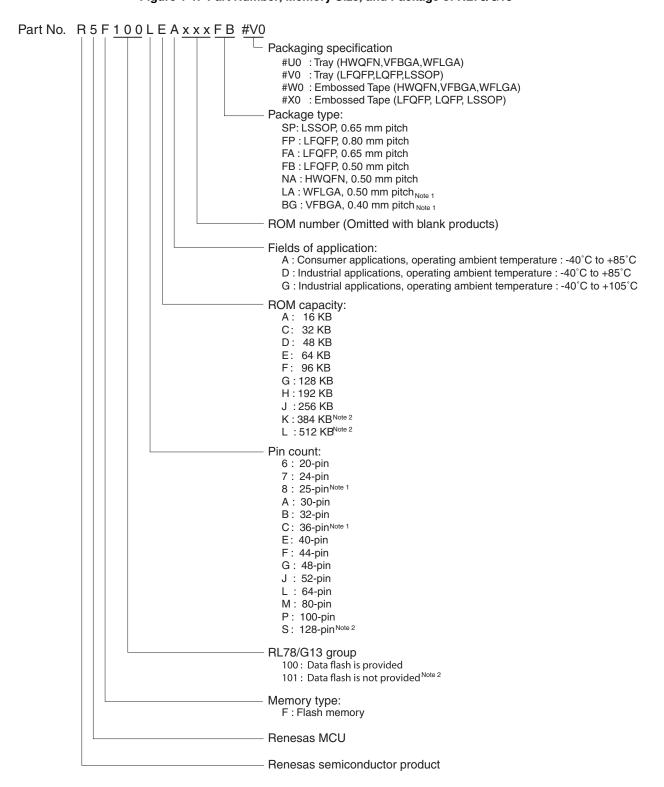


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101geafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

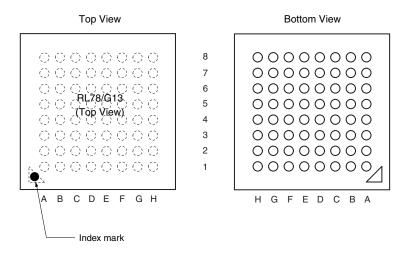
1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G13

Notes 1. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)"

2. Products only for "A: Consumer applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)", and "D: Industrial applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)"

Table 1-1. List of Ordering Part Numbers


(5/12)

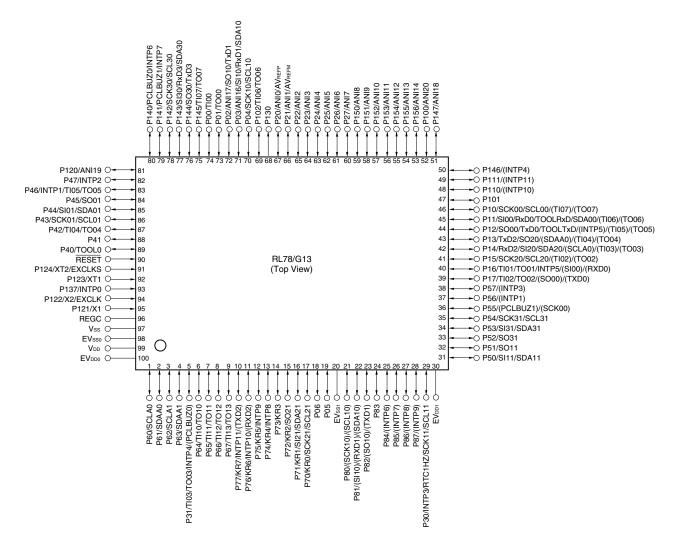
Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application	
			Note	
48 pins	48-pin plastic	Mounted	Α	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP ($7 \times 7 \text{ mm}$,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	Α	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
1				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
				R5F101GLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

