

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

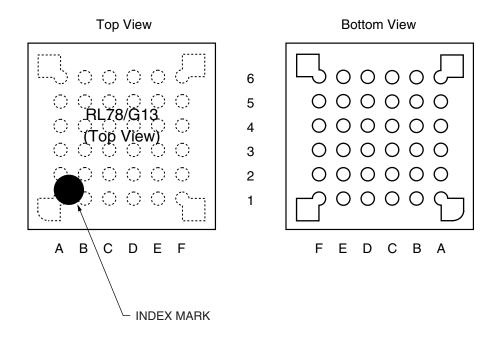
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101gedfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of Ordering Part Numbers
------------	-------------------------------

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
			Note	
48 pins	48-pin plastic	Mounted	А	R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0,
	HWQFN (7 \times 7 mm,			R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0,
	0.5 mm pitch)			R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0,
				R5F100GLANA#U0
				R5F100GAANA#W0, R5F100GCANA#W0, R5F100GDANA#W0, R5F100GEANA#W0,
				R5F100GFANA#W0, R5F100GGANA#W0,
				R5F100GHANA#W0, R5F100GJANA#W0,
				R5F100GKANA#W0, R5F100GLANA#W0
			D	R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0,
				R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0,
				R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0,
				R5F100GLDNA#U0
				R5F100GADNA#W0, R5F100GCDNA#W0,
				R5F100GDDNA#W0, R5F100GEDNA#W0,
				R5F100GFDNA#W0, R5F100GGDNA#W0,
				R5F100GHDNA#W0, R5F100GJDNA#W0,
				R5F100GKDNA#W0, R5F100GLDNA#W0
			G	R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0
				R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0 R5F100GHGNA#U0, R5F100GJGNA#U0
				R5F100GAGNA#W0, R5F100GCGNA#W0,
				R5F100GDGNA#W0, R5F100GEGNA#W0,
				R5F100GFGNA#W0, R5F100GGGNA#W0,
				R5F100GHGNA#W0, R5F100GJGNA#W0
		Not	А	R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0,
		mounted		R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0,
				R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0,
				R5F101GLANA#U0
				R5F101GAANA#W0, R5F101GCANA#W0,
				R5F101GDANA#W0, R5F101GEANA#W0,
				R5F101GFANA#W0, R5F101GGANA#W0,
				R5F101GHANA#W0, R5F101GJANA#W0,
			D	R5F101GKANA#W0, R5F101GLANA#W0
			D	R5F101GADNA#U0, R5F101GCDNA#U0, R5F101GDDNA#U0, R5F101GEDNA#U0, R5F101GFDNA#U0, R5F101GGDNA#U0,
				R5F101GEDNA#00, R5F101GEDNA#00, R5F101GGDNA#00, R5F101GHDNA#U0, R5F101GJDNA#U0, R5F101GKDNA#U0,
				R5F101GLDNA#U0
				R5F101GADNA#W0, R5F101GCDNA#W0,
				R5F101GDDNA#W0, R5F101GEDNA#W0,
				R5F101GFDNA#W0, R5F101GGDNA#W0,
				R5F101GHDNA#W0, R5F101GJDNA#W0,
				R5F101GKDNA#W0, R5F101GLDNA#W0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.6 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	А	В	С	D	E	F	_
	P60/SCLA0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	
6							6
	P62	P61/SDAA0	Vss	REGC	RESET	P120/ANI19	
5							5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/(SCLA0) /(TI03)/(TO03)	P31/TI03/TO03/ INTP4/ PCLBUZ0	P00/TI00/TxD1	P01/TO00/RxD1	4
3	P50/INTP1/ SI11/SDA11	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)	P22/ANI2	P20/ANI0/ AVrefp	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK11/SCL11	P16/TI01/TO01/ INTP5/(RxD0)	P12/SO00/ TxD0/TOOLTxD /(TI05)/(TO05)	P11/SI00/RxD0/ TOOLRxD/ SDA00/(TI06)/ (TO06)	P24/ANI4	P23/ANI3	2
1	P51/INTP2/ SO11	P17/TI02/TO02/ (TxD0)	P13/TxD2/ SO20/(SDAA0)/ (TI04)/(TO04)	P10/SCK00/ SCL00/(TI07)/ (TO07)	P147/ANI18	P25/ANI5	1
	А	В	С	D	E	F	

