Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 34 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 10x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-LQFP | | Supplier Device Package | 48-LFQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101geafb-x0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (5/5) | Items | Symbol | Conditio | ns | | MIN. | TYP. | MAX. | Unit | |--------------------------------|--------|--|------------------|---------------------------------------|------|------|------|------| | Input leakage
current, high | Іинт | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | VI = EVDDO | | | | 1 | μΑ | | | ILIH2 | P20 to P27, P1 <u>37,</u>
P150 to P156, RESET | $V_{I} = V_{DD}$ | | | | 1 | μΑ | | | Ішнз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | VI = VDD | In input port or external clock input | | | 1 | μΑ | | | | | | In resonator connection | | | 10 | μΑ | | Input leakage
current, low | lut1 | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vi = EVsso | | | | -1 | μΑ | | | ILIL2 | P20 to P27, P137,
P150 to P156, RESET | Vı = Vss | | | | -1 | μΑ | | | Ішз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | Vı = Vss | In input port or external clock input | | | -1 | μΑ | | | | | | In resonator connection | | | -10 | μΑ | | On-chip pll-up resistance | R∪ | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P64 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vı = EVsso | , In input port | 10 | 20 | 100 | kΩ | **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C # (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products # (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2) | Parameter | Symbol | | | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------|------------------------|------------------------|--|--|-------------------------|------|------|------|------| | Supply | DD2
Note 2 | HALT | HS (high- | fin = 32 MHz Note 4 | V _{DD} = 5.0 V | | 0.62 | 1.86 | mA | | Current
Note 1 | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.62 | 1.86 | mA | | | | | mode | fih = 24 MHz Note 4 | V _{DD} = 5.0 V | | 0.50 | 1.45 | mA | | | | | | | V _{DD} = 3.0 V | | 0.50 | 1.45 | mA | | | | | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.44 | 1.11 | mA | | | | | | | V _{DD} = 3.0 V | | 0.44 | 1.11 | mA | | | | | LS (low- | fin = 8 MHz Note 4 | V _{DD} = 3.0 V | | 290 | 620 | μA | | | | | speed main)
mode Note 7 | | V _{DD} = 2.0 V | | 290 | 620 | μΑ | | | | | LV (low- | f _{IH} = 4 MHz ^{Note 4} | V _{DD} = 3.0 V | | 440 | 680 | μΑ | | | | | voltage
main) mode | | V _{DD} = 2.0 V | | 440 | 680 | μΑ | | | | | HS (high- | f _{MX} = 20 MHz ^{Note 3} , | Square wave input | | 0.31 | 1.08 | mA | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.48 | 1.28 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.31 | 1.08 | mA | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.48 | 1.28 | mA | | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.21 | 0.63 | mA | | | | | V _{DD} = 5.0 V | Resonator connection | | 0.28 | 0.71 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.21 | 0.63 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.28 | 0.71 | mA | | | | | | LS (low-
speed main)
mode Note 7 | $f_{MX} = 8 MHz^{Note 3},$ | Square wave input | | 110 | 360 | μΑ | | | | | | V _{DD} = 3.0 V | Resonator connection | | 160 | 420 | μΑ | | | | | | $f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 110 | 360 | μΑ | | | | | | V _{DD} = 2.0 V | Resonator connection | | 160 | 420 | μΑ | | | | | Subsystem | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.28 | 0.61 | μΑ | | | | | clock
operation | T _A = -40°C | Resonator connection | | 0.47 | 0.80 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.34 | 0.61 | μΑ | | | | | | T _A = +25°C | Resonator connection | | 0.53 | 0.80 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.41 | 2.30 | μΑ | | | | | | T _A = +50°C | Resonator connection | | 0.60 | 2.49 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.64 | 4.03 | μΑ | | | | | | T _A = +70°C | Resonator connection | | 0.83 | 4.22 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 1.09 | 8.04 | μΑ | | 1 | | | | T _A = +85°C | Resonator connection | | 1.28 | 8.23 | μА | | | IDD3 ^{Note 6} | STOP | T _A = -40°C | • | • | | 0.19 | 0.52 | μΑ | | | | mode ^{Note 8} | T _A = +25°C | | | | 0.25 | 0.52 | μΑ | | | | | T _A = +50°C | | | | 0.32 | 2.21 | μΑ | | | | | T _A = +70°C | | | | 0.55 | 3.94 | μΑ | | | | | T _A = +85°C | | 1.00 | 7.95 | μA | | | (Notes and Remarks are listed on