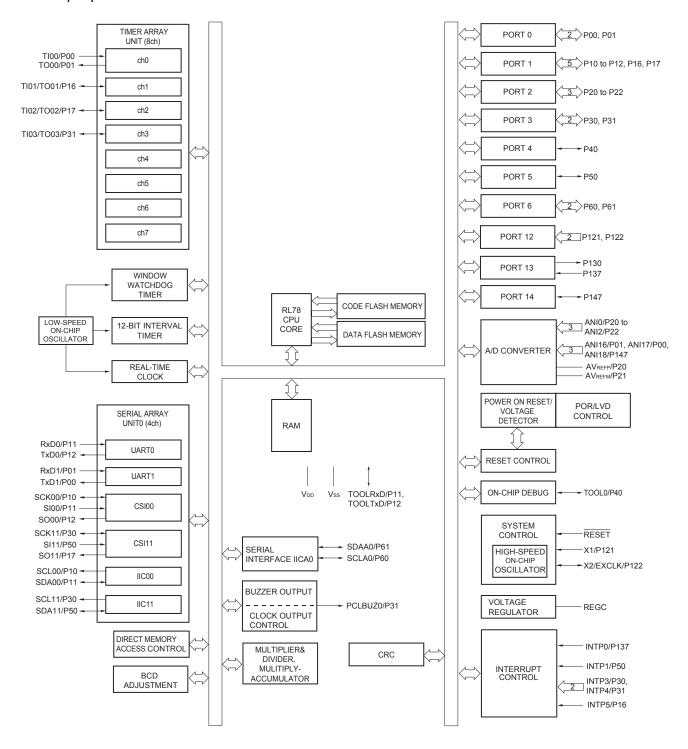
• 64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)

Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	P05/TI05/TO05	C1	P51/INTP2/SO11	E1	P13/TxD2/SO20/ (SDAA0)/(TI04)/(TO04)	G1	P146
A2	P30/INTP3/RTC1HZ /SCK11/SCL11	C2	P71/KR1/SI21/SDA21	E2	P14/RxD2/SI20/SDA20 /(SCLA0)/(TI03)/(TO03)	-	P25/ANI5
A3	P70/KR0/SCK21 /SCL21	СЗ	P74/KR4/INTP8/SI01 /SDA01	E3	P15/SCK20/SCL20/ (TI02)/(TO02)	G3	P24/ANI4
A4	P75/KR5/INTP9 /SCK01/SCL01	C4	P52/(INTP10)	E4	P16/TI01/TO01/INTP5 /(SI00)/(RxD0)	G4	P22/ANI2
A5	P77/KR7/INTP11/ (TxD2)	C5	P53/(INTP11)	E5	P03/ANI16/SI10/RxD1 /SDA10	G5	P130
A6	P61/SDAA0	C6	P63	E6	P41/TI07/TO07	G6	P02/ANI17/SO10/TxD1
A7	P60/SCLA0	C7	Vss	E7	RESET	G7	P00/TI00
A8	EV _{DD0}	C8	P121/X1	E8	P137/INTP0	G8	P124/XT2/EXCLKS
B1	P50/INTP1/SI11 /SDA11	D1	P55/(PCLBUZ1)/ (SCK00)	F1	P10/SCK00/SCL00/ (TI07)/(TO07)	H1	P147/ANI18
B2	P72/KR2/SO21	D2	P06/TI06/TO06	F2	P11/SI00/RxD0 /TOOLRxD/SDA00/ (TI06)/(TO06)	H2	P27/ANI7
B3	P73/KR3/SO01	D3	P17/TI02/TO02/ (SO00)/(TxD0)	F3	P12/SO00/TxD0 /TOOLTxD/(INTP5)/ (TI05)/(TO05)	H3	P26/ANI6
B4	P76/KR6/INTP10/ (RxD2)	D4	P54	F4	P21/ANI1/AVREFM	H4	P23/ANI3
B5	P31/TI03/TO03 /INTP4/(PCLBUZ0)	D5	P42/TI04/TO04	F5	P04/SCK10/SCL10	H5	P20/ANI0/AVREFP
B6	P62	D6	P40/TOOL0	F6	P43	H6	P141/PCLBUZ1/INTP7
B7	V _{DD}	D7	REGC	F7	P01/TO00	H7	P140/PCLBUZ0/INTP6
B8	EVsso	D8	P122/X2/EXCLK	F8	P123/XT1	H8	P120/ANI19


Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make V_{DD} pin the potential that is higher than EV_{DD0} pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.


- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

• 100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch)

- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EVsso and EVss1 pins to separate ground lines.
 - 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.3 25-pin products

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

												(1/2)
	Item	20-	pin	24-	pin	25	-pin	30-	pin	32-	pin	36-	pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	o 64	16 t	o 64	16 t	o 64	16 to	128	16 to	16 to 128		128
Data flash me	mory (KB)	4	4 - 4 - 4 to 8 - 4 to 8						-	4 to 8	=		
RAM (KB)		2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to 1	2 ^{Note1}	2 to ⁻	12 ^{Note1}	2 to 1	2 ^{Note1}
Address space	е	1 MB											
Main system clock	High-speed system clock	HS (Hig HS (Hig LS (Lov	jh-speed jh-speed v-speed	I main) m I main) m main) m	node: 1 t node: 1 t ode: 1 tc	o 20 MH o 16 MH o 8 MHz	z (V _{DD} = z (V _{DD} =	tem cloc 2.7 to 5. 2.4 to 5. 8 to 5.5 1.6 to 5.5	5 V), 5 V), V),	(EXCLK)			
	High-speed on-chip oscillator	HS (Hig LS (Lov	jh-speed v-speed	l main) m main) m	node: 1 t ode: 1 t	:o 16 MH :o 8 MHz	Iz (Vdd =	2.7 to 5. 2.4 to 5. 1.8 to 5.5 1.6 to 5.5	5 V), V),				
Subsystem clo	ock						-	-					
Low-speed on	n-chip oscillator	15 kHz	15 kHz (TYP.)										
General-purpo	ose registers	(8-bit register × 8) × 4 banks											
Minimum instr	ruction execution time	0.03125 μ s (High-speed on-chip oscillator: fih = 32 MHz operation)											
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)											
Instruction set	t	Adde Multip	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 										
I/O port	Total	1	6	2	0	2	21	2	6	2	8	3	2
	CMOS I/O	1 (N-ch C [Vpp wit voltag	D.D. I/O thstand	(N-ch C	5 D.D. I/O thstand ge]: 6)	(N-ch (5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V _{DD} wit voltag	D.D. I/O thstand	2 (N-ch ([V _{DD} wi voltag	thstand	(N-ch C [V _{DD} with voltage	thstand
	CMOS input	3	3	;	3	;	3	3	3	;	3	3	3
	CMOS output	-	-	-	-		1	_	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	=	_	2	2	:	2	2	2	(3	3	3
Timer	16-bit timer						8 cha	nnels					
	Watchdog timer	1 channel											
	Real-time clock (RTC)		1 channel Note 2										
	12-bit interval timer (IT)						1 cha	annel					
	Timer output	3 chann (PWM c 2 Note 3)		4 chanr (PWM	nels outputs:	3 Note 3)				M output M output			
	RTC output						=	=					
· · · · · · · · · · · · · · · · · · ·													

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

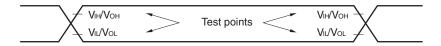
The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected

Absolute Maximum Ratings (TA = 25°C) (2/2)


Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	І ОН2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	lo _{L2}	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	\ \	h-speed Mode	`	v-speed Mode	LV (low main)	-voltage Mode	Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		2.4 V≤ EV	$V \le EV_{DD0} \le 5.5 V$		fMCK/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate fmck = fclk Note 3		5.3		1.3		0.6	Mbps
		1.8 V ≤ EV	$_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate fmck = fclk Note 3		5.3		1.3		0.6	Mbps
		1.7 V ≤ EV	$000 \le 5.5 \text{ V}$		fMCK/6 Note 2		fMCK/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		1.6 V ≤ EV	$000 \le 5.5 \text{ V}$	_	_		fMCK/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3	_			1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when EVDDO < VDD.

 $2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$ $1.8 \text{ V} \le \text{EV}_{\text{DDO}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$ $1.6 \text{ V} \le \text{EV}_{\text{DDO}} < 1.8 \text{ V} : \text{MAX. } 0.6 \text{ Mbps}$

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

 $16~MHz~(2.4~V \leq V_{DD} \leq 5.5~V)$

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Condit	ions	, ,	h-speed Mode	,	/-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	20 MHz < fмск	8/fмск		_		_		ns
Note 5		V	fмск ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5$	16 MHz < fмск	8/fмск		_		_		ns
		V	fмск ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		ns
		$2.4~V \le EV_{DD0} \le 5.5~V$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns	
		$1.6~V \leq EV_{DD0} \leq 5.5~V$		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low-level width	tkH2, tkL2	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 7		tксү2/2 - 7		tkcy2/2 -7		ns
		$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксу2/2 — 8		tксу2/2 - 8		tkcy2/2 -8		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 18		tксу2/2 - 18		tксу2/2 - 18		ns
	1.7 V ≤ EV _{DD0} ≤ 5.5			tксү2/2 — 66		tксү2/2 - 66		tkcy2/2 - 66		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		tксү2/2 - 66		tkcy2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

