Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 34 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 12K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 10x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-LQFP | | Supplier Device Package | 48-LFQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101ggafb-30 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### 1.3.5 32-pin products • 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - 3. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$ ### 1.5.5 32-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ### 1.5.10 52-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ### 1.5.12 80-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5) | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |------------------------|---|--|--|----------------------|-----------------|----------------------|------| | Input voltage,
high | V _{IH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | | 0.8EVDDO | | EV _{DD0} | V | | VIH2 | V _{IH2} | P01, P03, P04, P10, P11,
P13 to P17, P43, P44, P53 to P55, | TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V | 2.2 | | EV _{DD0} | V | | | | P80, P81, P142, P143 | TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$ | 2.0 | | EV _{DD0} | V | | | | | TTL input buffer
1.6 V ≤ EV _{DD0} < 3.3 V | 1.5 | | EV _{DD0} | V | | | V _{IH3} P20 to P27, P150 to P156 | | 0.7V _{DD} | | V _{DD} | ٧ | | | | V _{IH4} | P60 to P63 | | 0.7EV _{DD0} | | 6.0 | ٧ | | | V _{IH5} | P121 to P124, P137, EXCLK, EXCL | KS, RESET | 0.8V _{DD} | | V _{DD} | ٧ | | Input voltage,
low | V _{IL1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 | , | 0 | | 0.2EV _{DD0} | V | | | V _{IL2} | P01, P03, P04, P10, P11,
P13 to P17, P43, P44, P53 to P55, | TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V | 0 | | 0.8 | V | | | | P80, P81, P142, P143 | TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V | 0 | | 0.5 | V | | | | | TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V | 0 | | 0.32 | V | | | VIL3 | P20 to P27, P150 to P156 | | 0 | | 0.3V _{DD} | ٧ | | | V _{IL4} | P60 to P63 | | 0 | | 0.3EV _{DD0} | ٧ | | | V _{IL5} | P121 to P124, P137, EXCLK, EXCL | KS, RESET | 0 | | 0.2V _{DD} | ٧ | Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (4/5)$ | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |-------------------------|------------------|--|---|-------------------------|------|------|------| | Output voltage,
high | V _{OH1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -10.0 mA | EV _{DD0} – | | | V | | | | to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P106, P110 to | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -3.0 \text{ mA}$ | EV _{DD0} – 0.7 | | | V | | | | P117, P120, P125 to P127, P130,
P140 to P147 | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ loh1 = -2.0 mA | EV _{DD0} – 0.6 | | | V | | | | | 1.8 V \leq EV _{DD0} \leq 5.5 V,
Іон1 = -1.5 mA | EV _{DD0} – 0.5 | | | V | | | | | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ Iон1 = -1.0 mA | EV _{DD0} – 0.5 | | | V | | | V _{OH2} | P20 to P27, P150 to P156 | 1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = $-100~\mu$ A | V _{DD} – 0.5 | | | V | | Output voltage, low | V _{OL1} | P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 20~mA$ | | | 1.3 | V | | | | to P67, P70 to P77, P80 to P87,
P90 to P97, P100 to P106, P110 to | $4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$ | | | 0.7 | V | | | | P117, P120, P125 to P127, P130,
P140 to P147 | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 3.0~\text{mA}$ | | | 0.6 | V | | | | | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 1.5~\text{mA}$ | | | 0.4 | V | | | | | $1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$ | | | 0.4 | V | | | | | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $\text{IoL1} = 0.3 \text{ mA}$ | | | 0.4 | V | | | V _{OL2} | P20 to P27, P150 to P156 | 1.6 V \leq V _{DD} \leq 5.5 V,
lol2 = 400 μ A | | | 0.4 | V | | | Vol3 | P60 to P63 | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $\text{Iol3} = 15.0 \text{ mA}$ | | | 2.0 | V | | | | | $4.0~V \le EV_{DD0} \le 5.5~V,$ $I_{OL3} = 5.0~mA$ | | | 0.4 | V | | | | | $2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD0} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 3.0~\textrm{mA}$ | | | 0.4 | V | | | | | $1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$ | | | 0.4 | V | | | | | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $10 \text{L3} = 1.0 \text{ mA}$ | | | 0.4 | V | Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. ### (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products ### (Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2) | Parameter | Symbol | | | Conditions | | MIN. | TYP. | MAX. | Unit | | |-----------|------------------|----------------------------|--|--|-------------------------|----------------------------|-------------------|------|------|-----| | Supply | I _{DD2} | HALT | HS (high- | $f_{IH} = 32 \text{ MHz}^{Note 4}$ | V _{DD} = 5.0 V | | 0.54 | 1.63 | mA | | | current | Note 2 | mode | speed main)
