

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

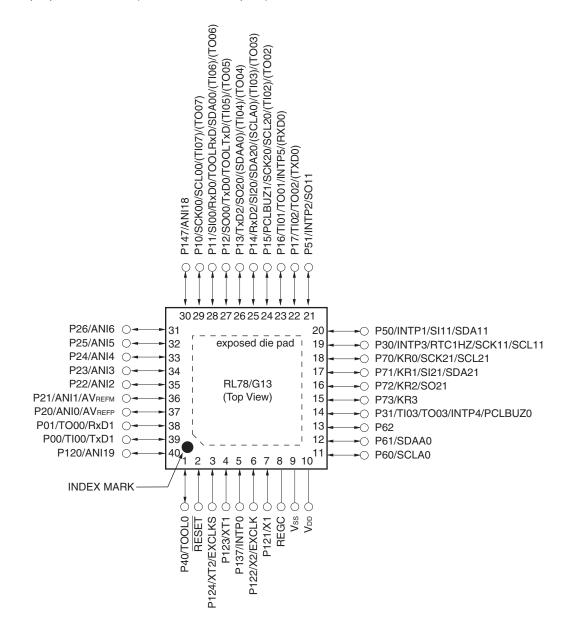
Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101gddfb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1	-1	T	(7/12)
Pin count	Package	Data flash	Fields of Application	Ordering Part Number
52 pins	52-pin plastic LQFP (10 × 10	Mounted	A	R5F100JCAFA#V0, R5F100JDAFA#V0, R5F100JEAFA#V0, R5F100JFAFA#V0, R5F100JGAFA#V0, R5F100JHAFA#V0,
	mm, 0.65 mm			R5F100JJAFA#V0, R5F100JKAFA#V0, R5F100JLAFA#V0
	pitch)			R5F100JCAFA#X0, R5F100JDAFA#X0, R5F100JEAFA#X0,
				R5F100JFAFA#X0, R5F100JGAFA#X0, R5F100JHAFA#X0,
				R5F100JJAFA#X0, R5F100JKAFA#X0, R5F100JLAFA#X0
			D	R5F100JCDFA#V0, R5F100JDDFA#V0, R5F100JEDFA#V0,
				R5F100JFDFA#V0, R5F100JGDFA#V0, R5F100JHDFA#V0,
				R5F100JJDFA#V0, R5F100JKDFA#V0, R5F100JLDFA#V0
				R5F100JCDFA#X0, R5F100JDDFA#X0, R5F100JEDFA#X0,
				R5F100JFDFA#X0, R5F100JGDFA#X0, R5F100JHDFA#X0,
				R5F100JJDFA#X0, R5F100JKDFA#X0, R5F100JLDFA#X0
			G	R5F100JCGFA#V0, R5F100JDGFA#V0, R5F100JEGFA#V0,
				R5F100JFGFA#V0,R5F100JGGFA#V0,R5F100JHGFA#V0,
				R5F100JJGFA#V0
				R5F100JCGFA#X0, R5F100JDGFA#X0, R5F100JEGFA#X0,
				R5F100JFGFA#X0,R5F100JGGFA#X0, R5F100JHGFA#X0,
				R5F100JJGFA#X0
		Not	А	R5F101JCAFA#V0, R5F101JDAFA#V0, R5F101JEAFA#V0,
		mounted		R5F101JFAFA#V0, R5F101JGAFA#V0, R5F101JHAFA#V0,
				R5F101JJAFA#V0, R5F101JKAFA#V0, R5F101JLAFA#V0
				R5F101JCAFA#X0, R5F101JDAFA#X0, R5F101JEAFA#X0,
				R5F101JFAFA#X0, R5F101JGAFA#X0, R5F101JHAFA#X0,
				R5F101JJAFA#X0, R5F101JKAFA#X0, R5F101JLAFA#X0
			D	R5F101JCDFA#V0, R5F101JDDFA#V0, R5F101JEDFA#V0,
				R5F101JFDFA#V0, R5F101JGDFA#V0, R5F101JHDFA#V0,
				R5F101JJDFA#V0, R5F101JKDFA#V0, R5F101JLDFA#V0
				R5F101JCDFA#X0, R5F101JDDFA#X0, R5F101JEDFA#X0,
				R5F101JFDFA#X0, R5F101JGDFA#X0, R5F101JHDFA#X0,
				R5F101JJDFA#X0, R5F101JKDFA#X0, R5F101JLDFA#X0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