220

220

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ Parameter Symbo Conditions HS (high-speed LS (low-speed main) LV (low-voltage main) Unit main) Mode ı Mode Mode MIN. MIN. MAX. MIN. MAX. MAX. Slp setup time tsik2 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ $1/f_{MCK}+2$ 1/fmck+30 1/fmck+30 ns (to SCKp↑) Note 1 n $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмск+30 1/fмcк+30 ns 0 $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+4 $1/f_{MCK}+40$ $1/f_{MCK}+40$ ns 0 1/fмск+40 1/fмск+40 $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ ns Slp hold time tks12 $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмcк+31 1/fмcк+31 ns (from SCKp↑) 1 $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмcк+ 1/fмск+ 1/fмcк+ ns 250 250 250 $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ 1/fmck+ 1/fмcк+ ns 250 250 2/f_{MCK+} 2/f_{MCK+} Delay time tks02 C = 30 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ ns pF Note 4 from SCKp↓ to 44 110 110 SOp output Note $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fмcк+ 2/fmck+ ns 110 75 110 2/fмск+ $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns 110 110 110 $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fmck+ 2/fмск+ ns 220 220 220 $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10 to 13))

2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$1.8~V \leq V \text{dd} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

- The retaining years are until next rewrite after the rewrite.
- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200	_	1,000,000	bps

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (2/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P37,	$2.7~V \leq EV_{DD0} < 4.0~V$			15.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (When duty ≤ 70% Note 3)	$2.4~\text{V} \leq \text{EV}_{\text{DD0}} < 2.7~\text{V}$			9.0	mA
		Total of P05, P06, P10 to P17, P30,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P31, P50 to P57, P60 to P67,	$2.7~V \leq EV_{DD0} < 4.0~V$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 $ (\text{When duty} \leq 70\%^{\text{Note 3}}) $	$2,4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				80.0	mA
	lo _{L2}	Per pin for P20 to P27, P150 to P156			_	0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.4~V \leq V_{DD} \leq 5.5~V$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (5/5)$

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ілн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μΑ
	ILIH2	P20 to P27, P137, P150 to P156, RESET	$V_I = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	1ш1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EV _{SS0}				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	I _{DD1}	Operating mode	HS (high- speed main)	fih = 32 MHz ^{Note 3}	Basic operatio	V _{DD} = 5.0 V		2.1		mA
Note 1		mode	mode Note 5		n	V _{DD} = 3.0 V		2.1		mA
					Normal	V _{DD} = 5.0 V		4.6	7.5	mA
					operatio n	V _{DD} = 3.0 V		4.6	7.5	mA
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operatio n	V _{DD} = 3.0 V		3.7	5.8	mA
				fih = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.2	mA
					operatio n	V _{DD} = 3.0 V		2.7	4.2	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
			speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
				$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.9	mA
			$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.9	mA
		V _{DD}	$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA	
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
		clock operation T _A = -	Note 4 $T_A = -40^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μΑ	
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
				T _A = +25°C	operatio n	Resonator connection		4.2	5.0	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ
				Note 4 $T_A = +50^{\circ}C$	operatio n	Resonator connection		4.3	5.6	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ
				Note 4 $T_A = +70^{\circ}C$	operatio n	Resonator connection		4.4	6.4	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μΑ
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μА
				fsus = 32.768 kHz	Normal	Square wave input		6.9	19.7	μΑ
				Note 4 $T_{A} = +105^{\circ}C$	operation	Resonator connection		7.0	19.8	μΑ

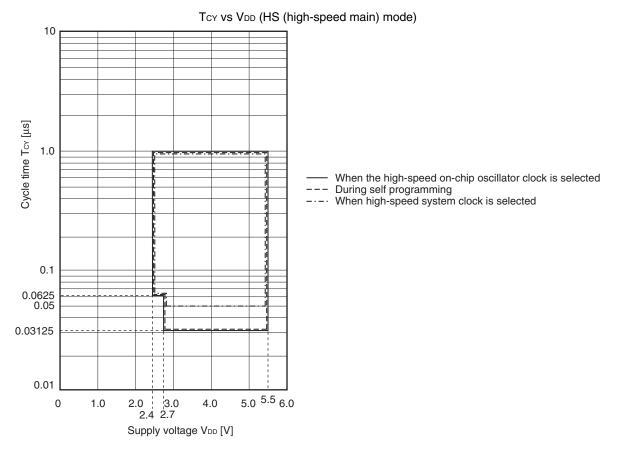
(Notes and Remarks are listed on the next page.)

