

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101gcafb-50

Email: info@E-XFL.COM

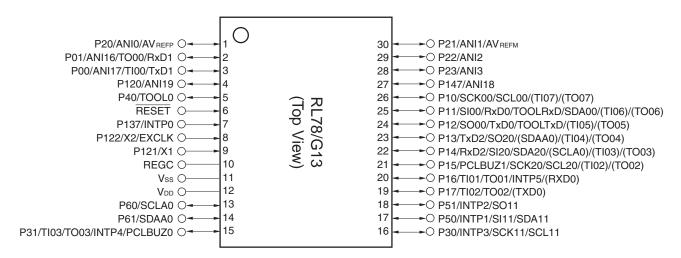
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash	Data	RAM			RL78	/G13		
ROM	flash		20 pins	24 pins	25 pins	30 pins	32 pins	36 pins
128	8 KB	12	-	-	-	R5F100AG	R5F100BG	R5F100CG
KB	-	KB	-	-	-	R5F101AG	R5F101BG	R5F101CG
96	8 KB	8 KB	=	=	=	R5F100AF	R5F100BF	R5F100CF
KB	-		-	-	-	R5F101AF	R5F101BF	R5F101CF
64	4 KB	4 KB	R5F1006E	R5F1007E	R5F1008E	R5F100AE	R5F100BE	R5F100CE
KB	=	Note	R5F1016E	R5F1017E	R5F1018E	R5F101AE	R5F101BE	R5F101CE
48	4 KB	3 KB	R5F1006D	R5F1007D	R5F1008D	R5F100AD	R5F100BD	R5F100CD
KB	_	1.0.0	R5F1016D	R5F1017D	R5F1018D	R5F101AD	R5F101BD	R5F101CD
32	4 KB	2 KB	R5F1006C	R5F1007C	R5F1008C	R5F100AC	R5F100BC	R5F100CC
KB	=		R5F1016C	R5F1017C	R5F1018C	R5F101AC	R5F101BC	R5F101CC
16 KB	4 KB	2 KB	R5F1006A	R5F1007A	R5F1008A	R5F100AA	R5F100BA	R5F100CA
KB	-		R5F1016A	R5F1017A	R5F1018A	R5F101AA	R5F101BA	R5F101CA

Flash	Data	RAM				RL78	3/G13			
ROM	flash		40 pins	44 pins	48 pins	52 pins	64 pins	80 pins	100 pins	128 pins
512	8 KB	32 KB Note	=	R5F100FL	R5F100GL	R5F100JL	R5F100LL	R5F100ML	R5F100PL	R5F100SL
KB	-	Note	-	R5F101FL	R5F101GL	R5F101JL	R5F101LL	R5F101ML	R5F101PL	R5F101SL
384	8 KB	24 KB	-	R5F100FK	R5F100GK	R5F100JK	R5F100LK	R5F100MK	R5F100PK	R5F100SK
KB	-		-	R5F101FK	R5F101GK	R5F101JK	R5F101LK	R5F101MK	R5F101PK	R5F101SK
256	8 KB	20 KB Note	-	R5F100FJ	R5F100GJ	R5F100JJ	R5F100LJ	R5F100MJ	R5F100PJ	R5F100SJ
KB	_	Note	-	R5F101FJ	R5F101GJ	R5F101JJ	R5F101LJ	R5F101MJ	R5F101PJ	R5F101SJ
192	8 KB	16 KB	R5F100EH	R5F100FH	R5F100GH	R5F100JH	R5F100LH	R5F100MH	R5F100PH	R5F100SH
KB	=		R5F101EH	R5F101FH	R5F101GH	R5F101JH	R5F101LH	R5F101MH	R5F101PH	R5F101SH
128	8 KB	12 KB	R5F100EG	R5F100FG	R5F100GG	R5F100JG	R5F100LG	R5F100MG	R5F100PG	-
KB	-		R5F101EG	R5F101FG	R5F101GG	R5F101JG	R5F101LG	R5F101MG	R5F101PG	-
96	8 KB	8 KB	R5F100EF	R5F100FF	R5F100GF	R5F100JF	R5F100LF	R5F100MF	R5F100PF	=
KB	_		R5F101EF	R5F101FF	R5F101GF	R5F101JF	R5F101LF	R5F101MF	R5F101PF	-
64	4 KB	4 KB Note	R5F100EE	R5F100FE	R5F100GE	R5F100JE	R5F100LE	=	=	=
KB	_	Note	R5F101EE	R5F101FE	R5F101GE	R5F101JE	R5F101LE	-	=	-
48	4 KB	3 KB Note	R5F100ED	R5F100FD	R5F100GD	R5F100JD	R5F100LD	=	=	=
KB	-		R5F101ED	R5F101FD	R5F101GD	R5F101JD	R5F101LD	=	=	=
32	4 KB	2 KB	R5F100EC	R5F100FC	R5F100GC	R5F100JC	R5F100LC	-	=	-
KB	_	1	R5F101EC	R5F101FC	R5F101GC	R5F101JC	R5F101LC	-	-	-
16	4 KB	2 KB	R5F100EA	R5F100FA	R5F100GA	=	=	=	=	=
KB	_	1	R5F101EA	R5F101FA	R5F101GA	-	-	-	-	=

