

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101ggafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of	Ordering	Part	Numbers
------------	---------	----------	------	---------

				(5/12)		
Pin	Package	Data	Fields of	Ordering Part Number		
count		flash	Application			
			Note			
48 pins	48-pin plastic	Mounted	А	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,		
	LFQFP (7 \times 7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,		
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,		
				R5F100GLAFB#V0		
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,		
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,		
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,		
				R5F100GLAFB#X0		
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,		
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,		
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,		
				R5F100GLDFB#V0		
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,		
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,		
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,		
				R5F100GLDFB#X0		
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,		
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,		
				R5F100GHGFB#V0, R5F100GJGFB#V0		
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,		
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,		
				R5F100GHGFB#X0, R5F100GJGFB#X0		
		Not	А	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,		
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,		
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,		
				R5F101GLAFB#V0		
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,		
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,		
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,		
				R5F101GLAFB#X0		
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,		
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,		
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,		
				R5F101GLDFB#V0		
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,		
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,		
				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,		
		1		R5F101GLDFB#X0		

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to V_{ss} .

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

				-			(1/2)		
Item		80-	pin	100	-pin	128	3-pin		
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx		
Code flash me	emory (KB)	96 te	o 512	96 te	o 512	192	to 512		
Data flash me	emory (KB)	8	—	8	-	8	-		
RAM (KB)		8 to 3	2 Note 1	8 to 3	2 Note 1	16 to 3	32 Note 1		
Address spac	e	1 MB				•			
Main system clock	High-speed system clock	peed systemX1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)HS (High-speed main) mode:1 to 20 MHz (VDD = 2.7 to 5.5 V),HS (High-speed main) mode:1 to 16 MHz (VDD = 2.4 to 5.5 V),LS (Low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 5.5 V),LV (Low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 5.5 V),							
	High-speed on-chip oscillator	HS (High-speed HS (High-speed LS (Low-speed LV (Low-voltage	d main) mode: 1 d main) mode: 1 main) mode: 1 e main) mode: 1	to 32 MHz (V _{DD} = to 16 MHz (V _{DD} = to 8 MHz (V _{DD} = to 4 MHz (V _{DD} =	= 2.7 to 5.5 V), = 2.4 to 5.5 V), 1.8 to 5.5 V), 1.6 to 5.5 V)				
Subsystem cl	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	l subsystem cloc	k input (EXCLKS	i)			
Low-speed or	n-chip oscillator	15 kHz (TYP.)							
General-purp	ose register	(8-bit register × 8) × 4 banks							
Minimum inst	ruction execution time	0.03125 μ s (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)							
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)							
		30.5 µs (Subsystem clock: fsue = 32.768 kHz operation)							
Instruction set	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	7	74	92		1	20		
	CMOS I/O	(N-ch O.D. I/O voltag	64 [EV₀₀ withstand ge]: 21)	ہ N-ch O.D. I/O) voltag	32 [EV _{DD} withstand je]: 24)	1 (N-ch O.D. I/O voltag	10 [EV₂₂ withstand ge]: 25)		
	CMOS input		5		5		5		
	CMOS output		1		1		1		
	N-ch O.D. I/O (withstand voltage: 6 V)		4 4 4						
Timer	16-bit timer	12 cha	annels	12 cha	annels	16 ch	annels		
	Watchdog timer	1 cha	annel	1 cha	annel	1 cha	annel		
	Real-time clock (RTC)	1 cha	annel	1 cha	annel	1 cha	annel		
	12-bit interval timer (IT)	1 cha	annel	1 cha	annel	1 cha	annel		
	Timer output	12 channels (PWM outputs:	10 Note 2)	12 channels (PWM outputs:	10 Note 2)	16 channels (PWM outputs:	14 ^{Note 2})		
	RTC output	1 channel • 1 Hz (subsys	tem clock: fsuв =	32.768 kHz)					

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H

R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library** for RL78 Family (R20UT2944).