mode Note 7 | | V _{DD} = 3.0 V | | 0.54 | 1.63 | mA | | | | | | | $f_{IH} = 24 \text{ MHz}^{\text{Note 4}}$ | V _{DD} = 5.0 V | | 0.44 | 1.28 | mA | | | | | | | | V _{DD} = 3.0 V | | 0.44 | 1.28 | mA | | | | | İ | | fih = 16 MHz Note 4 | V _{DD} = 5.0 V | | 0.40 | 1.00 | mA | | | | | | | | V _{DD} = 3.0 V | | 0.40 | 1.00 | mA | | | | | | LS (low- | fih = 8 MHz Note 4 | V _{DD} = 3.0 V | | 260 | 530 | μА | | | | | | | speed main)
mode Note 7 | | V _{DD} = 2.0 V | | 260 | 530 | μА | | | | | LV (low- | f _{IH} = 4 MHz ^{Note 4} | V _{DD} = 3.0 V | | 420 | 640 | μA | | | | | | voltage
main) mode | | V _{DD} = 2.0 V | | 420 | 640 | μА | | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.28 | 1.00 | mA | | | | | | speed main)
mode Note 7 | V _{DD} = 5.0 V | Resonator connection | | 0.45 | 1.17 | mA | | | | | | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.28 | 1.00 | mA | | | | | | | | V _{DD} = 3.0 V | Resonator connection | | 0.45 | 1.17 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.19 | 0.60 | mA | | | | | | | | $V_{DD} = 5.0 \text{ V}$ | Resonator connection | | 0.26 | 0.67 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input | | 0.19 | 0.60 | mA | | | | | | | | $V_{DD} = 3.0 \text{ V}$ | Resonator connection | | 0.26 | 0.67 | mA | | | | | | LS (low- | $f_{MX} = 8 MHz^{Note 3}$ | Square wave input | | 95 | 330 | μΑ | | | | | speed
mode ^N | | speed main) | V _{DD} = 3.0 V | Resonator connection | | 145 | 380 | μΑ | | | | | | | mode | $f_{MX} = 8 MHz^{Note 3},$ | Square wave input | | 95 | 330 | | | | | | $V_{DD} = 2.0 \text{ V}$ | Resonator connection | | 145 | 380 | μΑ | | | | | | Subsystem | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.25 | 0.57 | μΑ | | | | | | clock | T _A = -40°C | Resonator connection | | 0.44 | 0.76 | μΑ | | | | | | operation | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.30 | 0.57 | μΑ | | | | | | | T _A = +25°C | Resonator connection | | 0.49 | 0.76 | μΑ | | | | | | | fsub = 32.768 kHz ^{Note 5} | Square wave input | | 0.37 | 1.17 | μΑ | | | | | | | T _A = +50°C | Resonator connection | | 0.56 | 1.36 | μΑ | | | | | | | $f_{SUB} = 32.768 \text{ kHz}^{Note 5}$ | Square wave input | | 0.53 | 1.97 | μΑ | | | | | | | T _A = +70°C | Resonator connection | | 0.72 | 2.16 | μA | | | | | | | $f_{SUB} = 32.768 \text{ kHz}^{Note 5}$ | Square wave input | | 0.82 | 3.37 | μΑ | | | | | | | T _A = +85°C | Resonator connection | | 1.01 | 3.56 | μΑ | | | | IDD3 Note 6 | STOP | T _A = -40°C | | | | 0.18 | 0.50 | μΑ | | | | | mode ^{Note 8} | T _A = +25°C | | | | 0.23 | 0.50 | μΑ | | | | | | T _A = +50°C | | | | 0.30 | 1.10 | μΑ | | | | | | T _A = +70°C | | | | 0.46 | 1.90 | μА | | | | | | T _A = +85°C | | | | 0.75 | 3.30 | μΑ | | (Notes and Remarks are listed on the next page.) Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V} : \text{MIN. } 250 \text{ ns}$ Remark fmck: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)) #### Minimum Instruction Execution Time during Main System Clock Operation #### (5) During communication at same potential (simplified I²C mode) (2/2) (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | , , | HS (high-speed main) Mode | | r-speed
Mode | ` | -voltage
Mode | Unit | |-------------------------------|---------|--|---|---------------------------|---|-----------------|---|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Data setup time (reception) | tsu:dat | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$ | 1/f _{MCK}
+ 85
_{Note2} | | 1/fmck
+ 145
Note2 | | 1/f _{MCK}
+ 145
{Note2} | | ns | | | | $1.8~V \leq EV{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$ | 1/f _{MCK}
+ 145
_{Note2} | | 1/f _{MCK}
+ 145
_{Note2} | | 1/f _{MCK}
+ 145
{Note2} | | ns | | | | $1.8~V \leq EV{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 1/fmck
+ 230
Note2 | | 1/fmck
+ 230
Note2 | | 1/fmck
+ 230
Note2 | | ns | | | | $1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | ns | | | | $1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | _ | | 1/fmck
+ 290
Note2 | | 1/fmck
+ 290