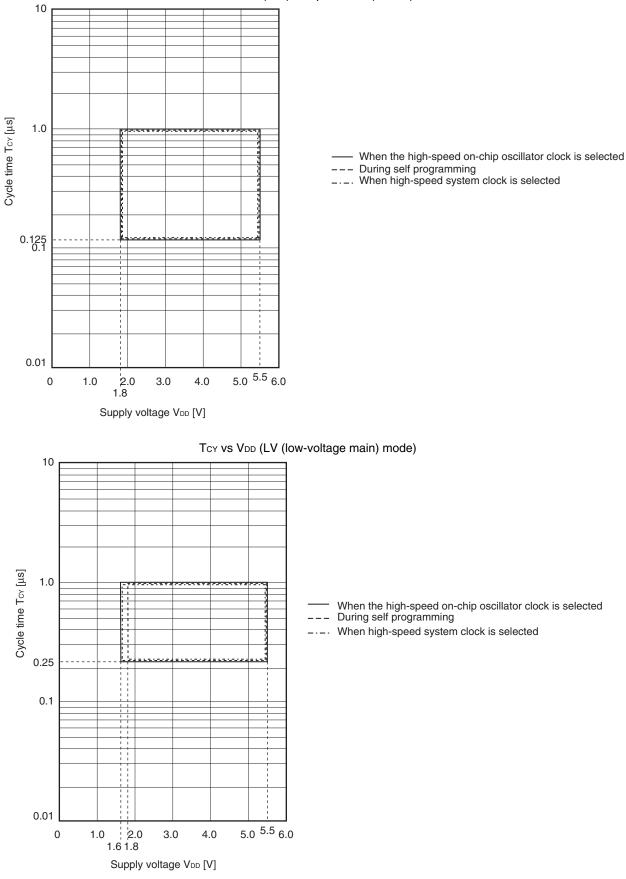
1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

Remarks 1. For pin identification, see 1.4 Pin Identification.

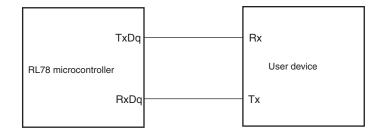
- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{ss.}$

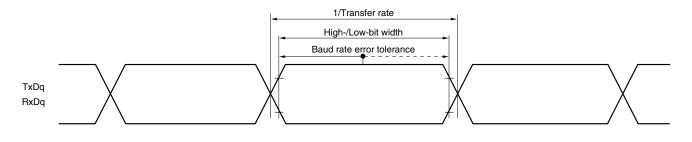
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Юн1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins] [5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C


Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C




TCY vs VDD (LS (low-speed main) mode)

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol		Conditions		speed	high- main) ode		/-speed Mode	voltage	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$: MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

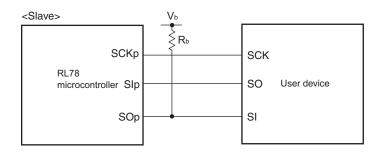
4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions		HS (high-speed main) Mode						-	Unit
				MAX.	MIN.	MAX.	MIN.	MAX.			
SIp setup time (to SCKp↓) ^{Note 1}	tsıkı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	44		110		110		ns		
		$\label{eq:cb} \begin{split} C_b &= 30 \; pF, \; R_b = 1.4 \; k\Omega \\ 2.7 \; V &\leq EV_{\text{DD0}} < 4.0 \; V, \\ 2.3 \; V &\leq V_b \leq 2.7 \; V, \end{split}$	44		110		110		ns		
		C_b = 30 pF, R_b = 2.7 k Ω									
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$	110		110		110		ns		
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$									
SIp hold time (from SCKp↓) ^{№ te 1}	tksii	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	19		19		19		ns		
		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$									
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns		
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$									
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	19		19		19		ns		
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$									
Delay time from SCKp↑ to	tkso1	$ \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $		25		25		25	ns		
SOp output Note 1		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$									
		$\begin{array}{l} 2.7 \ V \leq EV_{\rm DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_{\rm b} \leq 2.7 \ V, \end{array}$		25		25		25	ns		
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$									
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$		25		25		25	ns		
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$									

		5 5 V Voo - EVo	$ = EV_{oot} = 0.V$
$T_{A} = -40$ to +85°C,		j.j v, vss = ⊑vs	$s_0 = \Box v s s_1 = U v $

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fмск: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Items	Symbol Conditions				MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	ILIH1 P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 VI = EV_DD0				1	μA	
	Ілна	P20 to P27, P137, P150 to P156, RESET	$V_{I} = V_{DD}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	1.1.1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVSSO				-1	μA
	Ilile	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	Ililis	JL3 P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)		In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso	, In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.62	3.40	mA
Current		mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	3.40	mA
			mode	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	2.70	mA
					V _{DD} = 3.0 V		0.50	2.70	mA
				fi⊢ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	2.10	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	2.20	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	2.10	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	2.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	1.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.28	1.20	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				T _A = +25°C	Resonator connection		0.53	0.80	μA
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$ $T_{A} = +50^{\circ}\text{C}$	Square wave input		0.41	2.30	μA
					Resonator connection		0.60	2.49	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μA
				T _A = +105°C	Resonator connection		5.50	41.00	μA
		STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μA
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			T _A = +85°C				1.00	7.95	μA
			T _A = +105°C				5.00	40.00	μA

