of t o 8, A to o 8, A to ash libra	he RAN o C): S o C): S ury, see	A areas Start add Start add Start add Self R	used by dress Ff dress Ff AM list	y the fla F300H EF00H of Flas	sh libra h Self-	ry are s Progra i	hown b mming	Library				

^{2.} Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fiL) is selected

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

^{3.} When setting to PIOR = 1

lt o	m	40	nin	11	nin	10	nin	EO	nin	64	(2) nin
Ite		40-			-pin		-pin	52	-pin I		-pin
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	:	2		2		2		2		2
·		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 									
8/10-bit resolution	A/D converter	9 channels 10 channels 10 channels 12 channels 12 channels									
Serial interface		[40-pin, 4	4-pin prod	ducts]		J				J	
		 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [48-pin, 52-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel 									
	I ² C bus	1 channe		1 channe		1 channe		1 channe	J LIN-bus):	1 channe	
Multiplier and divid		• 16 bits	× 16 bits =	= 32 bits (L = 32 bits (L	Jnsigned o			1 onanna		1 onume	
		• 16 bits	× 16 bits +	- 32 bits =	32 bits (U	nsigned or	r signed)				
DMA controller		2 channe	ls								
Vectored	Internal	2	27	:	27	2	27		27	2	27
interrupt sources	External		7		7		10		12		13
Key interrupt			4		4		6		8		8
Reset • Reset by RESET pin • Internal reset by watchdog timer • Internal reset by power-on-reset • Internal reset by voltage detector • Internal reset by illegal instruction execution Note • Internal reset by RAM parity error • Internal reset by illegal-memory access											
Power-on-reset ci	rcuit		on-reset: down-res	1.51 V et: 1.50 V	. ,						
Voltage detector		-	 Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages) 								
On-chip debug fur	nction	Provided									
Power supply volta				$T_A = -40 \text{ to}$ $T_A = -40 \text{ to}$							
Operating ambien	t temperature	$T_A = 40 to$	o +85°C (/		ner applica	itions, D: Ii ations)	ndustrial a	pplication	s)		

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	$V_{DD} = 5.0 V$		2.3		mA
Current		mode	speed main) mode ^{Note 5}		operation	$V_{\text{DD}} = 3.0 \text{ V}$		2.3		mA
			mode		Normal	V _{DD} = 5.0 V		5.2	8.5	mA
					operation	V _{DD} = 3.0 V		5.2	8.5	mA
				fin = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	6.6	mA
					operation	V _{DD} = 3.0 V		4.1	6.6	mA
				fin = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	4.7	mA
					operation	V _{DD} = 3.0 V		3.0	4.7	mA
			LS (low-	f _{IH} = 8 MHz ^{№te 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.3	2.1	mA
			LV (low-	$f_{IH} = 4 \ MHz^{Note \ 3}$	Normal	$V_{DD} = 3.0 V$		1.3	1.8	mA
	voltage main) mode	Note of	operation	V _{DD} = 2.0 V		1.3	1.8	mA		
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.6	5.7	mA
			mode	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.4	5.5	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		3.6	5.7	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.2	mA	
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.1	3.2	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal operation	Square wave input		2.1	3.2	mA
				$V_{DD} = 3.0 V$		Resonator connection		2.1	3.2	mA
			LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA
			speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$	operation	Resonator connection		1.2	2.0	mA
			mode	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.2	2.0	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.9	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				Note 4 $T_A = +25^{\circ}C$	operation	Resonator connection		5.0	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
				Note 4	operation	Resonator connection		5.1	7.7	μA
				T _A = +50°C fsub = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
				Note 4	operation	Resonator connection		5.3	9.3 9.4	μA
		_	$T_A = +70^{\circ}C$	Nama	Company to the state of		F 7	10.0		
				fsub = 32.768 kHz Note 4	Normal operation	Square wave input Resonator connection		5.7 5.8	13.3 13.4	μA μA
				T _A = +85°C	.	TESUTIALUI CUTITIECUUT		5.0	13.4	μΑ

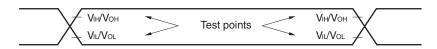
(Notes and Remarks are listed on the next page.)