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.

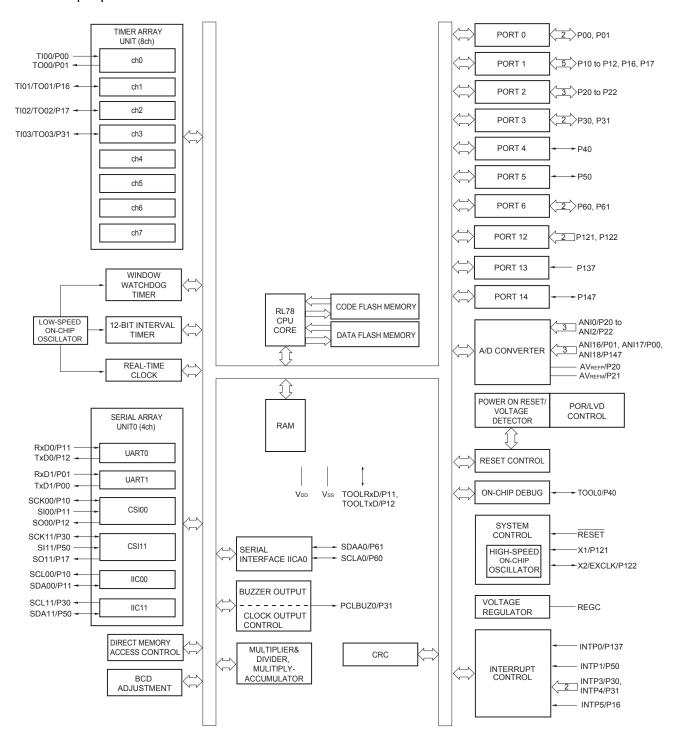

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L, M, P): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L, M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.2 24-pin products

2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

3. When setting to PIOR = 1

(2/2)

										(2)	(2)
Ite	m	40-	pin	44	pin	48-	pin	52	-pin	64	-pin
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	2	2		2		2		2		2
·	·	(Main s	system clo	ock: fmain = 1.024 kHz	Hz, 1.25 M 20 MHz o 2, 2.048 kH 2.768 kHz	peration) Iz, 4.096 k	:Hz, 8.192			2.768 kHz	
8/10-bit resolution	A/D converter	9 channe	ls	10 chanr	nels	10 chanr	nels	12 chanr	nels	12 chanr	nels
Serial interface [40-pin, 44-pin products] • CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel • CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 3 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 3 channels/simplified I²C: 3 channels/UART (UART supporting LIN-bus): 1 channel • CSI: 3 channels/simplified I²C: 3 channels/uART (UART supporting LIN-bus): 1 channel • CSI: 4 channels/simplified I²C: 5 channels/uART (UART supporting LIN-bus): 1 channel • CSI: 5 channels/simplified I²C: 5 channels/uART (UART supporting LIN-bus): 1 channel						: 1 channe	l I				
accumulator DMA controller	uei/munpiy-	32 bits ÷ 32 bits = 32 bits (Unsigned) 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 2 channels									
Vectored	Internal		7	1	27		27		27		27
interrupt sources	External		7		7		10		12		 13
Key interrupt	1	4	1		4		6		8		8
Reset • Reset by RESET pin • Internal reset by watchdog timer • Internal reset by power-on-reset • Internal reset by voltage detector • Internal reset by illegal instruction execution Note • Internal reset by RAM parity error • Internal reset by illegal-memory access											
Power-on-reset ci	rcuit	Power- Power-		1.51 V et: 1.50 V	` ,						
Voltage detector		 Rising edge: 1.67 V to 4.06 V (14 stages) Falling edge: 1.63 V to 3.98 V (14 stages) 									
On-chip debug fur	nction	Provided									
Power supply volt	age	V _{DD} = 2.4	to 5.5 V (+105°C)						
Operating ambien	t temperature	V_{DD} = 2.4 to 5.5 V (T_A = -40 to +105°C) T_A = 40 to +85°C (A: Consumer applications, D: Industrial applications) T_A = 40 to +105°C (G: Industrial applications)									

