


Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

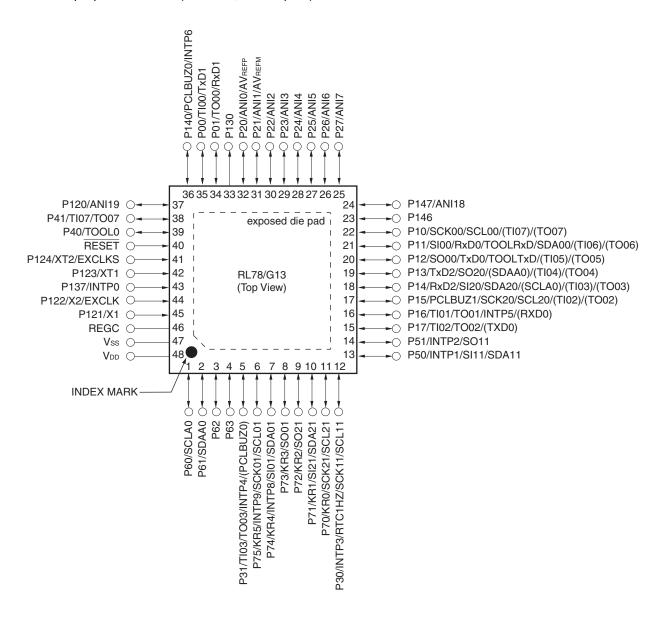
| D-1-11-                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Details                    |                                                                                 |
| Product Status             | Active                                                                          |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 34                                                                              |
| Program Memory Size        | 192KB (192K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 16K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 10x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 48-LQFP                                                                         |
| Supplier Device Package    | 48-LFQFP (7x7)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101ghdfb-30 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

(4/12)


| Pin<br>count | Package             | Data flash | Fields of<br>Application | Ordering Part Number                            |
|--------------|---------------------|------------|--------------------------|-------------------------------------------------|
| 44 pins      | 44-pin plastic LQFP | Mounted    | A                        | R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0, |
|              | (10 × 10 mm, 0.8 mm |            |                          | R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0, |
|              | pitch)              |            |                          | R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0, |
|              |                     |            |                          | R5F100FLAFP#V0                                  |
|              |                     |            |                          | R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0, |
|              |                     |            |                          | R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0, |
|              |                     |            |                          | R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0, |
|              |                     |            |                          | R5F100FLAFP#X0                                  |
|              |                     |            | D                        | R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0, |
|              |                     |            |                          | R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0, |
|              |                     |            |                          | R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0, |
|              |                     |            |                          | R5F100FLDFP#V0                                  |
|              |                     |            |                          | R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0, |
|              |                     |            |                          | R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0, |
|              |                     |            |                          | R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0, |
|              |                     |            |                          | R5F100FLDFP#X0                                  |
|              |                     |            | G                        | R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0, |
|              |                     |            |                          | R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0, |
|              |                     |            |                          | R5F100FHGFP#V0, R5F100FJGFP#V0                  |
|              |                     |            |                          | R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0, |
|              |                     |            |                          | R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0, |
|              |                     |            |                          | R5F100FHGFP#X0, R5F100FJGFP#X0                  |
|              |                     | Not        | Α                        | R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0, |
|              |                     | mounted    |                          | R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0, |
|              |                     |            |                          | R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0, |
|              |                     |            |                          | R5F101FLAFP#V0                                  |
|              |                     |            |                          | R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0, |
|              |                     |            |                          | R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0, |
|              |                     |            |                          | R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0, |
|              |                     |            |                          | R5F101FLAFP#X0                                  |
|              |                     |            | D                        | R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0, |
|              |                     |            |                          | R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0, |
|              |                     |            |                          | R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0, |
|              |                     |            |                          | R5F101FLDFP#V0                                  |
|              |                     |            |                          | R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0, |
|              |                     |            |                          | R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0, |
|              |                     |            |                          | R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0, |
|              |                     |            |                          | R5F101FLDFP#X0                                  |

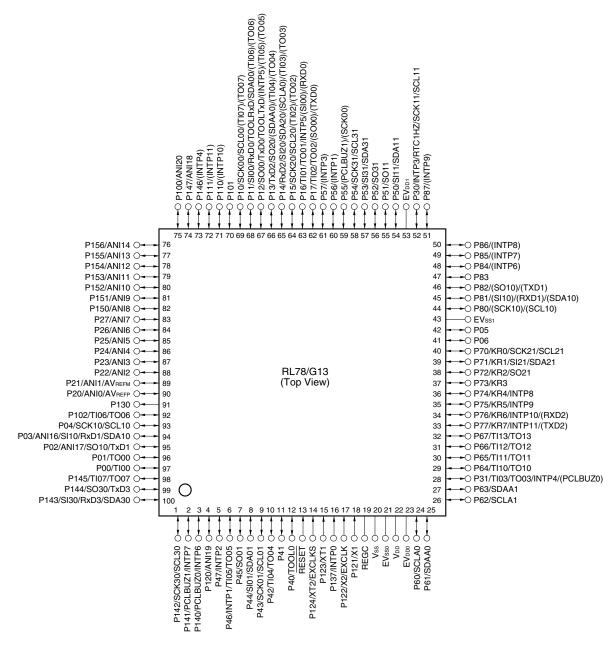
Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



