

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \mathbf{X}

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	96КВ (96К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101gfana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

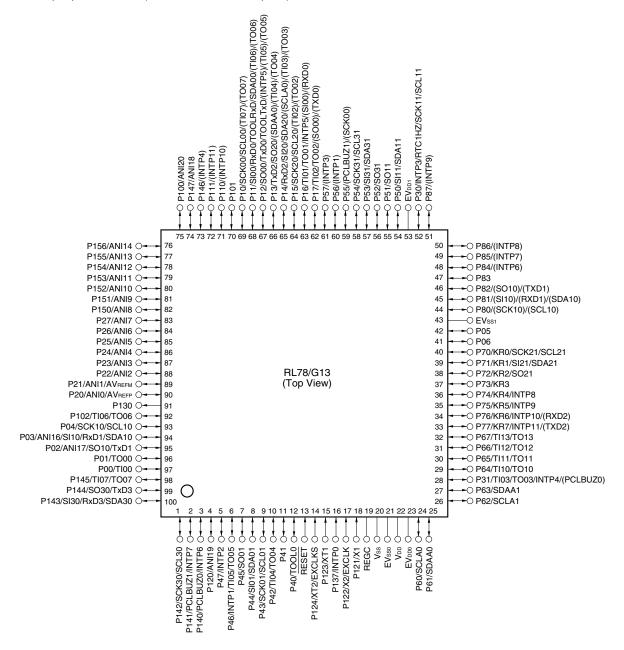
				(1/12)
Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application Note	
20 pins	20-pin plastic LSSOP	Mounted	А	R5F1006AASP#V0, R5F1006CASP#V0, R5F1006DASP#V0,
	(7.62 mm (300), 0.65			R5F1006EASP#V0
	mm pitch)			R5F1006AASP#X0, R5F1006CASP#X0, R5F1006DASP#X0,
				R5F1006EASP#X0
			D	R5F1006ADSP#V0, R5F1006CDSP#V0, R5F1006DDSP#V0,
				R5F1006EDSP#V0
				R5F1006ADSP#X0, R5F1006CDSP#X0, R5F1006DDSP#X0,
				R5F1006EDSP#X0
			G	R5F1006AGSP#V0, R5F1006CGSP#V0, R5F1006DGSP#V0,
				R5F1006EGSP#V0
				R5F1006AGSP#X0, R5F1006CGSP#X0, R5F1006DGSP#X0,
				R5F1006EGSP#X0
		Not	А	R5F1016AASP#V0, R5F1016CASP#V0, R5F1016DASP#V0,
		mounted		R5F1016EASP#V0
				R5F1016AASP#X0, R5F1016CASP#X0, R5F1016DASP#X0,
				R5F1016EASP#X0
			D	R5F1016ADSP#V0, R5F1016CDSP#V0, R5F1016DDSP#V0,
				R5F1016EDSP#V0
				R5F1016ADSP#X0, R5F1016CDSP#X0, R5F1016DDSP#X0,
				R5F1016EDSP#X0
24 pins	24-pin plastic	Mounted	А	R5F1007AANA#U0, R5F1007CANA#U0, R5F1007DANA#U0,
	HWQFN (4 $ imes$ 4mm,			R5F1007EANA#U0
	0.5 mm pitch)			R5F1007AANA#W0, R5F1007CANA#W0, R5F1007DANA#W0,
				R5F1007EANA#W0
			D	R5F1007ADNA#U0, R5F1007CDNA#U0, R5F1007DDNA#U0,
				R5F1007EDNA#U0
				R5F1007ADNA#W0, R5F1007CDNA#W0, R5F1007DDNA#W0,
				R5F1007EDNA#W0
			G	R5F1007AGNA#U0, R5F1007CGNA#U0, R5F1007DGNA#U0,
				R5F1007EGNA#U0
				R5F1007AGNA#W0, R5F1007CGNA#W0, R5F1007DGNA#W0,
				R5F1007EGNA#W0
		Not	А	R5F1017AANA#U0, R5F1017CANA#U0, R5F1017DANA#U0,
		mounted		R5F1017EANA#U0
				R5F1017AANA#W0, R5F1017CANA#W0, R5F1017DANA#W0,
				R5F1017EANA#W0
			D	R5F1017ADNA#U0, R5F1017CDNA#U0, R5F1017DDNA#U0,
				R5F1017EDNA#U0
				R5F1017ADNA#W0, R5F1017CDNA#W0, R5F1017DDNA#W0,
				R5F1017EDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Table 1-1.	List of Ordering Part Nu	umbers
------------	--------------------------	--------