the next page.) # (3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products # (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2) | Parameter | Symbol | | | Conditions | | MIN. | TYP. | MAX. | Unit | |-----------|------------------|--------------------------------|--|--|-------------------------|------|------|-------|------| | Supply | I _{DD2} | HALT | HS (high- | f _{IH} = 32 MHz ^{Note 4} | V _{DD} = 5.0 V | | 0.62 | 1.89 | mA | | current | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.62 | 1.89 | mA | | | | | mode | fih = 24 MHz Note 4 | V _{DD} = 5.0 V | | 0.50 | 1.48 | mA | | | | | | | V _{DD} = 3.0 V | | 0.50 | 1.48 | mA | | | | | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.44 | 1.12 | mA | | | | | | | V _{DD} = 3.0 V | | 0.44 | 1.12 | mA | | | | | LS (low- | fih = 8 MHz Note 4 | V _{DD} = 3.0 V | | 290 | 620 | μΑ | | | | | speed main)
mode Note 7 | | V _{DD} = 2.0 V | | 290 | 620 | μΑ | | | | | LV (low- | fih = 4 MHz Note 4 | V _{DD} = 3.0 V | | 460 | 700 | μΑ | | | | | voltage
main) mode | | V _{DD} = 2.0 V | | 460 | 700 | μΑ | | | | | HS (high- | fmx = 20 MHz ^{Note 3} , | Square wave input | | 0.31 | 1.14 | mA | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.48 | 1.34 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{Note 3},$ | Square wave input | | 0.31 | 1.14 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.48 | 1.34 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.21 | 0.68 | mA | | | | | | V _{DD} = 5.0 V | Resonator connection | | 0.28 | 0.76 | mA | | | | | $f_{MX} = 10 \text{ MHz}^{Note 3},$ | Square wave input | | 0.21 | 0.68 | mA | | | | | | LS (low-
speed main)
mode Note 7 | V _{DD} = 3.0 V | Resonator connection | | 0.28 | 0.76 | mA | | | | | | $f_{MX} = 8 MHz^{Note 3}$ | Square wave input | | 110 | 390 | μΑ | | | | | | V _{DD} = 3.0 V | Resonator connection | | 160 | 450 | μΑ | | | | | | $f_{MX} = 8 MHz^{Note 3},$ | Square wave input | | 110 | 390 | μΑ | | | | | | V _{DD} = 2.0 V | Resonator connection | | 160 | 450 | μΑ | | | | | Subsystem | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.31 | 0.66 | μΑ | | | | | clock
operation | T _A = -40°C | Resonator connection | | 0.50 | 0.85 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.38 | 0.66 | μΑ | | | | | | T _A = +25°C | Resonator connection | | 0.57 | 0.85 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.47 | 3.49 | μΑ | | | | | | T _A = +50°C | Resonator connection | | 0.66 | 3.68 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.80 | 6.10 | μΑ | | | | | | T _A = +70°C | Resonator connection | | 0.99 | 6.29 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 1.52 | 10.46 | μΑ | | | | | | T _A = +85°C | Resonator connection | | 1.71 | 10.65 | μΑ | | | IDD3 Note 6 | STOP
mode ^{Note 8} | T _A = -40°C | | | | 0.19 | 0.54 | μΑ | | | | mode | T _A = +25°C | | | | 0.26 | 0.54 | μΑ | | | | | T _A = +50°C | | | 0.35 | 3.37 | μΑ | | | | | | T _A = +70°C | | | | 0.68 | 5.98 | μA | | | | | T _A = +85°C | | | | 1.40 | 10.34 | μΑ | (Notes and Remarks are listed on the next page.) - **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode. - 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation. - 8. Current flowing only during data flash rewrite. - 9. Current flowing only during self programming. - 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode. - Remarks 1. fil: Low-speed on-chip oscillator clock frequency - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 3. fclk: CPU/peripheral hardware clock frequency - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$ ### **AC Timing Test Points** #### **External System Clock Timing** ## **TI/TO Timing** ## **Interrupt Request Input Timing** ## **Key Interrupt Input Timing** ## **RESET** Input Timing # (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbo | | Conditions | HS (high
main) | | LS (low-sp
Mo | , | LV (low-vol | | Unit | |----------------------------------|--------------|-----------------------------------|-----------------------------------|-------------------|---------------------------|------------------|----------------------------|----------------|----------------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SIp setup time (to SCKp↑) Note 1 | tsık2 | 2.7 V ≤ E | EV _{DD0} ≤ 5.5 V | 1/fмск+2
0 | | 1/fмск+30 | | 1/fмск+30 | | ns | | | | | $EV_{DD0} \le 5.5 \text{ V}$ | 1/fмск+3
0 | | 1/fмск+30 | | 1/fмск+30 | | ns | | | | 1.7 V ≤ E | $EV_{DD0} \le 5.5 \text{ V}$ | 1/fмск+4
0 | | 1/fмск+40 | | 1/fмск+40 | | ns | | | | 1.6 V ≤ | V ≤ EV _{DD0} ≤ 5.5 V | | | 1/fмск+40 | | 1/fмск+40 | | ns | | Slp hold time
