

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \mathbf{X}

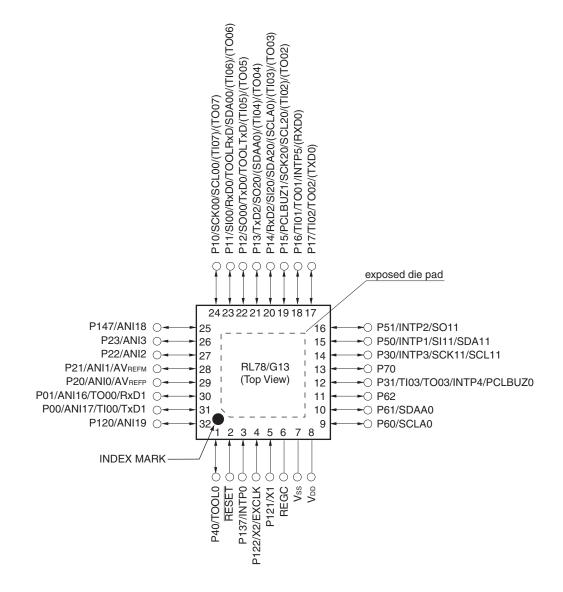
2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101gdana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of Ordering Part Numbers
------------	-------------------------------

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
			Note	
48 pins	48-pin plastic	Mounted	А	R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0,
	HWQFN (7 \times 7 mm,			R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0,
	0.5 mm pitch)			R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0,
				R5F100GLANA#U0
				R5F100GAANA#W0, R5F100GCANA#W0, R5F100GDANA#W0, R5F100GEANA#W0,
				R5F100GFANA#W0, R5F100GGANA#W0,
				R5F100GHANA#W0, R5F100GJANA#W0,
				R5F100GKANA#W0, R5F100GLANA#W0
			D	R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0,
				R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0,
				R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0,
				R5F100GLDNA#U0
				R5F100GADNA#W0, R5F100GCDNA#W0,
				R5F100GDDNA#W0, R5F100GEDNA#W0,
				R5F100GFDNA#W0, R5F100GGDNA#W0,
				R5F100GHDNA#W0, R5F100GJDNA#W0,
				R5F100GKDNA#W0, R5F100GLDNA#W0
			G	R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0
				R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0 R5F100GHGNA#U0, R5F100GJGNA#U0
				R5F100GAGNA#W0, R5F100GCGNA#W0,
				R5F100GDGNA#W0, R5F100GEGNA#W0,
				R5F100GFGNA#W0, R5F100GGGNA#W0,
				R5F100GHGNA#W0, R5F100GJGNA#W0
		Not	А	R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0,
		mounted		R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0,
				R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0,
				R5F101GLANA#U0
				R5F101GAANA#W0, R5F101GCANA#W0,
				R5F101GDANA#W0, R5F101GEANA#W0,
				R5F101GFANA#W0, R5F101GGANA#W0,
				R5F101GHANA#W0, R5F101GJANA#W0,
			D	R5F101GKANA#W0, R5F101GLANA#W0
			D	R5F101GADNA#U0, R5F101GCDNA#U0, R5F101GDDNA#U0, R5F101GEDNA#U0, R5F101GFDNA#U0, R5F101GGDNA#U0,
				R5F101GEDNA#00, R5F101GEDNA#00, R5F101GGDNA#00, R5F101GHDNA#U0, R5F101GJDNA#U0, R5F101GKDNA#U0,
				R5F101GLDNA#U0
				R5F101GADNA#W0, R5F101GCDNA#W0,
				R5F101GDDNA#W0, R5F101GEDNA#W0,
				R5F101GFDNA#W0, R5F101GGDNA#W0,
				R5F101GHDNA#W0, R5F101GJDNA#W0,
				R5F101GKDNA#W0, R5F101GLDNA#W0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

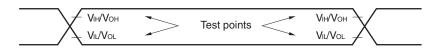
- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to V_{ss} .