Note2 | | ns | | Data hold time (transmission) | thd:dat | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$ | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | $1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 0 | 405 | 0 | 405 | 0 | 405 | ns | | | | $1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | 0 | 405 | 0 | 405 | 0 | 405 | ns | | | | $1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$ | _ | _ | 0 | 405 | 0 | 405 | ns | Notes 1. The value must also be equal to or less than fmck/4. 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the normal input buffer and the N-ch open drain output (Vpb tolerance (When 20- to 52-pin products)/EVpb tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh). (Remarks are listed on the next page.) 3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer. - 5. Use it with $EV_{DD0} \ge V_b$. - **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V $$\text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1 - \frac{1.5}{V_b})\} \times 3} \text{ [bps]}$$ Baud rate error (theoretical value) = $$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer. Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. **UART** mode connection diagram (during communication at different potential) # (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (1/2) (Ta = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | | Conditions | HS (hig | h-speed
Mode | LS (low | | LV (low-voltage main) Mode | | Unit | |--|------------------|--|--|------------------------------|-----------------|---------------------------|------|----------------------------|------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time | tkcy1 | $\label{eq:key1} \begin{array}{l} \text{tkcy1} \geq 2/\text{fclk} & 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ \\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 1.4 \\ \\ \text{k}\Omega \end{array}$ | | 200 | | 1150 | | 1150 | | ns | | | | | $\begin{split} &2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 2.7 \\ &k\Omega \end{split}$ | 300 | | 1150 | | 1150 | | ns | | SCKp high-level width | tкн1 | $\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} &= 20 \text{ pF}, \text{ R}_{\text{b}} = 1.4 \text{ k}\Omega \\ \\ 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} &= 20 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$ | | tксү1/2 —
50 | | tксу1/2 —
50 | | tксу1/2 — 50 | | ns | | | | | | tксү1/2 —
120 | | tксу1/2 –
120 | | tксу1/2 —
120 | | ns | | SCKp low-level width | t _{KL1} | $\label{eq:continuous} \begin{split} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{split}$ | | tксү1/2 —
7 | | t _{KCY1} /2 – 50 | | t _{KCY1} /2 - 50 | | ns | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$ | | tксу ₁ /2 –
10 | | tксу1/2 —
50 | | tксу1/2 —
50 | | ns | | SIp setup time
(to SCKp↑) Note 1 | tsıĸı | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 4$ $C_{b} = 20 \text{ pF, F}$ | 4.0 V, | 58 | | 479 | | 479 | | ns | | | | $2.7 \text{ V} \leq \text{EV}_{DD}$
$2.3 \text{ V} \leq \text{V}_{b} \leq 2$
$C_{b} = 20 \text{ pF, F}$ | 2.7 V, | 121 | | 479 | | 479 | | ns | | SIp hold time
(from SCKp↑) Note 1 | tksii | $\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned}$ | | 10 | | 10 | | 10 | | ns | | | | $2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$ | | 10 | | 10 | | 10 | | ns | | Delay time from SCKp↓ to SOp output Note 1 | tkso1 | $ 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, $ $ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, $ $ C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega $ | | | 60 | | 60 | | 60 | ns | | | | $2.7 \text{ V} \le \text{EV}_{DD}$ $2.3 \text{ V} \le \text{V}_{b} \le 2$ $C_b = 20 \text{ pF, F}$ | o < 4.0 V,
2.7 V, | | 130 | | 130 | | 130 | ns | (Notes, Caution, and Remarks are listed on the next page.) (3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$ | Parameter | Symbol | Conditio | ns | MIN. | TYP. | MAX. | Unit | |--|--------|---|---------------------------------------|--------|----------------|-------------------|------| | Resolution | RES | | | 8 | | 10 | bit | | Overall error ^{Note 1} | AINL | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | 1.2 | ±7.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | 1.2 | ±10.5 | LSB | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125 | | 39 | μS | | | | Target pin: ANIO to ANI14, | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875 | | 39 µs | μS | | | | ANI16 to ANI26 | 1.8 V ≤ V _{DD} ≤ 5.5 V 17 | 39 | μS | | | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ | 57 | | 95 | μS | | Conversion time | tconv | 10-bit resolution | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375 | | 39 | μS | | | | Target pin: Internal | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625 | | 39 | μS | | | | reference voltage, and
temperature sensor output
voltage (HS (high-speed