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	Itam	90	nin	100	nin	100	nin			
	Item	80- R5F100Mx	R5F101Mx	R5F100Px	-pin R5F101Px	128 R5F100Sx	R5F101Sx			
Code flash me	emory (KB)		512		o 512		o 512			
Data flash me	- , ,	8	=	8	=	8	=			
RAM (KB)		8 to 3	2 Note 1	8 to 3	2 Note 1	16 to 3	32 Note 1			
Address spac	е	1 MB		1						
Main system clock	High-speed system clock	HS (High-speed HS (High-speed LS (Low-speed	I main) mode: 1 I main) mode: 1 main) mode: 1	external main sys to 20 MHz (V _{DD} = to 16 MHz (V _{DD} = to 8 MHz (V _{DD} = to 4 MHz (V _{DD} =	= 2.7 to 5.5 V), = 2.4 to 5.5 V), 1.8 to 5.5 V),	(EXCLK)				
	High-speed on-chip oscillator	HS (High-speed LS (Low-speed	l main) mode: 1 main) mode: 1	to 32 MHz (V _{DD} = to 16 MHz (V _{DD} = to 8 MHz (V _{DD} = to 4 MHz (V _{DD} =	= 2.4 to 5.5 V), 1.8 to 5.5 V),					
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	l subsystem cloc	k input (EXCLKS	5)				
Low-speed or	n-chip oscillator	15 kHz (TYP.)								
General-purpo	ose register	(8-bit register ×	8) × 4 banks							
Minimum insti	ruction execution time	0.03125 μs (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)								
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)								
		30.5 <i>μ</i> s (Subsys	stem clock: fsub =	= 32.768 kHz ope	ration)					
Instruction se	t	Adder and suMultiplication	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	7	'4	9	92	1	20			
	CMOS I/O	(N-ch O.D. I/O	64 [EV _{DD} withstand e]: 21)	(N-ch O.D. I/O	32 [EV _{DD} withstand je]: 24)	(N-ch O.D. I/O	10 [EV _{DD} withstand e]: 25)			
	CMOS input	!	5		5		5			
	CMOS output		1		1		1			
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4			
Timer	16-bit timer	12 cha	annels	12 cha	annels	16 cha	annels			
	Watchdog timer	1 cha	ınnel	1 cha	annel	1 cha	annel			
	Real-time clock (RTC)	1 cha	nnel	1 cha	annel	1 cha	annel			
	12-bit interval timer (IT)	1 cha	nnel	1 cha	annel	1 cha	annel			
	Timer output	12 channels (PWM outputs: 10 Note 2) 12 channels (PWM outputs: 10 Note 2) (PWM outputs: 14 Note 2)								
	RTC output	1 channel • 1 Hz (subsyst	em clock: fsub =	32.768 kHz)						

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{DD} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{DD} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6~V \leq V_{DD} < 1.8~V$	-5.0		+5.0	%
		–40 to −20 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \le V_{DD} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	$V_{DD} = 5.0 \text{ V}$		2.1		mA
current Note 1		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.1		mA
			mode		Normal	$V_{DD} = 5.0 \text{ V}$		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				fin = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	fin = 8 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.8	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	fin = 4 MHz Note 3	Normal	$V_{DD} = 3.0 \text{ V}$		1.2	1.7	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA
			V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2},$	Normal	Square wave input		1.1	1.7	mA
			speed main) mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
				$f_{MX} = 8 MHz^{Note 2},$	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μА
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				Note 4 TA = +25°C	operation	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ
				Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μА
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ
				Note 4 TA = +70°C	operation	Resonator connection		4.4	6.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μА
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μА

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

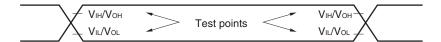
(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