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

^{3.} When setting to PIOR = 1

lt o	40-pin 44-pin 48-pin			52-pin		(2/2) 64-pin					
Ite					İ.		·	52	-pin		
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	:	2		2		2		2		2
·		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 									
8/10-bit resolution	A/D converter	9 channe	ls	10 chanr	nels	10 chanr	nels	12 chan	nels	12 chanr	nels
Serial interface		[40-pin, 4	4-pin prod	ducts]		J				J	
	 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [48-pin, 52-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel 										
	I ² C bus	1 channe		1 channe		1 channe		1 channe	J LIN-bus):	1 channe	
Multiplier and divid		 I bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 									
		• 16 bits \times 16 bits + 32 bits = 32 bits (Unsigned or signed)									
DMA controller		2 channe	ls								
Vectored	Internal	2	27	:	27	2	27		27	2	27
interrupt sources	External		7		7		10		12		13
Key interrupt			4		4		6		8		8
Reset	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 										
Power-on-reset ci	rcuit		on-reset: down-res	1.51 V et: 1.50 V	. ,						
Voltage detector		Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)									
On-chip debug fur	nction	Provided									
Power supply volta		$V_{_{DD}} = 1.6 \text{ to } 5.5 \text{ V} (T_{_{A}} = -40 \text{ to } +85^{\circ}\text{C})$ $V_{_{DD}} = 2.4 \text{ to } 5.5 \text{ V} (T_{_{A}} = -40 \text{ to } +105^{\circ}\text{C})$									
Operating ambien	$T_{A} = 40 \text{ to } +85^{\circ}\text{C} \text{ (A: Consumer applications, D: Industrial applications)}$ $T_{A} = 40 \text{ to } +105^{\circ}\text{C} \text{ (G: Industrial applications)}$										

<R>


Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (TA = -40 to +85°C, 1.6 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{ss0} = EV_{ss1} = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		2.4 V≤ EV	5.5 V		fMCK/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		1.8 V ≤ EV	$T_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		1.7 V ≤ EV	$T_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fмск/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		1.6 V ≤ EV	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_		fмск/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$	_	_		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}}$ < 2.7 V : MAX. 2.6 Mbps

- $1.8~\text{V} \leq \text{EV}_\text{DD0} < 2.4~\text{V}$: MAX. 1.3 Mbps
- $1.6~V \leq EV_{\text{DD0}} < 1.8~V$: MAX. 0.6 Mbps
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 $\begin{array}{lll} \text{HS (high-speed main) mode:} & 32 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \end{array}$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Parameter	Symbo I	Conditions		HS (higl main)		LS (low-sp Mo	eed main) de	LV (low-vol Mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	2.7 V ≤ E	$EV_{DD0} \leq 5.5 V$	1/fмск+2 0		1/fмск+30		1/fмск+30		ns
		1.8 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	1/fмск+3 0		1/fмск+30		1/fмск+30		ns
		$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+4 0		1/fмск+40		1/fмск+40		ns
		1.6 V ≤	$EV_{DD0} \leq 5.5 V$			1/fмск+40		1/fмск+40		ns
Slp hold time (from SCKp↑)	tksi2	1.8 V ≤ E	$V_{DD0} \leq 5.5 \text{ V}$	1/fмск+3 1		1/fмск+31		1/fмск+31		ns
Note 2		1.7 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	1/fмск+ 250		1/fмск+ 250		1/fмск+ 250		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		—		1/fмск+ 250		1/fмск+ 250		ns
Delay time from SCKp↓ to	tĸso2	C = 30 pF ^{Note 4}	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/f _{мск+} 44		2/f _{мск+} 110		2/f _{мск+} 110	ns
SOp output Note 3			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 75		2/fмск+ 110		2/fмск+ 110	ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 110		2/fмск+ 110		2/fмск+ 110	ns
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 220		2/fмск+ 220		2/fмск+ 220	ns
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		_		2/fмск+ 220		2/fмск+ 220	ns

(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } \pm 85^{\circ}\text{C} = 1.6 \text{ V} \leq \text{EV}_{DD0} = \text{EV}_{DD1} \leq \text{V}_{DD1} \leq 5.5 \text{ V}_{D0} \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.0 \text{ V}_{D1}$