				(12/12)
Pin count	Package	Data flash	Fields of Application ^{Note}	Ordering Part Number
128 pins	128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch)	Mounted	A	R5F100SHAFB#V0, R5F100SJAFB#V0, R5F100SKAFB#V0, R5F100SLAFB#V0 R5F100SHAFB#X0, R5F100SJAFB#X0, R5F100SKAFB#X0, R5F100SLAFB#X0 R5F100SHDFB#V0, R5F100SJDFB#V0, R5F100SKDFB#V0, R5F100SLDFB#V0 R5F100SKDFB#X0, R5F100SJDFB#X0, R5F100SKDFB#X0, R5F100SLDFB#X0
		Not mounted	D	R5F101SHAFB#V0, R5F101SJAFB#V0, R5F101SKAFB#V0, R5F101SLAFB#V0 R5F101SHAFB#X0, R5F101SJAFB#X0, R5F101SKAFB#X0, R5F101SLAFB#X0 R5F101SHDFB#V0, R5F101SJDFB#V0, R5F101SKDFB#V0, R5F101SLDFB#V0, R5F101SHDFB#X0, R5F101SLDFB#X0, R5F101SKDFB#X0, R5F101SLDFB#X0


Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.13 100-pin products

• 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)

Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the V_{SS}, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

						1	(2/2)	
Ite	m	80-pin		100			3-pin	
		R5F100Mx R5	F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx	
Clock output/buzz	er output	2		:	2		2	
		(Main system clock • 256 Hz, 512 Hz, 1.0	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 					
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels		
Serial interface		[80-pin, 100-pin, 128-	pin product	ts]				
		 CSI: 2 channels/sin 	nplified I ² C: nplified I ² C:	2 channels/UAR 2 channels/UAR	T: 1 channel T (UART suppor	ting LIN-bus): 1 c	channel	
	I ² C bus	2 channels		2 channels		2 channels		
Multiplier and divid	der/multiply-	• 16 bits × 16 bits = 32	2 bits (Unsi	igned or signed)				
accumulator		• 32 bits ÷ 32 bits = 32 bits (Unsigned)						
		• 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)						
DMA controller		4 channels						
Vectored	Internal	37 37 41					41	
interrupt sources	External	13	13 13 13					
Key interrupt	I	8		4	8	8		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 						
Power-on-reset ci	rcuit	 Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.) 						
Voltage detector		Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)						
On-chip debug fur	nction	Provided						
Power supply volta	age	$V_{_{DD}} = 1.6 \text{ to } 5.5 \text{ V} (T_{_{A}} = -40 \text{ to } +85^{\circ}\text{C})$ $V_{_{DD}} = 2.4 \text{ to } 5.5 \text{ V} (T_{_{A}} = -40 \text{ to } +105^{\circ}\text{C})$						
Operating ambien	t temperature	$T_{A} = 40 \text{ to } +85^{\circ}\text{C} \text{ (A: Consumer applications, D: Industrial applications)}$ $T_{A} = 40 \text{ to } +105^{\circ}\text{C} \text{ (G: Industrial applications)}$						