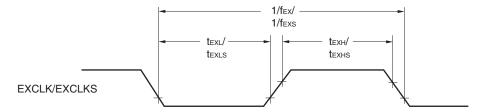
Parameter	Symbol			Conditions	,	_	MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	Operating	HS (high-	fih = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.6		mA
current		mode	speed main) mode Note 5		operation	$V_{DD} = 3.0 \text{ V}$		2.6		mA
					Normal	$V_{DD} = 5.0 \text{ V}$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 \text{ V}$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		4.8	7.4	mA
					operation	$V_{DD} = 3.0 \text{ V}$		4.8	7.4	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 \text{ V}$		3.5	5.3	mA
					operation	$V_{DD} = 3.0 \text{ V}$		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Nomal	$V_{DD} = 3.0 \text{ V}$		1.5	2.3	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{\text{Note 3}}$	Normal	V _{DD} = 3.0 V		1.5	2.0	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA
			speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		3.9	6.1	mA
			$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		4.1	6.3	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.5	3.7	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		2.5	3.7	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA
			speed main) mode Note 5	$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 \text{ V}$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		5.4	6.5	μΑ
			clock operation	T _A = -40°C	operation	Resonator connection		5.5	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.5	6.5	μΑ
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.6	9.4	μΑ
		TA = +50°C	operation	Resonator connection		5.7	9.5	μΑ		
				fsuB = 32.768 kHz	Normal	Square wave input		5.9	12.0	μΑ
			No	Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μΑ
		Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μΑ		

(Notes and Remarks are listed on the next page.)

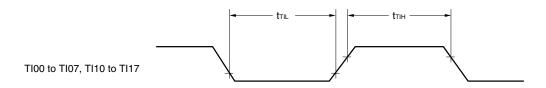
- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

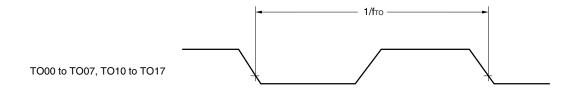

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4~V \leq V_{DD} \leq 5.5~V @ 1~MHz$ to 16 MHz

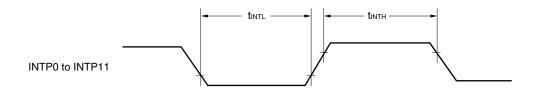

LS (low-speed main) mode: $1.8~V \le V_{DD} \le 5.5~V~@1~MHz$ to 8~MHz LV (low-voltage main) mode: $1.6~V \le V_{DD} \le 5.5~V~@1~MHz$ to 4~MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