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	Та	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3 DC Characteristics

2.3.1 Pin characteristics

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (When duty $\leq 70\%$ ^{Note 3})	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-55.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty \leq 70% ^{Note 3})	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-80.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-5.0	mA
		Total of all pins (When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.
- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1$ MHz to 8 MHz

LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz

- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter Symbol		Conditions		HS (high main)	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fclк	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	125		500		1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	250		500		1000		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	500		500		1000		ns
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	1000		1000		1000		ns
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	—		1000		1000		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _D	$500 \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DE}}$	$500 \leq 5.5 \text{ V}$	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		1.7 V ≤ EV _{DE}	$500 \leq 5.5 \text{ V}$	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DE}}$	$_{00} \leq 5.5 \text{ V}$	_		tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsik1	$4.0 V \leq EV_{DE}$	$00 \leq 5.5 \text{ V}$	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq EV_{DI}$	$500 \leq 5.5 \text{ V}$	44		110		110		ns
		$2.4 V \le EV_{DE}$	$50 \leq 5.5 \text{ V}$	75		110		110		ns
		$1.8 \text{ V} \leq EV_{DC}$	$500 \leq 5.5 \text{ V}$	110		110		110		ns
		$1.7 \text{ V} \leq EV_{DC}$	$50 \leq 5.5 \text{ V}$	220		220		220		ns
		$1.6 \text{ V} \leq EV_{DC}$	$500 \leq 5.5 \text{ V}$			220		220		ns
Slp hold time	tksi1	$1.7 \text{ V} \leq EV_{DI}$	$50 \leq 5.5 \text{ V}$	19		19		19		ns
(from SCKp↑) Note 2		$1.6 V \le EV_{DE}$	$500 \leq 5.5 \text{ V}$			19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$\begin{array}{l} 1.7 \ V \leq EV_{\text{DE}} \\ C = 30 \ pF^{\text{Note}} \end{array}$	$_{4}$ \leq 5.5 V		25		25		25	ns
output Note 3		$1.6 \text{ V} \leq \text{EV}_{\text{DE}}$ C = 30 pF ^{Note}	00 ≤ 5.5 V		_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_4 = -40$ to $+85^{\circ}$ C, 1.6 V \leq EVppa = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVssa = EVssa = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Parameter	Symbo I	Conditions		HS (higł main)	n-speed Mode	LS (low-sp Mo	eed main) de	LV (low-vol Mo	ltage main) ode	Unit														
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.															
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	2.7 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+2 0		1/fмск+30		1/fмск+30		ns														
		1.8 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+3 0		1/fмск+30		1/fмск+30		ns														
		1.7 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+4 0		1/fмск+40		1/fмск+40		ns														
		1.6 V ≤ I	$EV_{DD0} \leq 5.5 V$			1/fмск+40		1/fмск+40		ns														
SIp hold time (from SCKp↑)	tksi2	1.8 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+3 1		1/fмск+31		1/fмск+31		ns														
Note 2		1.7 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+ 250		1/fмск+ 250		1/fмск+ 250		ns														
		1.6	1.6 V ≤ I	$EV_{DD0} \leq 5.5 V$	_		1/fмск+ 250		1/fмск+ 250		ns													
Delay time from SCKp↓ to	tkso2	τк502	C = 30 pF ^{Note 4}	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/f _{мск+} 44		2/f _{мск+} 110		2/f _{мск+} 110	ns													
SOp output ^{Note} 3																	$2.4 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск+ 75		2/fмск+ 110		2/fмск+ 110	ns
										$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 110		2/fмск+ 110		2/fмск+ 110	ns							
				$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск+ 220		2/fмск+ 220		2/fмск+ 220	ns													
			$1.6 V \le EV_{DD0} \le 5.5$ V		—		2/fмск+ 220		2/fмск+ 220	ns														

(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } \pm 85^{\circ}\text{C} = 1.6 \text{ V} \le \text{EV}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}$ Vec = EVeca = EVeca = 0.V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fмск: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - $\label{eq:scalar} \begin{array}{l} \textbf{3. When } AV_{\text{REFP}} < V_{\text{DD}} \text{, the MAX. values are as follows.} \\ \text{Overall error: } Add \pm 1.0 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Zero-scale error/Full-scale error: } Add \pm 0.05\%\text{FSR} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Integral linearity error/ Differential linearity error: } Add \pm 0.5 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \end{array}$
 - 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
 - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - Please contact Renesas Electronics sales office for derating of operation under T_A = +85°C to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see **CHAPTER 2 ELECTRICAL** SPECIFICATIONS ($T_A = -40$ to +85°C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Application				
	A: Consumer applications, D: Industrial applications	G: Industrial applications			
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C			
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:			
Operating voltage range	2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz	2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz			
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz			
	LS (low-speed main) mode:				
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz				
	LV (low-voltage main) mode:				
	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz				
High-speed on-chip oscillator clock	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	$2.4~V \le V_{\text{DD}} \le 5.5~V$			
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C			
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C			
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	±1.5%@ T _A = -40 to -20°C			
	±5.0%@ T _A = -20 to +85°C				
	±5.5%@ T _A = -40 to -20°C				
Serial array unit	UART	UART			
	CSI: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI: fclk/4			
	Simplified I ² C communication	Simplified I ² C communication			
IICA	Normal mode	Normal mode			
	Fast mode	Fast mode			
	Fast mode plus				
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V			
	(14 levels)	(8 levels)			
	Fall detection voltage: 1.63 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V			
	(14 levels)	(8 levels)			