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Conditions	、 U	HS (high-speed main) Mode		/-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\label{eq:constraint} \begin{array}{l} 2.7~V \leq EV_{\text{DD0}} \leq 5.5~V, \\ C_{\text{b}} = 50~pF,~R_{\text{b}} = 2.7~k\Omega \end{array}$	1/fмск + 85 _{Note2}		1/fмск + 145 _{Note2}		1/fмск + 145 _{Note2}		ns
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} &= 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{split}$	1/fмск + 145 _{Note2}		1/fмск + 145 _{Note2}		1/fмск + 145 _{Note2}		ns
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 2.7 \ V, \\ C_{\text{b}} &= 100 \ p\text{F}, \ R_{\text{b}} = 5 \ k\Omega \end{split}$	1/fмск + 230 _{Note2}		1/f _{MCK} + 230 _{Note2}		1/fмск + 230 _{Note2}		ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{\tiny DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{ k}\Omega \end{array}$	1/fмск + 290 _{Note2}		1/f _{MCK} + 290 _{Note2}		1/fмск + 290 _{Note2}		ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 k\Omega \end{array}$	—		1/f _{MCK} + 290 _{Note2}		1/fмск + 290 _{Note2}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 3 k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 k\Omega \end{array}$	0	405	0	405	0	405	ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	0	405	0	405	0	405	ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	_	_	0	405	0	405	ns

(5)	During communication at same potential (simplified I ² C mode) (2/2)
	$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

Parameter	Symbol		Conditions			high- main) ode		/-speed Mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Transfer rate		Recep- tion	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$: MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (hig	h-speed Mode	LS (low		`	-voltage Mode	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	300		1150		1150		ns	
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns	
			$\begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150		1150		1150		ns	
SCKp high-level width	ҟкнı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DI}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns		
			$C_b = 30 \text{ pF},$ 2.7 V $\leq EV_{DI}$ 2.3 V $\leq V_b \leq$ $C_b = 30 \text{ pF},$	₂₀ < 4.0 V, 2.7 V,	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$1.8 V \le EV_{DI}$ $1.6 V \le V_b \le C_b = 30 \text{ pF},$	2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns	
SCKp low-level width	tĸ∟ı	$4.0 V \le EV_{D1}$ $2.7 V \le V_b \le C_b = 30 pF,$	∞ ≤ 5.5 V, 4.0 V,	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns	
		$\begin{array}{l} 2.7 \ V \leq EV_{DI} \\ 2.3 \ V \leq V_b \leq \end{array}$	₀₀ < 4.0 V, 2.7 V,	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns	
		$\label{eq:cb} \begin{split} &C_{\rm b} = 30 \ p F, \\ &1.8 \ V \leq E V_{\rm DI} \\ &1.6 \ V \leq V_{\rm b} \leq \\ &C_{\rm b} = 30 \ p F, \end{split}$	⁰⁰ < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns	

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions		h-speed Mode	``	/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıkı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	44		110		110		ns
		$\label{eq:cb} \begin{split} C_b &= 30 \; pF, \; R_b = 1.4 \; k\Omega \\ 2.7 \; V &\leq EV_{\text{DD0}} < 4.0 \; V, \\ 2.3 \; V &\leq V_b \leq 2.7 \; V, \end{split}$	44		110		110		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$	110		110		110		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
SIp hold time (from SCKp↓) ^{№ te 1}	tksii	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$ \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $		25		25		25	ns
SOp output Note 1		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\rm DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_{\rm b} \leq 2.7 \ V, \end{array}$		25		25		25	ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$		25		25		25	ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							

		5 5 V Voo - EVo	$ = EV_{oot} = 0.V$
$T_{A} = -40$ to +85°C,		j.j v, vss = ⊑vs	$s_0 = \Box v s s_1 = U v $