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

^{3.} When setting to PIOR = 1

lt o	m	40	nin	11	nin	10	nin	EO	nin	64	,
Ite		40-			-pin		-pin	52	-pin		
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	:	2		2		2		2		2
·		(Main s • 256 Hz	system clo z, 512 Hz,	оск: fмаin = 1.024 kHz	20 MHz c z, 2.048 kH	. ,	Hz, 8.192			2.768 kHz	
8/10-bit resolution	A/D converter	9 channe	ls	10 chanr	nels	10 chanr	nels	12 chan	nels	12 chanr	nels
Serial interface		[40-pin, 4	4-pin prod	ducts]		J			2 2 2 84 kHz, 32.768 kHz 12 channels Iels 12 channels LIN-bus): 1 channel LIN-bus): 1 channel 2 1 2 2		
		 CSI: 1 CSI: 2 [48-pin, 5 CSI: 2 CSI: 1 CSI: 2 [64-pin pi CSI: 2 CSI: 2 CSI: 2 	channel/s channels/ 2-pin proo channels/ channels/ roducts] channels/ channels/ channels/	implified I ² simplified ducts] simplified I ² simplified I ² simplified simplified	C: 1 chani I ² C: 2 chai I ² C: 2 chai C: 1 chani I ² C: 2 chai I ² C: 2 chai I ² C: 2 chai	nnels/UAR nel/UART: nnels/UAR nnels/UAR nnels/UAR	1 channe T (UART : 1 channe T (UART : T (UART : T: 1 chann T: 1 chann	l supporting nel l supporting nel	J LIN-bus):	1 channel	I
	I ² C bus	1 channe		1 channe		1 channe		1 channe		1	
Multiplier and divid		• 16 bits	× 16 bits =	= 32 bits (L = 32 bits (L	Jnsigned o			1 onanna		1 onume	
		• 16 bits	× 16 bits +	- 32 bits =	32 bits (U	nsigned or	r signed)				
DMA controller		2 channe	ls								
Vectored	Internal	2	27	:	27	2	27		27	2	27
interrupt sources	External		7		7		10		12		13
Key interrupt			4		4		6		8		8
Reset		 Interna Interna Interna Interna Interna 	I reset by I reset by I reset by I reset by	watchdog power-on- voltage de	reset etector ruction ex sy error	ecution ^{Note}					
Power-on-reset ci	rcuit		on-reset: down-res	1.51 V et: 1.50 V	. ,						
Voltage detector		RisingFalling	-			14 stages 14 stages					
On-chip debug fur	nction	Provided									
Power supply volta				$T_A = -40 \text{ to}$ $T_A = -40 \text{ to}$							
Operating ambien	t temperature	$T_A = 40 to$	o +85°C (/		ner applica	itions, D: Ii ations)	ndustrial a	pplication	s)		

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3 DC Characteristics

2.3.1 Pin characteristics

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-55.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
		$(\text{When duty} \le 70\%^{\text{Note 3}})$	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31,				-80.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
		P117, P146, P147	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-5.0	mA
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

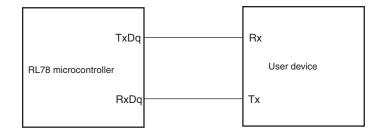
- **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.
- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