(Remark is listed on the next page.)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.7			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.6			V
		P117, P120, P125 to P127, P130, P140 to P147	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Іон1 = -1.5 mA	EV _{DD0} - 0.5			V
	Vон2	P20 to P27, P150 to P156	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	Vdd - 0.5			V
Output voltage, low	Vol1 P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DL1}$			0.7	V	
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.6	V
		P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DL1}$			0.4	V
			$eq:local_$			0.4	V
	Vol2	P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	VoL3 P60 to P63	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.4	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 3.0 \text{ mA}$			0.4	V
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{Iol3} = 2.0 \text{ mA}$			0.4	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5)

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
	$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{KCY1} \geq 4/f_{CLK}$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		ns
			$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq EV_{\text{DD}}$	$4.0 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$			ns
	tĸ∟1	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 5.5 \ V \\ \\ 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V \end{array}$		tксү1/2 – 36		ns
				tксү1/2 – 76		ns
SIp setup time (to SCKp↑) Note 1	tsik1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V \\ \\ \hline 2.7 \ V \leq EV_{DD0} \leq 5.5 \ V \\ \\ \hline 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V \end{array}$		66		ns
				66		ns
				113		ns
SIp hold time (from SCKp \uparrow) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4			50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVDO	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	۷
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		t∟w		300			μS
Detection delay time						300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	MIN.	TYP.	MAX.	Unit	
Interrupt and reset	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.64	2.75	2.86	V
mode	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage		2.75	2.86	2.97	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

4.3 25-pin Products

R5F1008AALA, R5F1008CALA, R5F1008DALA, R5F1008EALA R5F1018AALA, R5F1018CALA, R5F1018DALA, R5F1018EALA R5F1008AGLA, R5F1008CGLA, R5F1008DGLA, R5F1008EGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01

©2012 Renesas Electronics Corporation. All rights reserved.

R5F100PFAFA, R5F100PGAFA, R5F100PHAFA, R5F100PJAFA, R5F100PKAFA, R5F100PLAFA R5F101PFAFA, R5F101PGAFA, R5F101PHAFA, R5F101PJAFA, R5F101PKAFA, R5F101PLAFA R5F100PFDFA, R5F100PGDFA, R5F100PHDFA, R5F100PJDFA, R5F100PKDFA, R5F100PLDFA R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA R5F100PFGFA, R5F100PGGFA, R5F100PHGFA, R5F100PJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

©2012 Renesas Electronics Corporation. All rights reserved.

0.10

0.575

0.825

y ZD

ZE

		Description			
Rev.	Date	Page	Summary		
3.00	Aug 02, 2013	163	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)		
		164, 165	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)		
		166	Modification of table in 3.5.2 Serial interface IICA		
		166	Modification of IICA serial transfer timing		
		167	Addition of table in 3.6.1 A/D converter characteristics		
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)		
		169	Modification of description in 3.6.1 (2)		
		170	Modification of description and note 3 in 3.6.1 (3)		
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)		
		172	Modification of table and note in 3.6.3 POR circuit characteristics		
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode		
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics		
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)		
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes		
3.10	Nov 15, 2013	123	Caution 4 added.		
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.		
3.30	Mar 31, 2016		Modification of the position of the index mark in 25-pin plastic WFLGA (3×3 mm, 0.50 mm pitch) of 1.3.3 25-pin products		
			Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24- pin, 25-pin, 30-pin, 32-pin, 36-pin products]		
			Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]		
			Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100- pin, 128-pin products]		
			ACK corrected to ACK		
			ACK corrected to ACK		

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.