main) mode) | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17 | | 39 | μS | | Zero-scale error ^{Notes 1, 2} | Ezs | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±0.85 | %FSR | | Full-scale error ^{Notes 1, 2} | Ers | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±0.60 | %FSR | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±0.85 | %FSR | | Integral linearity errorNote 1 | ILE | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±4.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±6.5 | LSB | | Differential linearity error Note 1 | DLE | 10-bit resolution | $1.8~V \leq V_{DD} \leq 5.5~V$ | | | ±2.0 | LSB | | | | | $1.6~V \leq V_{DD} \leq 5.5~V$ Note 3 | | | ±2.5 | LSB | | Analog input voltage | VAIN | ANI0 to ANI14 | • | 0 | | V _{DD} | V | | | | ANI16 to ANI26 | | 0 | | EV _{DD0} | ٧ | | | | Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (hi | gh-speed main) mode) | | VBGR Note 4 | 1 | V | | | | Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (hi | • | | VTMPS25 Note 4 | 1 | V | Notes 1. Excludes quantization error (±1/2 LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.). - 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics. #### (4) During communication at same potential (simplified I²C mode) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | ` • . | HS (high-speed main) Mode | | |-------------------------------|---------|--|--------------|----------------------------|-----| | | | | MIN. | MAX. | | | SCLr clock frequency | fscL | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ | | 400 Note1 | kHz | | | | $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ | | 100 Note1 | kHz | | | | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$ | | | | | Hold time when SCLr = "L" | tLOW | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ | 1200 | | ns | | | | $C_b = 50$ pF, $R_b = 2.7$ k Ω | | | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ | 4600 | | ns | | | | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$ | | | | | Hold time when SCLr = "H" | tніgн | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ | 1200 | | ns | | | | $C_b = 50$ pF, $R_b = 2.7$ k Ω | | | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ | 4600 | | ns | | | | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$ | | | | | Data setup time (reception) | tsu:dat | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ | 1/fmck + 220 | | ns | | | | $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | Note2 | | | | | | $2.4~V \leq EV_{DD} \leq 5.5~V,$ | 1/fmck + 580 | | ns | | | | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$ | Note2 | | | | Data hold time (transmission) | thd:dat | $2.7~V \leq EV_{DD0} \leq 5.5~V,$ | 0 | 770 | ns | | | | $C_b = 50$ pF, $R_b = 2.7$ k Ω | | | | | | | $2.4~V \leq EV_{DD0} \leq 5.5~V,$ | 0 | 1420 | ns | | | | $C_b = 100 \ pF, \ R_b = 3 \ k\Omega$ | | | | Notes 1. The value must also be equal to or less than fmck/4. 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh). (Remarks are listed on the next page.) #### Simplified I²C mode mode connection diagram (during communication at same potential) #### Simplified I²C mode serial transfer timing (during communication at same potential) Remarks 1. $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14) - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13) # (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | | d main) Mode | Unit | |-----------------------|--------|--|--|---------------|--------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time | tkcy1 | tkcy1 ≥ 4/fclk | $4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0$ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$ | 600 | | ns | | | | | $2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7$ $V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$ | 1000 | | ns | | | | | $2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0$ $V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$ | 2300 | | ns | | SCKp high-level width | tкн1 | 4.0 V ≤ EV _{DD}
C _b = 30 pF, F | $_{0}$ \leq 5.5 V, 2.7 V \leq V $_{b}$ \leq 4.0 V, $_{c}$ $_{c$ | tксу1/2 - 150 | | ns | | | | 2.7 V ≤ EV _{DD} | $0 < 4.0 \text{ V}, 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V},$ $R_b = 2.7 \text{ k}\Omega$ | tkcy1/2 - 340 | | ns | | | | 2.4 V ≤ EV _{DD}
C _b = 30 pF, F | $_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R_{b} = 5.5 k Ω | tксу1/2 — 916 | | ns | | SCKp low-level width | tĸL1 | $4.0 \text{ V} \leq \text{EV}_{DD}$ $C_b = 30 \text{ pF, F}$ | $_{0}\leq5.5\;V,2.7\;V\leq V_{b}\leq4.0\;V,$ $R_{b}=1.4\;k\Omega$ | tkcy1/2 - 24 | | ns | | | | | $\begin{split} 2.7 \ V &\leq \text{EV}_{\text{DD0}} < 4.0 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ C_{\text{b}} &= 30 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \\ \\ 2.4 \ V &\leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}, \\ C_{\text{b}} &= 30 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$ | | | ns | | | | | | | | ns | Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vpd tolerance (for the 20- to 52-pin products)/EVpd tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed two pages after the next