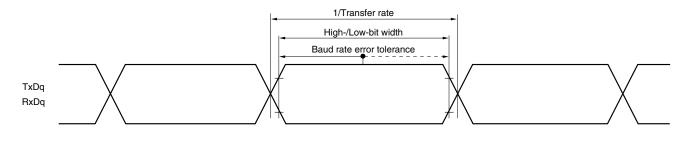
- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{H} = 32 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.62	1.86	mA
current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fiH = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fiH = 16 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.44	1.11	mA
					$V_{DD} = 3.0 V$		0.44	1.11	
			10//						mA
			LS (low- speed main) mode ^{Note 7}	$f_{IH} = 8 MHz^{Note 4}$	V _{DD} = 3.0 V V _{DD} = 2.0 V		290 290	620 620	μΑ μΑ
			LV (low-	file = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA
			voltage main) mode		V _{DD} = 2.0 V		440	680	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	1.28	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.63	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	0.71	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA
			V _{DD} = 3.0 V Resonator connection		0.28	0.71	mA		
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
			speed main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	420	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 2.0 V	Resonator connection		160	420	μA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				$T_A = +25^{\circ}C$	Resonator connection		0.53	0.80	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.60	2.49	μA
				fs∪B = 32.768 kHz ^{Note 5}	Square wave input	1	0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				$T_{A} = +85^{\circ}C$	Resonator connection		1.28	8.23	μA
	DD3 ^{Note 6}	STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA
	1003	mode ^{Note 8}	T _A = +25°C			1	0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			$T_{A} = +85^{\circ}C$				1.00	7.95	μA


(Notes and Remarks are listed on the next page.)


- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: ~~ 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbo I		Conditions	HS (higl main)		LS (low-sp Mo	eed main) de	LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	2.7 V ≤ E	$EV_{DD0} \leq 5.5 V$	1/fмск+2 0		1/fмск+30		1/fмск+30		ns	
		1.8 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	5 V 1/fмск+3 1/fмск+30 1/fмск+30 0 1/fмск+30		ns					
		1.7 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$				ns				
		1.6 V ≤	$EV_{DD0} \leq 5.5 V$			1/fмск+40		1/fмск+40		ns	
SIp hold time (from SCKp↑)	tksi2	1.8 V ≤ E	$V_{DD0} \leq 5.5 \text{ V}$	1/fмск+3 1		1/fмск+31		1/fмск+31		ns	
Note 2				$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+ 250		1/fмск+ 250		1/fмск+ 250	
		1.6 V ≤	$EV_{DD0} \leq 5.5 V$	—		1/fмск+ 250		1/fмск+ 250	ode	ns	
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/f _{мск+} 44		2/f _{мск+} 110			ns	
SOp output Note 3			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 75		2/fмск+ 110			ns	
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 110		2/fмск+ 110			ns	
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 220		2/fмск+ 220			ns	
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		_		2/fмск+ 220		_,	ns	

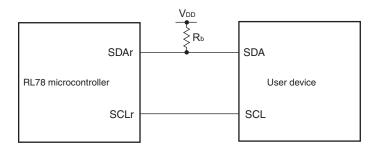
(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } \pm 85^{\circ}\text{C} = 1.6 \text{ V} \leq \text{EV}_{DD0} = \text{EV}_{DD1} \leq \text{V}_{DD1} \leq 5.5 \text{ V}_{D0} \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.0 \text{ V}_{D1}$

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

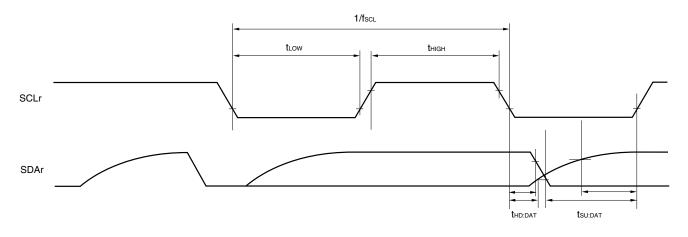
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))


Parameter	Symbol	Conditions	、 U	h-speed Mode	``	/-speed Mode	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ p\text{F}, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, \text{ R}_b = 5 \text{ k}\Omega$		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$		250 Note 1		250 Note 1		250 Note 1	kHz
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$		—		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$			1850		1850		ns
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$			1850		1850		ns

(5) During communication at same potential (simplified I²C mode) (1/2)


(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}}, \text{ V}_{\text{DD}} = 0 \text{ V}, \text{ Reference voltage (+)} = 0 \text{ V}, Reference voltage (+)$
Reference voltage (-) = Vss)