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1$ MHz to 8 MHz

LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz

- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	VDD = 5.0 V		0.62	1.89	mA
Current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.89	mA
			mode	fiH = 24 MHz ^{Note 4}	VDD = 5.0 V		0.50	1.48	mA
					VDD = 3.0 V		0.50	1.48	mA
				fi⊢ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.12	mA
					V _{DD} = 3.0 V		0.44	1.12	mA
			LS (low-	fiH = 8 MHz ^{Note 4}	$V_{DD} = 3.0 V$		290	620	μA
	speed main)		$V_{DD} = 2.0 V$		290	620	μA		
			LV (low-	fin = 4 MHz ^{Note 4}	VDD = 3.0 V		460	700	μA
			voltage main) mode		V _{DD} = 2.0 V		460	700	μA
			HS (high-	fмx = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.31	1.14	mA
	$V_{DD} = 3.0 V$	Resonator connection		0.48	1.34	mA			
			$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.21	0.68	mA	
	$V_{DD} = 5.0 V$	Resonator connection		0.28	0.76	mA			
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.68	mA	
				Vdd = 3.0 V	Resonator connection		0.28	0.76	mA
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
			speed main) mode ^{Note 7}	Vdd = 3.0 V	Resonator connection		160	450	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
				VDD = 2.0 V	Resonator connection		160	450	μA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.50	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μA
				T _A = +25°C	Resonator connection		0.57	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.66	3.68	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μA
			T _A = +70°C	Resonator connection		0.99	6.29	μA	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μA
				$T_A = +85^{\circ}C$	Resonator connection		1.71	10.65	μA
	DD3	STOP	$T_A = -40^{\circ}C$	1	1	1	0.19	0.54	μA
		mode ^{Note 8}	T _A = +25°C			1	0.26	0.54	μA
			T _A = +50°C				0.35	3.37	μA
			$T_{A} = +70^{\circ}C$				0.68	5.98	μΑ
			T _A = +85°C			+	1.40	10.34	μΑ

(Notes and Remarks are listed on the next page.)

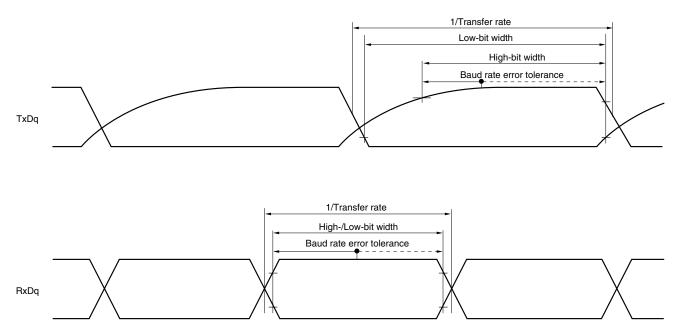
- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))


(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) ($T_A = -40$ to $+85^{\circ}$ C, 1.6 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V)

Parameter	Symbol	Condit	ions		h-speed Mode		/-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$	20 MHz < fмск	8/fмск		_		_		ns
Note 5		V	fмск \leq 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	8/fмск		_		_		ns
		V	fмск \leq 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$			6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6 \ V \leq EV_{\text{DD0}} \leq 5.5$	V	—		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tкн2, tкL2	$4.0~V \le EV_{DD0} \le 5.5~V$		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$1.8~V \le EV_{DD0} \le 5.5~V$		tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 18		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
		$1.6~V \le EV_{\text{DD0}} \le 5.5$	V	_		tксү2/2 - 66		tксү2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions		h-speed Mode	``	/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıkı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	44		110		110		ns
		$\label{eq:cb} \begin{split} C_b &= 30 \; pF, \; R_b = 1.4 \; k\Omega \\ 2.7 \; V &\leq EV_{\text{DD0}} < 4.0 \; V, \\ 2.3 \; V &\leq V_b \leq 2.7 \; V, \end{split}$	44		110		110		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$	110		110		110		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
SIp hold time (from SCKp↓) ^{№ te 1}	tksii	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns
		$C_b=30 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$							
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	19		19		19		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$ \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $		25		25		25	ns
SOp output Note 1		$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\rm DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_{\rm b} \leq 2.7 \ V, \end{array}$		25		25		25	ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$		25		25		25	ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=5.5 \text{k}\Omega$							

		5 5 V Voo - EVo	$ = EV_{oot} = 0.V$
$T_{A} = -40$ to +85°C,		j.j v, vss = ⊑vs	$s_0 = \Box v s s_1 = U v $

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. Use it with $EV_{DD0} \ge V_b$.

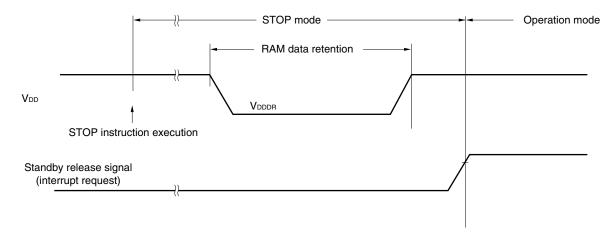
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.