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (2/2)

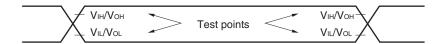
Parameter	Symbol		Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	HS (high- speed main) mode Note 7	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	3.40	mA
					V _{DD} = 3.0 V		0.62	3.40	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	2.70	mA
					V _{DD} = 3.0 V		0.50	2.70	mA
				fih = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high- speed main) mode Note 7	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
				V _{DD} = 5.0 V	Resonator connection		0.48	2.20	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	2.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	1.20	mA
				fmx = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	1.20	mA
			Subsystem clock operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μΑ
				T _A = -40°C	Resonator connection		0.47	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
				T _A = +25°C	Resonator connection		0.53	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μΑ
				T _A = +50°C	Resonator connection		0.60	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μΑ
				T _A = +70°C	Resonator connection		0.83	4.22	μΑ
				fsub = 32.768 kHz ^{Note 5} T _A = +85°C	Square wave input		1.09	8.04	μΑ
					Resonator connection		1.28	8.23	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μΑ
				T _A = +105°C	Resonator connection		5.50	41.00	μΑ
	IDD3 Note 6	STOP mode ^{Note 8}	$T_A = -40^{\circ}C$				0.19	0.52	μΑ
			$T_A = +25^{\circ}C$				0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μΑ
			$T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$				0.55	3.94	μΑ
							1.00	7.95	μΑ
			T _A = +105°C				5.00	40.00	μΑ

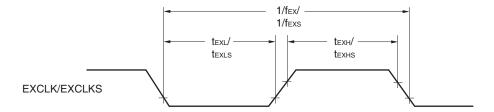
(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$


- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- **9.** Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$


Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

External System Clock Timing

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spec	Unit	
				MIN. MAX.		
SCKp cycle time Note 1	tkcy2	$4.0~V \le EV_{DD0} \le 5.5$	24 MHz < fмск	28/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7 \; V \leq V_b \leq 4.0 \; V$	8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0$	24 MHz < fмск	40/fмск		ns
		$V,$ $2.3~V \leq V_b \leq 2.7~V$	20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
			16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3$	24 MHz < fмск	96/fмск		ns
		V,	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \ V \leq V_b \leq 2.0 \ V$	16 MHz < fмcк ≤ 20 MHz	64/ƒмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkH2,	$\begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V \\ \\ 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V \end{aligned}$		tkcy2/2 - 24		ns
				txcy2/2 - 36		ns
		$ 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 2}} $		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note2	tsık2	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $		1/fмск + 40		ns
				1/fмск + 40		ns
		$2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to SOp output Note 4	tkso2	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$			2/fмск + 240	ns
		$ 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $			2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5$	3 V, 1.6 V ≤ V _b ≤ 2.0 V 5.5 kΩ		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LKAFB, R5F100LLAFB

R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB,

R5F101LJAFB, R5F101LKAFB, R5F101LLAFB

R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LDFB, R5F100LKDFB, R5F100LKDFB

R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB,

R5F101LJDFB, R5F101LKDFB, R5F101LLDFB

R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB

	JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.)) [g]
	P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35	
	HD — D — 48 49	33	T E HE	detail of	lead end C A3 C L Lp
E -	64 1 1 -ZD	17 16 e		ITEM D E HD HE A	(UNIT:mm) DIMENSIONS 10.00±0.20 10.00±0.20 12.00±0.20 12.00±0.20 160 MAX. 0.10±0.05
Œ	- b	x (M) S	A2 ¬	A2 A3 b c L Lp	1.40±0.05 0.25 0.22±0.05 0.145 +0.055 0.50 0.60±0.15
<u> </u>	Lays		A1	L1 θ e x	1.00±0.20 3°+5° 0.50 0.08

©2012 Renesas Electronics Corporation. All rights reserved.

0.08

1.25

ZD

ZΕ

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.