(from SCKp↑) | (from SCKp↑) | | $1.8~V \le EV_{DD0} \le 5.5~V$ | | | 1/fмск+31 | | 1/fмск+31 | | ns | | Note 2 | | 1.7 V ≤ E | $1.7~V \leq EV_{DD0} \leq 5.5~V$ | | | 1/fмск+
250 | | 1/fмск+
250 | | ns | | | | 1.6 V ≤ | $EV_{DD0} \le 5.5 V$ | _ | | 1/fмск+
250 | | 1/fмск+
250 | | ns | | Delay time from SCKp↓ to | tkso2 | C = 30
pF Note 4 | $2.7~V \le EV_{DD0} \le 5.5$ V | | 2/f _{MCK+}
44 | | 2/f _{MCK+}
110 | | 2/f _{MCK+}
110 | ns | | SOp output Note | | | $2.4~V \le EV_{DD0} \le 5.5$ V | | 2/fмск+
75 | | 2/fмск+
110 | | 2/fмск+
110 | ns | | | | | $1.8~V \le EV_{DD0} \le 5.5$ V | | 2/fмск+
110 | | 2/fмск+
110 | | 2/fмск+
110 | ns | | | | 1.7 V ≤ EV _{DD0} ≤ 5.5 V | | 2/fмск+
220 | | 2/fмск+
220 | | 2/fмск+
220 | ns | | | | | | 1.6 V ≤ EV _{DD0} ≤ 5.5 V | | _ | | 2/fмск+
220 | | 2/fмск+
220 | ns | - **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SOp output lines. - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). - **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14) - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) # Simplified I²C mode mode connection diagram (during communication at same potential) ### Simplified I²C mode serial transfer timing (during communication at same potential) - **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14) - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), - n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13) # (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | HS (hig | h-speed
Mode | LS (low | r-speed
Mode | | -voltage
Mode | Unit | |-----------------------|------------------|--|--|------------------|-----------------|------------------|-----------------|------------------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time | tkcy1 | tkcy1 ≥ 4/fclk | $\label{eq:constraint} \begin{split} \text{ACCY1} & \geq 4/\text{folk} \\ & 2.7 \text{ V} \leq \text{EV}_{\text{DDO}} \leq 5.5 \text{ V}, \\ & 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ & C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 1.4 \text{ k}\Omega \end{split}$ | | | 1150 | | 1150 | | ns | | | | | $\begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 500 | | 1150 | | 1150 | | ns | | | | | $\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{Note}, \end{aligned}$ | 1150 | | 1150 | | 1150 | | ns | | SCKp high-level width | tкн1 | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$ | 4.0 V, | tксү1/2 –
75 | | tксү1/2 –
75 | | tксу1/2 —
75 | | ns | | | | $2.7 \text{ V} \le \text{EV}_{DD}$
$2.3 \text{ V} \le \text{V}_{b} \le$
$C_{b} = 30 \text{ pF},$ | 00 < 4.0 V,
2.7 V, | tксу1/2 —
170 | | tксу1/2 —
170 | | tксу1/2 —
170 | | ns | | | | $1.8 \text{ V} \le \text{EV}_{DD}$ $1.6 \text{ V} \le \text{V}_{b} \le \text{C}_{b} = 30 \text{ pF},$ | 00 < 3.3 V,
2.0 V ^{Note} , | tксү1/2 –
458 | | tксү1/2 –
458 | | tксү1/2 –
458 | | ns | | SCKp low-level width | t _{KL1} | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$ | 00 ≤ 5.5 V,
4.0 V, | tксу1/2 — | | tксү1/2 —
50 | | tксү1/2 —
50 | | ns | | | | 2.7 V ≤ EV _{DD}
2.3 V ≤ V _b ≤ | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$
$0.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$
$0.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$
$0.5 = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | tксү1/2 —
50 | | tксү1/2 —
50 | | ns | | | | $1.8 \text{ V} \leq \text{EV}_{DD}$ $1.6 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$ | 00 < 3.3 V,
2.0 V ^{Note} , | tксү1/2 —
50 | | tксү1/2 –
50 | | tксу1/2 —
50 | | ns | Note Use it with $EV_{DD0} \ge V_b$. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed two pages after the next page.) #### (2) I2C fast mode (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Сог | nditions | , , | h-speed
Mode | ` | /-speed
Mode | ` | -voltage
Mode | Unit | |-----------------------------|---------------|--|-----------------------------------|-----|-----------------|------|-----------------|------|------------------|------| | | | | N | | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCLA0 clock frequency | fscL | Fast mode: | $2.7~V \leq EV_{DD0} \leq 5.5~V$ | 0 | 400 | 0 | 400 | 0 | 400 | kHz | | | | fc∟κ≥ 3.5 MHz | 1.8 V ≤ EV _{DD0} ≤ 5.5 V | 0 | 400 | 0 | 400 | 0 | 400 | kHz | | Setup time of restart | tsu:sta | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 0.6 | | 0.6 | | 0.6 | | μS | | condition | | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 0.6 | | 0.6 | | 0.6 | | μS | | Hold time ^{Note 1} | thd:sta | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 0.6 | | 0.6 | | 0.6 | | μS | | | | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 0.6 | | 0.6 | | 0.6 | | μS | | Hold time when SCLA0 = | tLOW | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 1.3 | | 1.3 | | 1.3 | | μS | | " <u>L</u> " | | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 1.3 | | 1.3 | | 1.3 | | μS | | Hold time when SCLA0 = | t HIGH | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 0.6 | | 0.6 | | 0.6 | | μS | | "H" | | 1.8 V ≤ EV _{DD0} ≤ 5.8 | 5 V | 0.6 | | 0.6 | | 0.6 | | μS | | Data setup time | tsu:dat | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 100 | | 100 | | 100 | | μS | | (reception) | | 1.8 V ≤ EV _{DD0} ≤ 5.8 | 5 V | 100 | | 100 | | 100 | | μS | | Data hold time | thd:dat | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 0 | 0.9 | 0 | 0.9 | 0 | 0.9 | μS | | (transmission)Note 2 | | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 0 | 0.9 | 0 | 0.9 | 0 | 0.9 | μS | | Setup time of stop | tsu:sto | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.$ | 5 V | 0.6 | | 0.6 | | 0.6 | | μS | | condition | | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.$ | 1.8 V ≤ EV _{DD0} ≤ 5.5 V | | | 0.6 | | 0.6 | | μS | | Bus-free time | t BUF | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 1.3 | | 1.3 | | 1.3 | | μS | | | | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$ | 5 V | 1.3 | | 1.3 | | 1.3 | | μS | Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected. 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination. **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ <R> ## 2.6.2 Temperature sensor/internal reference voltage characteristics (TA = -40 to $+85^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode) | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------------------|---------------------|--|------|------|------|-------| | Temperature sensor output voltage | V _{TMPS25} | Setting ADS register = 80H, Ta = +25°C | | 1.05 | | ٧ | | Internal reference voltage | V _{BGR} | Setting ADS register = 81H | 1.38 | 1.45 | 1.5 | V | | Temperature coefficient | Fvтмps | Temperature sensor that depends on the temperature | | -3.6 | | mV/°C | | Operation stabilization wait time | tamp | | 5 | | | μs | #### 2.6.3 POR circuit characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-------------------------------------|------------------|------------------------|------|------|------|------| | Detection voltage | VPOR | Power supply rise time | 1.47 | 1.51 | 1.55 | V | | | V _{PDR} | Power supply fall time | 1.46 | 1.50 | 1.54 | V | | Minimum pulse width ^{Note} | T _{PW} | | 300 | | | μS | **Note** Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC). $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}. \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5) | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------------|------------------------------------|---|---|-------------------------|------|------|------| | Output voltage,
high | V _{OH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA | EV _{DD0} – 0.7 | | | V | | | | to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P106, P110 to | $\label{eq:loss_problem} \begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$ | EV _{DD0} – 0.6 | | | V | | | | P117, P120, P125 to P127, P130,
P140 to P147 | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OH1} = -1.5~mA$ | EV _{DD0} – 0.5 | | | V | | | V _{OH2} | P20 to P27, P150 to P156 | 2.4 V \leq V _{DD} \leq 5.5 V, I _{OH2} = $-100~\mu$ A | V _{DD} – 0.5 | | | V | | Output voltage, low | P37, P40
to P67, P
P90 to P9 | P37, P40 to P47, P50 to P57, P64
to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P106, P110 to
P117, P120, P125 to P127, P130,
P140 to P147 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$ | | | 0.7 | V | | | | | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$ | | | 0.6 | V | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$ | | | 0.4 | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$ | | | 0.4 | V | | | V _{OL2} | P20 to P27, P150 to P156 | $2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$