Parameter	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
Resolution	RES		8		10	bit	
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$		1.2	±7.0	LSB
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI26	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μs
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V} \\ _{\text{Note 3}} \end{array}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
		10-bit resolution	$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	E 10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±4.0	LSB
			$1.6~V \leq V \text{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
			$\frac{1.6~V \leq V\text{DD} \leq 5.5~V}{_{\text{Note 3}}}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		VBGR Note 4			V
		Temperature sensor output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high	•		VTMPS25 ^{Note 4}	4	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

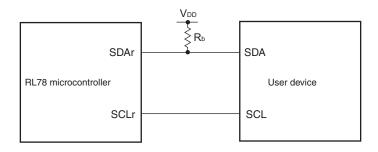
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit		
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V		
voltage	oltage		Power supply fall time	3.90	3.98	4.06	V		
		VLVD1	Power supply rise time	3.68	3.75	3.82	V		
			Power supply fall time	3.60	3.67	3.74	V		
		VLVD2	Power supply rise time	3.07	3.13	3.19	V		
			Power supply fall time	3.00	3.06	3.12	V		
		VLVD3	Power supply rise time	2.96	3.02	3.08	V		
			Power supply fall time	2.90	2.96	3.02	V		
		VLVD4	Power supply rise time	2.86	2.92	2.97	V		
			Power supply fall time	2.80	2.86	2.91	V		
		VLVD5	Power supply rise time	2.76	2.81	2.87	V		
			Power supply fall time	2.70	2.75	2.81	V		
		VLVD6	Power supply rise time	2.66	2.71	2.76	V		
		Power supply fall time	2.60	2.65	2.70	V			
		VLVD7	Power supply rise time	2.56	2.61	2.66	V		
			Power supply fall time	2.50	2.55	2.60	V		
		VLVD8	Power supply rise time	2.45	2.50	2.55	V		
			Power supply fall time	2.40	2.45	2.50	V		
		VLVD9	Power supply rise time	2.05	2.09	2.13	V		
			Power supply fall time	2.00	2.04	2.08	V		
				VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V		
		VLVD11	Power supply rise time	1.84	1.88	1.91	V		
			Power supply fall time	1.80	1.84	1.87	V		
		VLVD12	Power supply rise time	1.74	1.77	1.81	V		
			Power supply fall time	1.70	1.73	1.77	V		
		VLVD13	Power supply rise time	1.64	1.67	1.70	V		
			Power supply fall time	1.60	1.63	1.66	V		
Minimum pu	ulse width	t∟w		300			μs		
Detection d	elay time					300	μS		

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage ILIH1 current, high		P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO				1	μA
	Ілна	P20 to P27, P137, P150 to P156, RESET	VI = VDD				1	μA
Ішнз	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	1.1.1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVSSO				-1	μA
LIL2 LIL3	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA	
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso	, In input port	10	20	100	kΩ

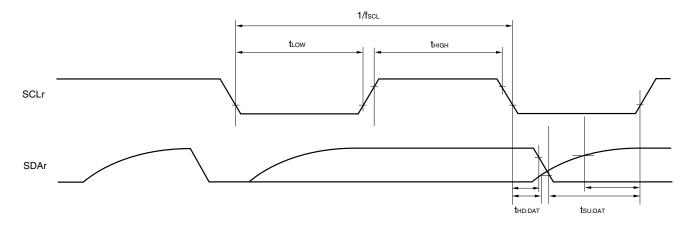
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$		400 Note1	kHz
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$		100 Note1	kHz
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$			
Hold time when SCLr = "L"	t∟ow	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 k\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	1/fмск + 220 Note2		ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	Note2		
		$2.4~V \leq EV_{\text{DD}} \leq 5.5~V,$	1/fмск + 580 Note2		ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$	Note2		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	770	ns
		$C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{k}\Omega$			


(4) During communication at same potential (simplified l²C mode) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - **2.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