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions	-		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		2.6		mA
current Note 1		mode	speed main) mode ^{Note 5}		operation	$V_{DD} = 3.0 V$		2.6		mA
					Normal	$V_{DD} = 5.0 V$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 V$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		4.8	7.4	mA
					operation	$V_{DD} = 3.0 V$		4.8	7.4	mA
				$f_{IH} = 16 \ MHz^{Note \ 3}$	Normal	$V_{DD} = 5.0 V$		3.5	5.3	mA
					operation	V _{DD} = 3.0 V		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	$V_{DD} = 2.0 V$		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.0	mA
		voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
	speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		4.1	6.3	mA		
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		4.1	6.3	mA	
		$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.5	3.7	mA		
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.5	3.7	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.5	3.7	mA
			LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
			speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		5.6	6.6	μA
				fsub = 32.768 kHz	Normal	Square wave input		5.6	9.4	μA
				$T_{A} = +50^{\circ}C$	operation	Resonator connection		5.7	9.5	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.9	12.0	μA
		-	Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μA	
			fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μA	
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μA

(Notes and Remarks are listed on the next page.)



- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

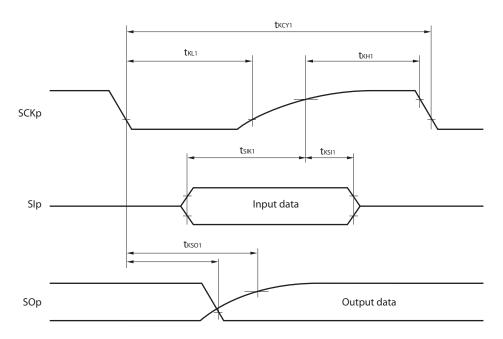
(1) During communication at same potential (UART mode) (TA = -40 to +85°C, 1.6 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{ss0} = EV_{ss1} = 0 V)

Parameter	Symbol		Conditions	、 U	h-speed Mode	``	/-speed Mode	``	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		2.4 V≤ EV	5.5 V		fMCK/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			fмск/6 Note 2		fмск/6		fмск/6	bps	
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		1.7 V ≤ EV	$T_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fмск/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		1.6 V ≤ EV	$T_{\text{DD0}} \leq 5.5 \text{ V}$	_	_		fмск/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$	_			1.3		0.6	Mbps

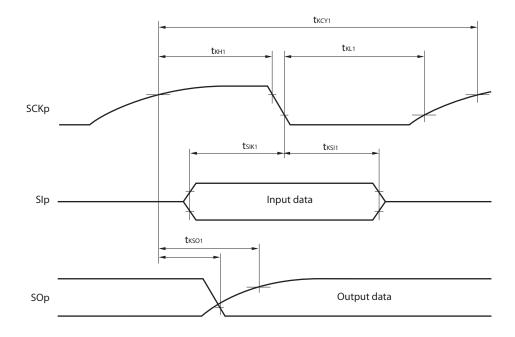
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

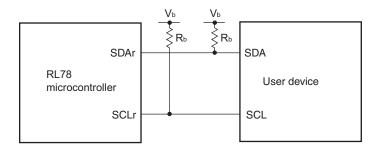
 $2.4~V \leq EV_{\text{DD0}}$ < 2.7 V : MAX. 2.6 Mbps

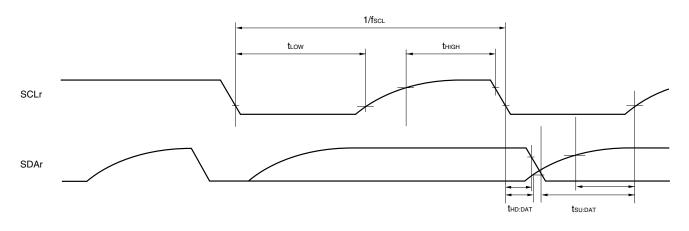

- $1.8~\text{V} \leq \text{EV}_\text{DD0} < 2.4~\text{V}$: MAX. 1.3 Mbps
- $1.6~V \leq EV_{\text{DD0}} < 1.8~V$: MAX. 0.6 Mbps
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 $\begin{array}{lll} \text{HS (high-speed main) mode:} & 32 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \end{array}$


Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

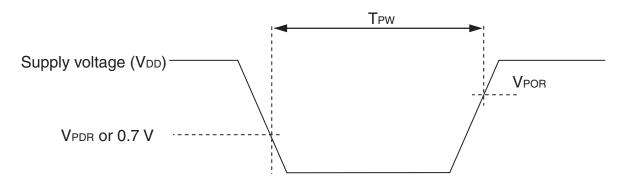
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, $T_A = +25^{\circ}C$		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode)

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

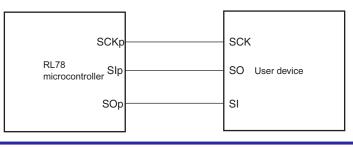
- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 5	t ксү2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \\ V \end{array}$	20 MHz < fмск	16/f мск		ns
			fмск $≤$ 20 MHz	12/f мск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	16/f мск		ns
		V	fмск \leq 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		16/fмск		ns
				12/fмск and 1000		ns
SCKp high-/low-level	tкн2,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 14		ns
width	tĸl2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 16		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5$	V	tксү2/2 – 36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+40		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi2	$2.4~V \leq EV_{\text{DD0}} \leq 5.5$	V	1/fмск+62		ns
Delay time from SCKp↓ to SOp output	tkso2	C = 30 pF Note 4	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+66	ns
Note 3			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+113	ns

(3)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } \pm 105^{\circ}\text{C} 24 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 55 \text{ V}_{D0} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.\text{ V}_{D1}$


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

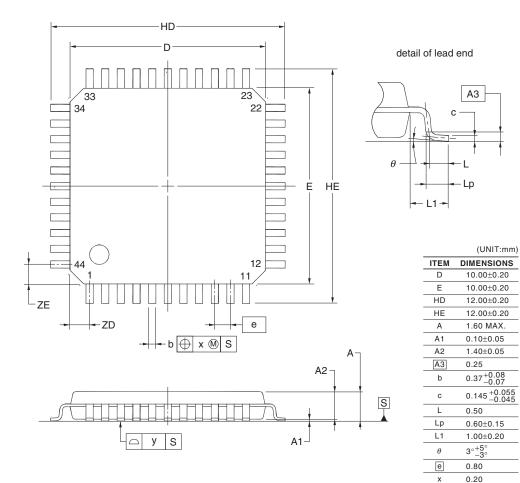
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), p: Changel number (n = 0, ta 2) an EMA number (n = 0, 1, 4, 5, 0, 14)
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

4.8 44-pin Products

R5F100FAAFP, R5F100FCAFP, R5F100FDAFP, R5F100FEAFP, R5F100FFAFP, R5F100FGAFP, R5F100FHAFP, R5F100FJAFP, R5F100FKAFP, R5F100FLAFP


R5F101FAAFP, R5F101FCAFP, R5F101FDAFP, R5F101FEAFP, R5F101FFAFP, R5F101FGAFP, R5F101FHAFP, R5F101FJAFP, R5F101FKAFP, R5F101FLAFP

R5F100FADFP, R5F100FCDFP, R5F100FDDFP, R5F100FEDFP, R5F100FFDFP, R5F100FGDFP, R5F100FHDFP, R5F100FJDFP, R5F100FKDFP, R5F100FLDFP

R5F101FADFP, R5F101FCDFP, R5F101FDDFP, R5F101FEDFP, R5F101FFDFP, R5F101FGDFP, R5F101FHDFP, R5F101FJDFP, R5F101FKDFP, R5F101FLDFP

R5F100FAGFP, R5F100FCGFP, R5F100FDGFP, R5F100FEGFP, R5F100FFGFP, R5F100FGGFP, R5F100FJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