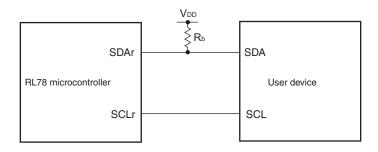
Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see **CHAPTER 2 ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C)**.

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

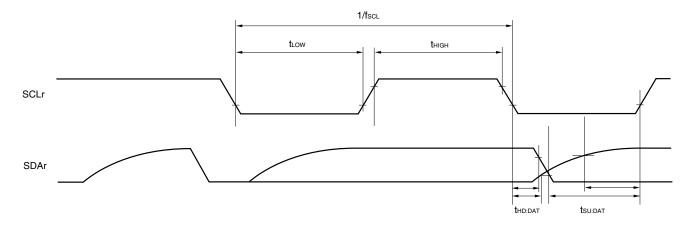
Parameter	Ap	pplication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode Operating voltage range	$\begin{array}{l} \text{HS (high-speed main) mode:} \\ \text{2.7 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 32 MHz} \\ \text{2.4 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 16 MHz} \\ \text{LS (low-speed main) mode:} \\ \text{1.8 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 8 MHz} \\ \text{LV (low-voltage main) mode:} \\ \text{1.6 V} \leq V_{\text{DD}} \leq 5.5 \ \text{V@1 MHz to 4 MHz} \end{array}$	HS (high-speed main) mode only: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V_{DD} \leq 5.5 \ V \\ \pm 1.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 1.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \\ 1.6 \ V \leq V_{DD} < 1.8 \ V \\ \pm 5.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 5.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \end{array}$	$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 5.5 \ V \\ \pm 2.0\% @ \ T_{A} = +85 \ to \ +105^{\circ}C \\ \pm 1.0\% @ \ T_{A} = -20 \ to \ +85^{\circ}C \\ \pm 1.5\% @ \ T_{A} = -40 \ to \ -20^{\circ}C \end{array}$
Serial array unit	UART CSI: fcLk/2 (supporting 16 Mbps), fcLk/4 Simplified I ² C communication	UART CSI: fcLk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels)	Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels)

(Remark is listed on the next page.)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array}$	EV _{DD0} - 0.7			V
		P90 to P97, P100 to P106, P110 to	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Ioh1 = -2.0 mA	EV _{DD0} - 0.6			V
		P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EV _{DD0} - 0.5			V
V _{OH2}	Vон2	P20 to P27, P150 to P156	2.4 V \leq V _{DD} \leq 5.5 V, Іон ₂ = -100 μ А	Vdd - 0.5			V
low	Vol1	P37, P40 to P47, P50 to P57, P64	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:optimal_decomposition}$			0.7	V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.6	V
		P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD1}$			0.4	V
			$eq:local_$			0.4	V
	Vol2	P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array}$			2.0	V
		$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V	
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ mA \end{array}$			0.4	V
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5)

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.


Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

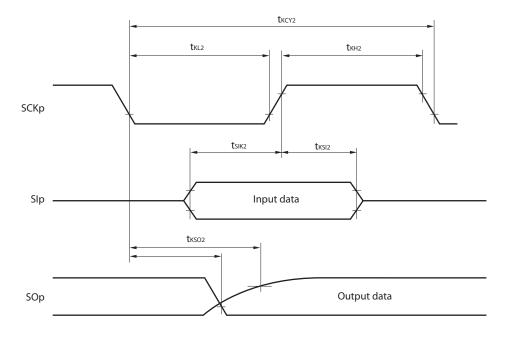
- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

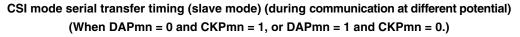
= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

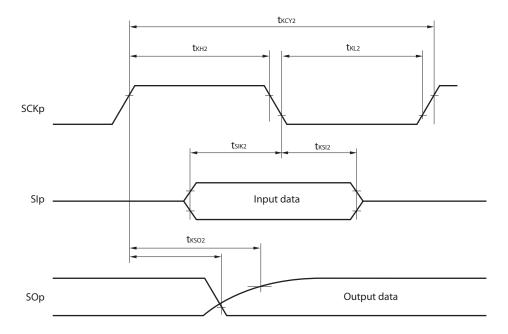
(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) ($T_A = -40$ to $+105^{\circ}C$, 2.4 V $\leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5$ V. Vss = $EV_{SS0} = EV_{SS1} = 0$ V)