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions	HS (speed	high-	LS (low	· · ·	•	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	tксү2/2 – 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq E V_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{split}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik2	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Slp hold time (from SCKp↑) ^{Note 4}	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tkso2	$\label{eq:V_def} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \\ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$\label{eq:V_def} \begin{array}{l} 2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \\ V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage							
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR						
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM						
ANI0 to ANI14	Refer to 2.6.1 (1) .	Refer to 2.6.1 (3).	Refer to 2.6.1 (4) .						
ANI16 to ANI26	Refer to 2.6.1 (2) .								
Internal reference voltage	Refer to 2.6.1 (1) .		_						
Temperature sensor output									
voltage									

(1) When reference voltage (+)= AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(T_A = -40 to +85°C, 1.6 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
		$AV_{REFP} = V_{DD}{}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2 to	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI14	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.5	LSB
		$AV_{REFP} = V_{DD}{}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±1.5	LSB
		$AV_{REFP} = V_{DD}{}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS			VBGR Note 5		V
			Temperature sensor output voltage 2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		VTMPS25 ^{Note 5}		

(Notes are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{BGR}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}^{\text{Note 4}}, \text{HS (high-speed main) mode}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

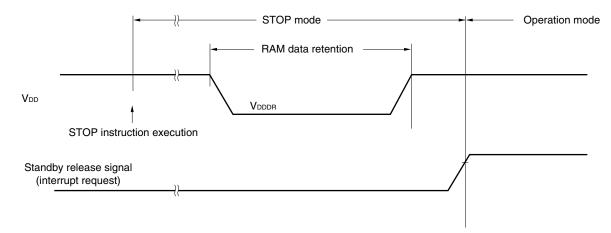
4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

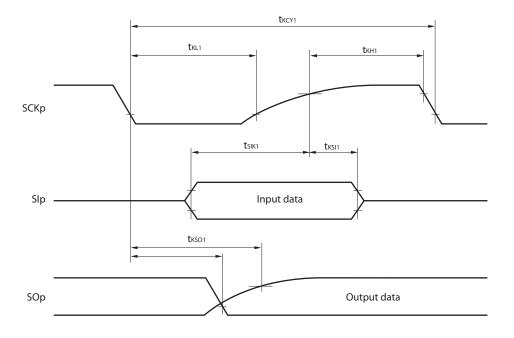
2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

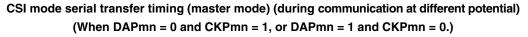
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

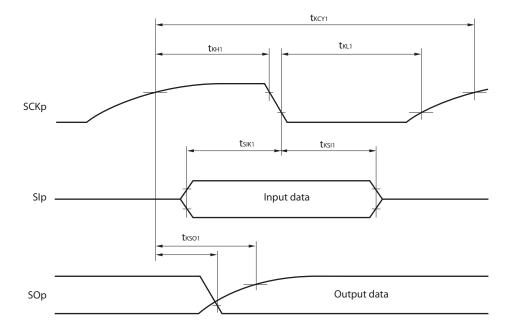

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V


Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - $\label{eq:scalar} \begin{array}{l} \textbf{3. When } AV_{\text{REFP}} < V_{\text{DD}} \text{, the MAX. values are as follows.} \\ \text{Overall error: } Add \pm 1.0 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Zero-scale error/Full-scale error: } Add \pm 0.05\%\text{FSR} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Integral linearity error/ Differential linearity error: } Add \pm 0.5 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \end{array}$
 - 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

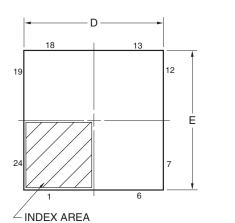
(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

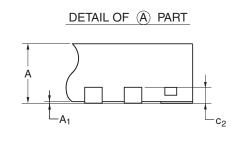
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pu	ulse width	t∟w		300			μS
Detection de	elay time					300	μS

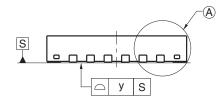
LVD Detection Voltage of Interrupt & Reset Mode