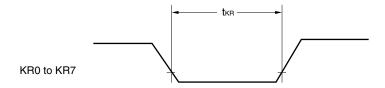

AC Timing Test Points

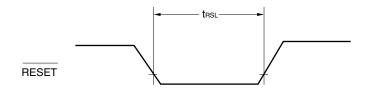


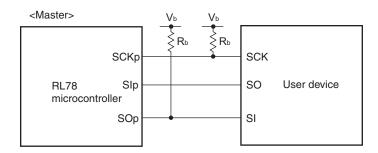
External System Clock Timing



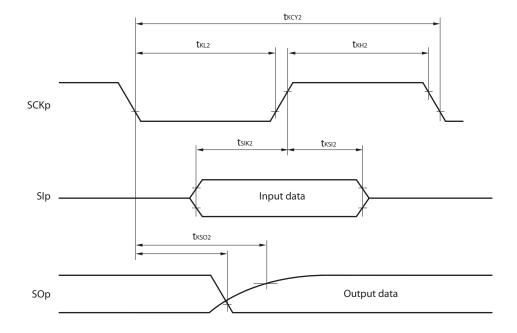
TI/TO Timing



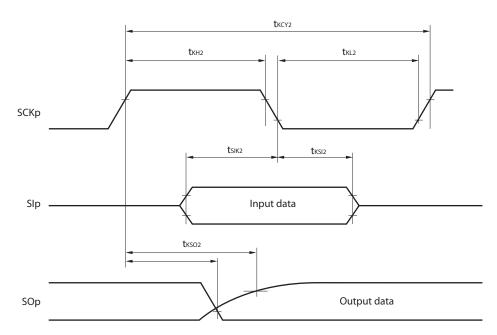

Interrupt Request Input Timing


Key Interrupt Input Timing

RESET Input Timing



CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	EV _{DD0} – 0.7			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$	EV _{DD0} – 0.6			٧
		P117, P120, P125 to P127, P130, P140 to P147	$2.4 \ V \leq EV_{DD0} \leq 5.5 \ V,$ Iон1 = $-1.5 \ mA$	EV _{DD0} – 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон2 = $-100 \ \mu \text{ A}$	V _{DD} – 0.5			V
Output voltage, low	V _{OL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$			0.7	V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.6	V
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	Vоцз	P60 to P63	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$			2.0	V
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{Iol3} = 3.0 \text{ mA}$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	HS (high-speed ma	in) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	16/fмск		ns
		V	fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5	16 MHz < fмск	16/fмск		ns
		V	fмck ≤ 16 MHz	12/fмск		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		16/fмск		ns
				12/fмcк and 1000		ns
SCKp high-/low-level	t кн2,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ M}$	V	tkcy2/2 – 14		ns
width	t _{KL2}	$2.7~V \leq EV_{DD0} \leq 5.5$	V	tkcy2/2 – 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5	V	tkcy2/2 - 36		ns
SIp setup time	tsıĸ2	$2.7~V \leq EV_{DD0} \leq 5.5$	V	1/fмск+40		ns
(to SCKp↑) Note 1		$2.4~V \leq EV_{DD0} \leq 5.5$	V	1/fмск+60		ns
SIp hold time (from SCKp↑) Note 2	tksi2	2.4 V ≤ EV _{DD0} ≤ 5.5	V	1/fмск+62		ns
Delay time from SCKp↓ to SOp output	tkso2	C = 30 pF Note 4	$2.7~V \leq EV_{DD0} \leq 5.5$ V		2/fмск+66	ns
Note 3			$2.4~V \leq EV_{DD0} \leq 5.5$ V		2/fмск+113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

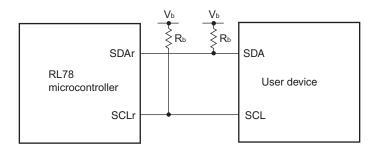
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsıĸı	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	162		ns
(to SCKp↑) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	354		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	958		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Slp hold time	tksi1	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	38		ns
(from SCKp↑) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
Delay time from SCKp↓ to	tkso1	$\label{eq:4.0} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$		200	ns
SOp output Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		966	ns
		$C_b = 30 \text{ pF, } R_b = 5.5 \text{ k}\Omega$			

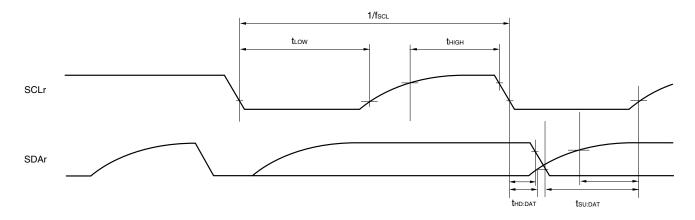
Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)


(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	24 MHz < fмск	28/fмск		ns
		$V,$ $2.7V \leq V_b \leq 4.0V$	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
			8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$ 2.7 \ V \le EV_{DD0} < 4.0 $ $V, $ $ 2.3 \ V \le V_b \le 2.7 \ V $	24 MHz < fмск	40/fмск		ns
			20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
			16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$ 2.4 \ V \leq EV_{DDO} < 3.3 \\ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V $	24 MHz < fмск	96/fмск		ns
			20 MHz < fмск ≤ 24 MHz	72/fмск		ns
			16 MHz < fмcк ≤ 20 MHz	64/ƒмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$ 4.0 \ V \le EV_{DD0} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V $		tkcy2/2 - 24		ns
		$ 2.7 \ V \le EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \le V_b \le 2.7 \ V $		tkcy2/2 - 36		ns
		$ 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 2}} $		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note2	tsıĸ2	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $		1/fмск + 40		ns
		$ 2.7 \ V \le EV_{DD0} < 4.0 \ V, $ $ 2.3 \ V \le V_b \le 2.7 \ V $		1/fмск + 40		ns
		$ 2.4 \ V \le EV_{DD0} < 3.3 \ V, $ $ 1.6 \ V \le V_b \le 2.0 \ V $		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to SOp output Note 4	tkso2	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $			2/fмск + 240	ns
		$ 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $			2/fмск + 428	ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}$ $C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega$			2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01, 02, 10, 12, 13)

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .

Zero-scale error/Full-scale error: Add $\pm 0.05\% FSR$ to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.