$\text{I}_{OL2} = 400 \ \mu \text{ A}$ | | | 0.4 | V | | | Vоьз | P60 to P63 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$ | | | 2.0 | V | | | | | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$ | | | 0.4 | V | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 3.0~mA$ | | | 0.4 | V | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$ | | | 0.4 | V | Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. During HALT instruction execution by flash memory. - 3. When high-speed on-chip oscillator and subsystem clock are stopped. - 4. When high-speed system clock and subsystem clock are stopped. - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 32~MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz - **8.** Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$ # (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (2/2) | Parameter | Symbol | | | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------|------------------------|------------------------|-------------------------------------|--|-------------------------|------|------|-------|---------| | Supply | I _{DD2} | HALT | HS (high- | fin = 32 MHz Note 4 | V _{DD} = 5.0 V | | 0.62 | 3.40 | mA | | Current
Note 1 | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.62 | 3.40 | mA | | | | | mode | fih = 24 MHz Note 4 | V _{DD} = 5.0 V | | 0.50 | 2.70 | mA | | | | | | | V _{DD} = 3.0 V | | 0.50 | 2.70 | mA | | | | | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.44 | 1.90 | mA | | | | | | | V _{DD} = 3.0 V | | 0.44 | 1.90 | mA | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.31 | 2.10 | mA | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.48 | 2.20 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.31 | 2.10 | mA | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.48 | 2.20 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{Note 3},$ | Square wave input | | 0.21 | 1.10 | mA | | | | | | V _{DD} = 5.0 V | Resonator connection | | 0.28 | 1.20 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.21 | 1.10 | mA | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.28 | 1.20 | mA | | | | | | Subsystem | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.28 | 0.61 | μA | | | | operation | clock
operation | T _A = -40°C | Resonator connection | | 0.47 | 0.80 | μА | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.34 | 0.61 | μA | | | | | | | T _A = +25°C | Resonator connection | | 0.53 | 0.80 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.41 | 2.30 | μA | | | | | | T _A = +50°C | Resonator connection | | 0.60 | 2.49 | μΑ | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.64 | 4.03 | μA | | | | | | T _A = +70°C | Resonator connection | | 0.83 | 4.22 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 1.09 | 8.04 | μΑ | | | | | | T _A = +85°C | Resonator connection | | 1.28 | 8.23 | μА | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 5.50 | 41.00 | μΑ | | | | | | T _A = +105°C | Resonator connection | | 5.50 | 41.00 | μА | | | IDD3 ^{Note 6} | STOP | T _A = -40°C | | | | 0.19 | 0.52 | μΑ | | | | mode ^{Note 8} | T _A = +25°C | | | | 0.25 | 0.52 | μΑ | | | | | T _A = +50°C | | | | 0.32 | 2.21 | μΑ | | | | | T _A = +70°C | | | | 0.55 | 3.94 | μΑ | | | | | T _A = +85°C | | | | 1.00 | 7.95 | μΑ | | | | | T _A = +105°C | :
 | | | 5.00 | 40.00 | μ A | (Notes and Remarks are listed on the next page.) #### 3.5.2 Serial interface IICA $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | HS (h | igh-spee | ed main) | Mode | Unit | |--------------------------------------|--------------|-----------------------------|-------|--------------|----------|------|------| | | | | | ndard
ode | Fast | Mode | | | | | | MIN. | MAX. | MIN. | MAX. | | | SCLA0 clock frequency | fscL | Fast mode: fclk ≥ 3.5 MHz | - | _ | 0 | 400 | kHz | | | | Standard mode: fclk ≥ 1 MHz | 0 | 100 | - | _ | kHz | | Setup time of restart condition | tsu:sta | | 4.7 | | 0.6 | | μS | | Hold time ^{Note 1} | thd:sta | | 4.0 | | 0.6 | | μS | | Hold time when SCLA0 = "L" | tLOW | | 4.7 | | 1.3 | | μS | | Hold time when SCLA0 = "H" | thigh | | 4.0 | | 0.6 | | μS | | Data setup time (reception) | tsu:dat | | 250 | | 100 | | ns | | Data hold time (transmission) Note 2 | thd:dat | | 0 | 3.45 | 0 | 0.9 | μS | | Setup time of stop condition | tsu:sto | | 4.0 | | 0.6 | | μS | | Bus-free time | t BUF | | 4.7 | | 1.3 | | μS | Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected. 