page.) ### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | HS (high-spe | eed main) Mode | Unit | |--|--------|--|--------------|----------------|------| | | | | MIN. | MAX. | | | SIp setup time | tsıĸı | $4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$ | 88 | | ns | | (to SCKp↓) Note | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ | 88 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | $2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ | 220 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | SIp hold time (from SCKp \downarrow) Note | tksi1 | $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$ | 38 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | $2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$ | 38 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | $2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$ | 38 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | Delay time from SCKp↑ to | tkso1 | $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$ | | 50 | ns | | SOp output Note | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | $2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$ | | 50 | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ | | 50 | ns | | | | $C_b=30~pF,~R_b=5.5~k\Omega$ | | | | **Note** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) ## CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, R5F100MJAFB, R5F100MKAFB, R5F100MLAFB R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, R5F101MJAFB, R5F101MKAFB, R5F101MLAFB R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, R5F100MJDFB, R5F100MKDFB, R5F100MLDFB R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, R5F101MJDFB, R5F101MKDFB, R5F101MLDFB R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, R5F100MJGFB | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |----------------------|--------------|----------------|-----------------| | P-LFQFP80-12x12-0.50 | PLQP0080KE-A | P80GK-50-8EU-2 | 0.53 | #### NOTE Each lead centerline is located within 0.08 mm of its true position at maximum material condition. ©2012 Renesas Electronics Corporation. All rights reserved. | | | | Description | |------|--------------|--------|--| | Rev. | Date | Page | Summary | | 3.00 | Aug 02, 2013 | 81 | Modification of figure of AC Timing Test Points | | | | 81 | Modification of description and note 3 in (1) During communication at same potential (UART mode) | | | | 83 | Modification of description in (2) During communication at same potential (CSI mode) | | | | 84 | Modification of description in (3) During communication at same potential (CSI mode) | | | | 85 | Modification of description in (4) During communication at same potential (CSI mode) (1/2) | | | | 86 | Modification of description in (4) During communication at same potential (CSI mode) (2/2) | | | | 88 | Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2) | | | | 89 | Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2) | | | | 91 | Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) | | | | 92, 93 | Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 94 | Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 95 | Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2) | | | | 96 | Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2) | | | | 97 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) | | | | 98 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) | | | | 99 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | 100 | Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | 102 | Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2) | | | | 103 | Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2) | | | | 106 | Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | 107 | Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | 109 | Addition of (1) I ² C standard mode | | | | 111 | Addition of (2) I ² C fast mode | | | | 112 | Addition of (3) I ² C fast mode plus | | | | 112 | Modification of IICA serial transfer timing | | | | 113 | Addition of table in 2.6.1 A/D converter characteristics | | | | 113 | Modification of description in 2.6.1 (1) | | | | 114 | Modification of notes 3 to 5 in 2.6.1 (1) | | | | 115 | Modification of description and notes 2, 4, and 5 in 2.6.1 (2) | | | | 116 | Modification of description and notes 3 and 4 in 2.6.1 (3) | | | | 117 | Modification of description and notes 3 and 4 in 2.6.1 (4) | #### NOTES FOR CMOS DEVICES - (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN). - (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device. - (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. - (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions. - (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device. - (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.