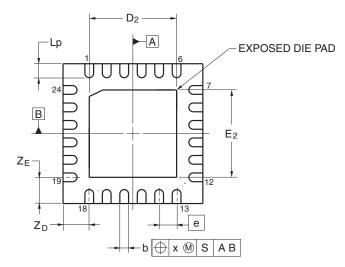
(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1,	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.86	V
mode	VLVDD1	LVIS1, LVIS0 = 1, 0	LVIS1, LVIS0 = 1, 0 Rising release reset voltage		2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	LVIS1, LVIS0 = 0, 1 Rising release reset voltage		3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	Vlvdd3	LVIS1, LVIS0 = 0, 0	LVIS1, LVIS0 = 0, 0 Rising release reset voltage		4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V


4.2 24-pin Products


R5F1007AANA, R5F1007CANA, R5F1007DANA, R5F1007EANA R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA R5F1017ADNA, R5F1017CDNA, R5F1017DDNA, R5F1017EDNA R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA

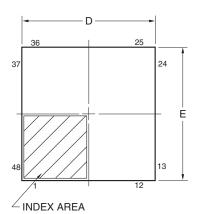

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04


0

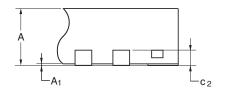
О

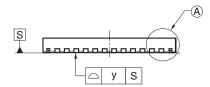
Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	3.95	4.00	4.05
E	3.95	4.00	4.05
А			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.05
у			0.05
ZD		0.75	
Z _E		0.75	
C2	0.15	0.20	0.25
D ₂		2.50	
E ₂		2.50	

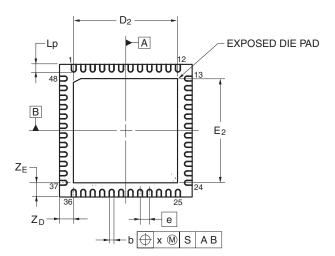
R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GGANA, R5F100GHANA, R5F100GJANA, R5F100GKANA, R5F100GLANA


R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GGANA, R5F101GHANA, R5F101GJANA, R5F101GKANA, R5F101GLANA

R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GGDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA


R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA


R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GGGNA, R5F100GJGNA


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-6	0.13

Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	6.95	7.00	7.05
E	6.95	7.00	7.05
А			0.80
A ₁	0.00		—
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.05
у			0.05
ZD		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		5.50	
E ₂		5.50	

©2013 Renesas Electronics Corporation. All rights reserved.

Davi			Description	
Rev.	Date	Page	Summary	
3.00	3.00 Aug 02, 2013	81	Modification of figure of AC Timing Test Points	
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)	
		83	Modification of description in (2) During communication at same potential (CSI mode)	
		84	Modification of description in (3) During communication at same potential (CSI mode)	
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)	
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)	
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)	
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)	
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)	
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)	
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)	
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)	
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		109	Addition of (1) I ² C standard mode	
		111	Addition of (2) I ² C fast mode	
		112	Addition of (3) I ² C fast mode plus	
		112	Modification of IICA serial transfer timing	
		113	Addition of table in 2.6.1 A/D converter characteristics	
		113	Modification of description in 2.6.1 (1)	
		114	Modification of notes 3 to 5 in 2.6.1 (1)	
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)	
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)	
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)	

			Description		
Rev.	Date	Page	Summary		
3.00	3.00 Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics		
		118	Modification of table and note in 2.6.3 POR circuit characteristics		
		119	Modification of table in 2.6.4 LVD circuit characteristics		
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode		
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics		
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes		
		123	Modification of caution 1 and description		
		124	Modification of table and remark 3 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$)		
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics		
		126	Modification of table in 3.2.2 On-chip oscillator characteristics		
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)		
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)		
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)		
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products (2/2)		
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (1/2)		
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)		
		140	Modification of (3) Peripheral Functions (Common to all products)		
		142	Modification of table in 3.4 AC Characteristics		
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation		
		143	Modification of figure of AC Timing Test Points		
		143	Modification of figure of External System Clock Timing		
		145	Modification of figure of AC Timing Test Points		
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)		
		146	Modification of description in (2) During communication at same potential (CSI mode)		
		147	Modification of description in (3) During communication at same potential (CSI mode)		
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)		
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)		
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)		
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)		
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)		
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)		
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)		