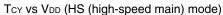
(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products
($T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/2)

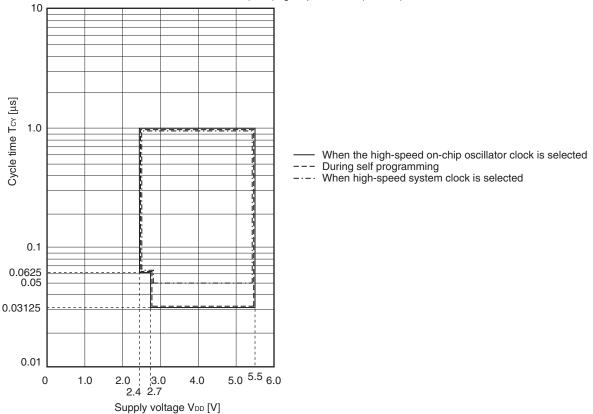
(Notes and Remarks are listed on the next page.)

3.4 AC Characteristics

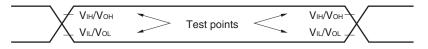
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain)	HS (high-speed main) mode	$\frac{2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}}{2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}}$	0.03125 0.0625		1 1	μs μs
		operation Subsystem of operation	clock (fsub)	$2.4V\!\leq\!V_{DD}\!\leq\!5.5V$	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7 V \le V_{DD} \le 5.5 V$	0.03125		1	μS
		programming mode		$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μS
External system clock frequency	fex	$2.7 V \le V_{DD} \le$	≤ 5.5 V	•	1.0		20.0	MHz
		$2.4 V \le V_{DD}$	< 2.7 V		1.0		16.0	MHz
	fexs		32		35	kHz		
External system clock input high- level width, low-level width	texh, texl	texh, texl $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$			24			ns
		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	ed 4.0 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
output frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			2.4 V	$2.4~V \leq EV_{\text{DD0}} < 2.7~V$			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			2.4 V	\leq EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
low-level width	t intl	INTP1 to INT	P11 2.4 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	1			μS
Key interrupt input low-level width	tкв	KR0 to KR7	2.4 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl				10			μs

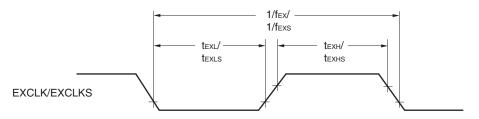

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns


 $\label{eq:rescaled} \textbf{Remark} \quad \text{f_{MCK}: Timer array unit operation clock frequency}$

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))



Minimum Instruction Execution Time during Main System Clock Operation



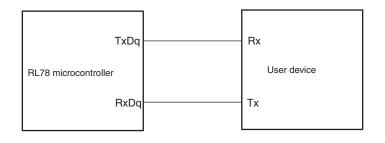
AC Timing Test Points


External System Clock Timing

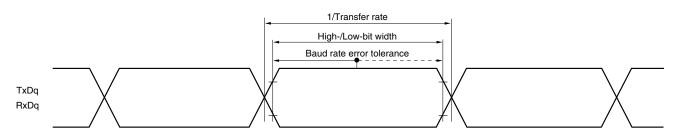
3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit


(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate Note 1				fмск/12 ^{Note 2}	bps
		Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 1.3 Mbps
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCK	p internal clock
output) (1/3)	

Parameter Symbol		Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tксүı	tkcyı ≥ 4/fclk	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	600		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \\ V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \\ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	2300		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ \hline 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 150		ns
				tkcy1/2 - 340		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ $C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R $_{b}$ = 5.5 k Ω	tксү1/2 – 916		ns
SCKp low-level width	tĸ∟1	$ \begin{split} & 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ & C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ & 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \\ \end{split} $		tксү1/2 – 24		ns
				tксү1/2 – 36		ns
				tkcy1/2 - 100		ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

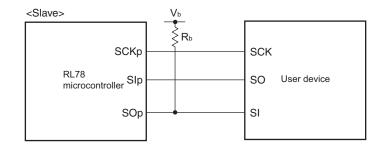
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed two pages after the next page.)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	88		ns
(to SCKp↓) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le EV_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	220		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 5.5 \text{k}\Omega$			
SIp hold time	tksı1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	38		ns
(from SCKp↓) ^{№te}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	38		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 2.7 \text{k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{R}_b = 5.5 \text{k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		50	ns
SOp output ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \ V \le EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \le V_b \le 2.7 \ V,$		50	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$			