NOTE

Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

0.10

1.00

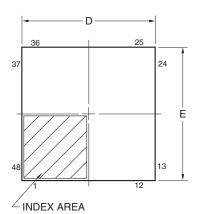
1.00

y

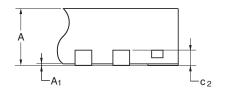
ZD

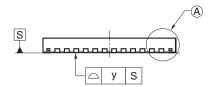
ZE

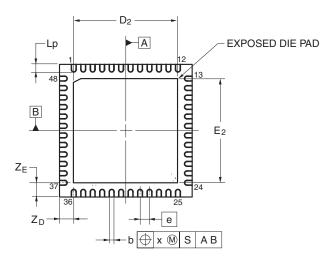
R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GGANA, R5F100GHANA, R5F100GJANA, R5F100GKANA, R5F100GLANA


R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GGANA, R5F101GHANA, R5F101GJANA, R5F101GKANA, R5F101GLANA

R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GGDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA


R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA


R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GGGNA, R5F100GJGNA

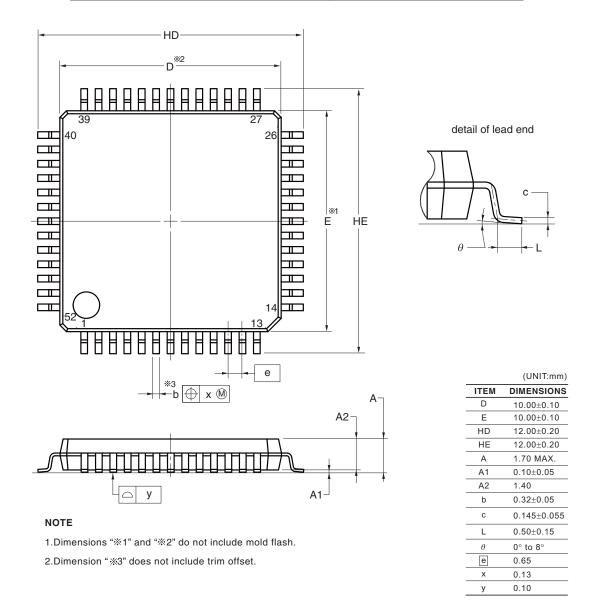

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-6	0.13

Referance	Dimen	Dimension in Millimeters		
Symbol	Min	Nom	Max	
D	6.95	7.00	7.05	
E	6.95	7.00	7.05	
А			0.80	
A ₁	0.00		—	
b	0.18	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
х			0.05	
у			0.05	
ZD		0.75		
Z _E		0.75		
C ₂	0.15	0.20	0.25	
D ₂		5.50		
E ₂		5.50		

©2013 Renesas Electronics Corporation. All rights reserved.

4.10 52-pin Products

R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JLAFA


R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JGAFA, R5F101JHAFA, R5F101JJAFA, R5F101JLAFA

R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JGDFA, R5F100JHDFA, R5F100JJDFA, R5F100JLDFA

R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JGDFA, R5F101JHDFA, R5F101JJDFA, R5F101JLDFA

R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/G13 Data Sheet

		Description		
Rev.	Date	Page	Summary	
1.00	Feb 29, 2012	-	First Edition issued	
2.00	Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.	
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.	
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.	
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.	
		59, 63, 67	Descriptions of Note 8 in a table corrected.	
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.	
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.	
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.	
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.	
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.	
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.	
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.	
3.00	Aug 02, 2013	1	Modification of 1.1 Features	
		3	Modification of 1.2 List of Part Numbers	
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution	
		16 to 32	Modification of package type in 1.3.1 to 1.3.14	
		33	Modification of description in 1.4 Pin Identification	
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions	
		55	Modification of description in table of Absolute Maximum Ratings ($T_A = 25^{\circ}C$)	
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics	
		57	Modification of table in 2.2.2 On-chip oscillator characteristics	
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics	
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics	
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products	
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products	
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products	
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100- pin products	
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products	
		75	Modification of (4) Peripheral Functions (Common to all products)	
		77	Modification of table in 2.4 AC Characteristics	
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		80	Modification of figures of AC Timing Test Points and External System Clock Timing	

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.