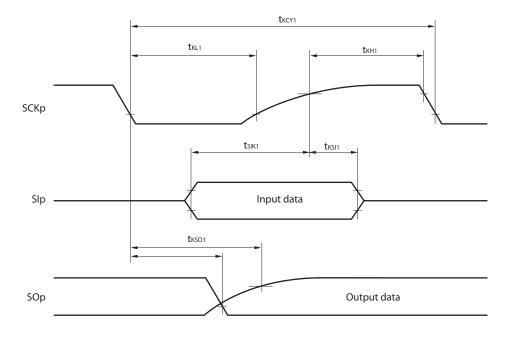
Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

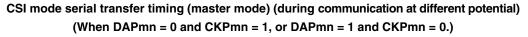
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

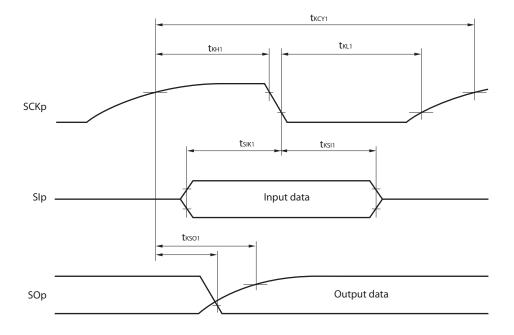
= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

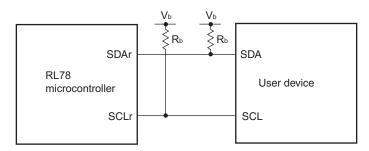
Parameter	Symbol	Conditions	HS (high-spe	Unit	
		[MIN.	MAX.	
SIp setup time	tsik1	$4.0 \ V \le EV_{\text{DD0}} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V,$	162		ns
(to SCKp↑) ^{Note}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	354		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	958		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$			
Slp hold time	tksi1	$4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	38		ns
(from SCKp↑) ^{№te}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$	38		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$			
Delay time from SCKp↓ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$		200	ns
SOp output ^{Note}		$C_b = 30 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$		390	ns
		$C_{\rm b}=30~pF,~R_{\rm b}=2.7~k\Omega$			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$		966	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			

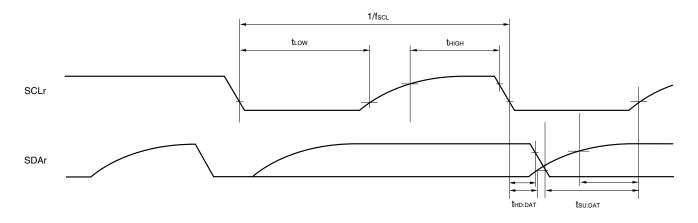

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)
 (T₁ = 40 to ±105°C 2.4 V ≤ EVere = EVere ≤ Vere ≤ 5.5 V, Vere = EVere = 6.V)

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the page after the next page.)


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

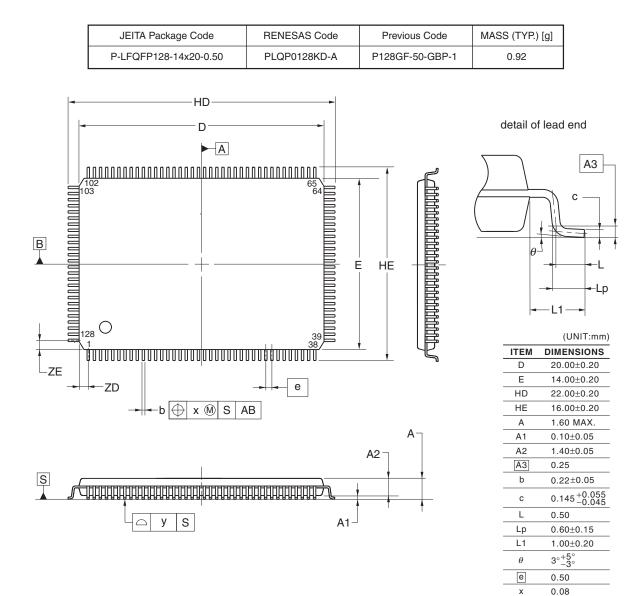


- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

©2012 Renesas Electronics Corporation. All rights reserved.

х

y ZD

ZE

0.08

0.75

0.75