Parameter	Symbol		Conditions		Conditions HS (high-speed main Mode		-	Unit
					MIN.	MAX.		
Transfer rate	fer rate Rece		$4.0 \ V \ \leq \ EV_{\text{DD0}} \ \leq \ 5.5$			fмск/12 ^{Note 1}	bps	
			V, $2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps	
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$			fмск/12 ^{Note 1}	bps	
			V, $2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps	
		$2.4 V \le EV_{DD0} < 3.3 V,$		•		fмск/12 Notes 1,2	bps	
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps	


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The following conditions are required for low voltage interface when E_{VDD0} < $V_{DD}.$ 2.4 V \leq EV_{DD0} < 2.7 V : MAX. 1.3 Mbps
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)


4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage							
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR					
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM					
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4).					
ANI16 to ANI26	Refer to 3.6.1 (2).							
Internal reference voltage	Refer to 3.6.1 (1) .		-					
Temperature sensor output								
voltage								

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(T_A = -40 to +105°C, 2.4 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μS
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V \text{dd} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1in} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \hspace{.1cm} \leq \hspace{.1cm} AV_{\text{REFP}} \hspace{.1cm} \leq \hspace{.1cm} 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage out (2.4 V \leq VDD \leq 5.5 V, HS (high	oltage output /, HS (high-speed main) mode)		VBGR ^{Note 4}		
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			VTMPS25 Note	4	V

(Notes are listed on the next page.)

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$ Reference voltage (+) = AV_{\text{REFP}}, Reference voltage (-) = AV_{\text{REFM}} = 0 \text{ V})

Parameter	Symbol	Conditior	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	$\begin{array}{l} 10\text{-bit resolution} \\ EV_{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin : ANI16 to ANI26	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	$\begin{array}{l} \mbox{10-bit resolution} \\ \mbox{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	$\begin{array}{l} \text{10-bit resolution} \\ \text{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \end{array} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution $EVDD0 \leq AV_{REFP} = V_{DD}^{Notes 3, 4}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±3.5	LSB
Differential linearity error	DLE	$\begin{array}{l} 10\text{-bit resolution} \\ EV \text{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$	$\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI26		0		AVREFP and EVDD0	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows.
- 4. When AVREFP < EVDDD S VDD, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclĸ	$2.4~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1,2,3	Cerwr	Retained for 20 years TA = 85° C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1,2,3		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85° C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

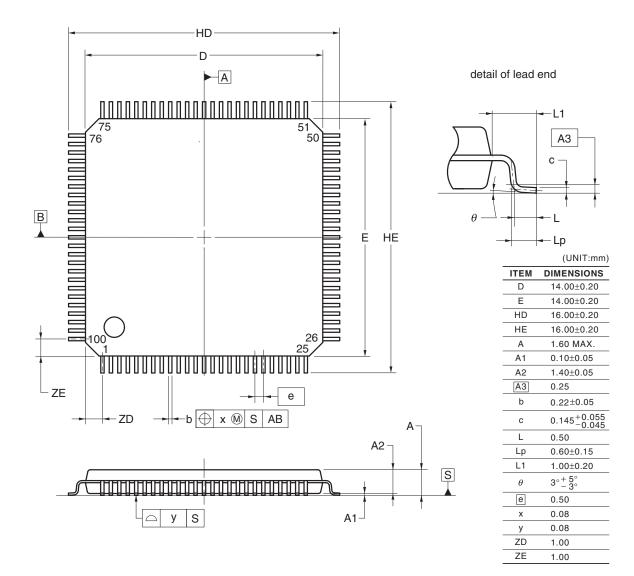
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library.
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{\text{A}} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

4.13 100-pin Products

R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F100PLDFB R5F101PFDFB, R5F101PGDFB, R5F101PHDFB, R5F101PJDFB, R5F101PKDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

©2012 Renesas Electronics Corporation. All rights reserved.