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination. **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ #### IICA serial transfer timing Remark n = 0, 1 <R> R5F100PFAFA, R5F100PGAFA, R5F100PHAFA, R5F100PJAFA, R5F100PKAFA, R5F100PLAFA R5F101PFAFA, R5F101PGAFA, R5F101PHAFA, R5F101PJAFA, R5F101PKAFA, R5F101PLAFA R5F100PFDFA, R5F100PGDFA, R5F100PHDFA, R5F100PJDFA, R5F100PKDFA, R5F101PLDFA R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA R5F100PFGFA, R5F100PGGFA, R5F100PHGFA, R5F100PJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |----------------------|--------------|-----------------|-----------------| | P-LQFP100-14x20-0.65 | PLQP0100JC-A | P100GF-65-GBN-1 | 0.92 | © 2012 Renesas Electronics Corporation. All rights reserved. ### 4.14 128-pin Products R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |-----------------------|--------------|-----------------|-----------------| | P-LFQFP128-14x20-0.50 | PLQP0128KD-A | P128GF-50-GBP-1 | 0.92 | \bigcirc 2012 Renesas Electronics Corporation. All rights reserved. | | | Description | | |------|--------------|---|--| | Rev. | Date | Page | Summary | | 3.00 | Aug 02, 2013 | 81 | Modification of figure of AC Timing Test Points | | | | 81 | Modification of description and note 3 in (1) During communication at same potential (UART mode) | | | | 83 | Modification of description in (2) During communication at same potential (CSI mode) | | | | 84 | Modification of description in (3) During communication at same potential (CSI mode) | | | | 85 | Modification of description in (4) During communication at same potential (CSI mode) (1/2) | | | | 86 | Modification of description in (4) During communication at same potential (CSI mode) (2/2) | | | | 88 | Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2) | | | | 89 | Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2) | | | | 91 | Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) | | | | 92, 93 | Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 94 | Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 95 | Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2) | | | | 96 | Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2) | | | | 97 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) | | | | 98 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) | | | 99 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | | 100 | Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | 102 | Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2) | | | | 103 | Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2) | | | | 106 | Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | 107 | Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | 109 | Addition of (1) I ² C standard mode | | | | 111 | Addition of (2) I ² C fast mode | | | | 112 | Addition of (3) I ² C fast mode plus | | | | 112 | Modification of IICA serial transfer timing | | | | 113 | Addition of table in 2.6.1 A/D converter characteristics | | | | 113 | Modification of description in 2.6.1 (1) | | | | 114 | Modification of notes 3 to 5 in 2.6.1 (1) | | | | 115 | Modification of description and notes 2, 4, and 5 in 2.6.1 (2) | | | | 116 | Modification of description and notes 3 and 4 in 2.6.1 (3) | | | | 117 | Modification of description and notes 3 and 4 in 2.6.1 (4) | | | | | Description | | |------|--------------|----------|---|--| | Rev. | Date | Page | Summary | | | 3.00 | Aug 02, 2013 | 163 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | | 164, 165 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | | 166 | Modification of table in 3.5.2 Serial interface IICA | | | | | 166 | Modification of IICA serial transfer timing | | | | | 167 | Addition of table in 3.6.1 A/D converter characteristics | | | | | 167, 168 | Modification of table and notes 3 and 4 in 3.6.1 (1) | | | | | 169 | Modification of description in 3.6.1 (2) | | | | | 170 | Modification of description and note 3 in 3.6.1 (3) | | | | | 171 | Modification of description and notes 3 and 4 in 3.6.1 (4) | | | | | 172 | Modification of table and note in 3.6.3 POR circuit characteristics | | | | | 173 | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode | | | | | 173 | Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics | | | | | 174 | Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART) | | | | | 175 | Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes | | | 3.10 | Nov 15, 2013 | 123 | Caution 4 added. | | | | | 125 | Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted. | | | 3.30 | Mar 31, 2016 | | Modification of the position of the index mark in 25-pin plastic WFLGA (3 \times 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products] | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products] | | | | | | Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products] | | | | | | ACK corrected to ACK | | | | | | ACK corrected to ACK | | All trademarks and registered trademarks are the property of their respective owners. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.