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

- **Notes 1.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02,

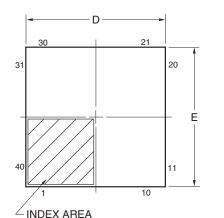
10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

3. fMCK: Serial array unit operation clock frequency

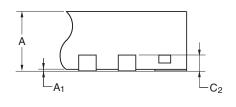
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

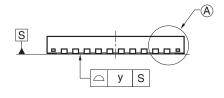
m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

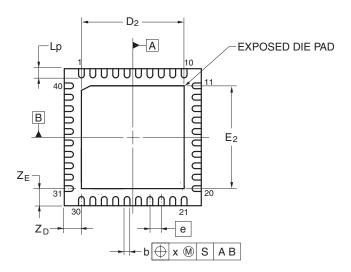
4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.


4.7 40-pin Products

R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA R5F101EAANA, R5F101ECANA, R5F101EDANA, R5F101EEANA, R5F101EFANA, R5F101EGANA, R5F101EHANA R5F100EADNA, R5F100ECDNA, R5F100EDDNA, R5F100EEDNA, R5F100EFDNA, R5F100EGDNA, R5F100EHDNA


R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA

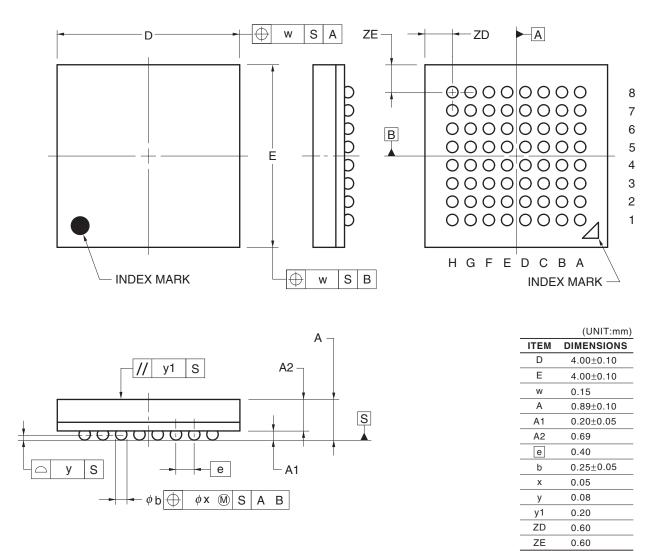

R5F100EAGNA, R5F100ECGNA, R5F100EDGNA, R5F100EEGNA, R5F100EFGNA, R5F100EGGNA, R5F100EHGNA


JEITA Package code	RENESAS code	Previous code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-5	0.09

Detail of (A) Part

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	5.95	6.00	6.05	
E	5.95	6.00	6.05	
A			0.80	
A ₁	0.00			
b	0.18	0.25	0.30	
е		0.50		
Lp	0.30	0.40	0.50	
х			0.05	
у			0.05	
ZD		0.75	—	
Z _E		0.75	—	
C ₂	0.15	0.20	0.25	
D ₂		4.50		
E ₂		4.50		

©2013 Renesas Electronics Corporation. All rights reserved.

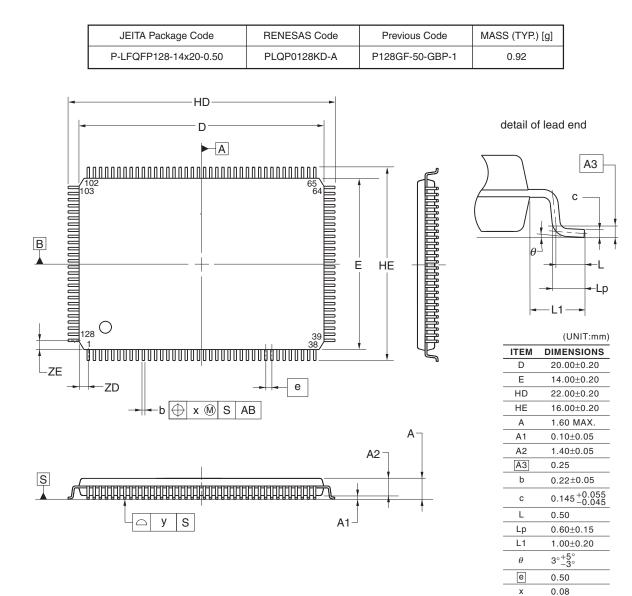


R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03



© 2012 Renesas Electronics Corporation. All rights reserved.

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

©2012 Renesas Electronics Corporation. All rights reserved.

х

y ZD

ZE

0.08

0.75

0.75