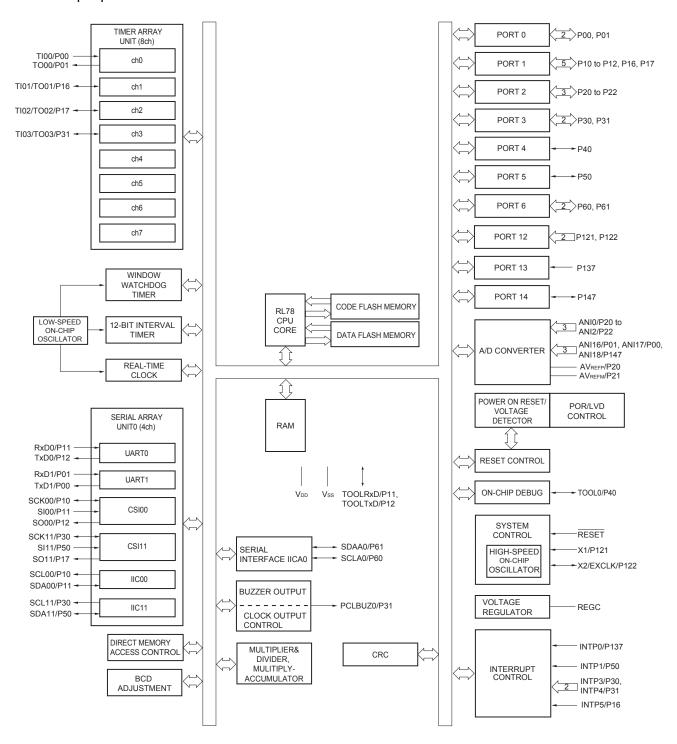
• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)




Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to  $V_{\rm ss.}$


### 1.3.13 100-pin products

• 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)



- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
  - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
  - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
  - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V<sub>DD</sub>, EV<sub>DDO</sub> and EV<sub>DD1</sub> pins and connect the Vss, EV<sub>SS0</sub> and EV<sub>SS1</sub> pins to separate ground lines.
  - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

## 1.5.2 24-pin products



 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$  (2/5)

| Items                                 | Symbol           | Conditions                                                                                                                                                                                 |                                                            | MIN. | TYP. | MAX.        | Unit |
|---------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|------|-------------|------|
| Output current, low <sup>Note 1</sup> | lo <sub>L1</sub> | Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 |                                                            |      |      | 20.0 Note 2 | mA   |
|                                       |                  | Per pin for P60 to P63                                                                                                                                                                     |                                                            |      |      | 15.0 Note 2 | mA   |
|                                       |                  | Total of P00 to P04, P07, P32 to                                                                                                                                                           | $4.0~V \leq EV_{DD0} \leq 5.5~V$                           |      |      | 70.0        | mA   |
|                                       |                  | P40 to P47, P102 to P106, P120,                                                                                                                                                            | $2.7~V \leq EV_{DD0} < 4.0~V$                              |      |      | 15.0        | mA   |
|                                       |                  |                                                                                                                                                                                            | $1.8~V \leq EV_{DD0} < 2.7~V$                              |      |      | 9.0         | mA   |
|                                       |                  | (When duty ≤ 70% Note 3)                                                                                                                                                                   | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$ |      |      | 4.5         | mA   |
|                                       |                  | Total of P05, P06, P10 to P17, P30,                                                                                                                                                        | $4.0~V \leq EV_{DD0} \leq 5.5~V$                           |      |      | 80.0        | mA   |
|                                       |                  | P31, P50 to P57, P60 to P67,<br>P70 to P77, P80 to P87, P90 to P97.                                                                                                                        | $2.7~V \leq EV_{DD0} < 4.0~V$                              |      |      | 35.0        | mA   |
|                                       |                  | P100, P101, P110 to P117, P146,                                                                                                                                                            | $1.8~V \leq EV_{DD0} < 2.7~V$                              |      |      | 20.0        | mA   |
|                                       |                  | P147<br>(When duty ≤ 70% Note 3)                                                                                                                                                           | $1.6~V \le EV_{DD0} < 1.8~V$                               |      |      | 10.0        | mA   |
|                                       |                  | Total of all pins (When duty ≤ 70% Note 3)                                                                                                                                                 |                                                            |      |      | 150.0       | mA   |
|                                       | lo <sub>L2</sub> | Per pin for P20 to P27, P150 to P156                                                                                                                                                       |                                                            |      |      | 0.4 Note 2  | mA   |
|                                       |                  | Total of all pins (When duty ≤ 70% Note 3)                                                                                                                                                 | $1.6~V \leq V_{DD} \leq 5.5~V$                             |      |      | 5.0         | mA   |

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
  - 2. However, do not exceed the total current value.
  - **3.** Specification under conditions where the duty factor  $\leq 70\%$ .

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins =  $(lol \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and lol = 10.0 mA

Total output current of pins =  $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

## 2.3.2 Supply current characteristics

### (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

## (Ta = -40 to +85°C, 1.6 V $\leq$ EVDD0 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = 0 V) (1/2)

| Parameter      | Symbol           |           |                            | Conditions                                 |                         |                          | MIN.                 | TYP. | MAX. | Unit                    |           |                      |  |     |                         |           |                      |  |     |     |    |
|----------------|------------------|-----------|----------------------------|--------------------------------------------|-------------------------|--------------------------|----------------------|------|------|-------------------------|-----------|----------------------|--|-----|-------------------------|-----------|----------------------|--|-----|-----|----|
| Supply         | I <sub>DD1</sub> | Operating | HS (high-                  | fin = 32 MHz <sup>Note 3</sup>             | Basic                   | $V_{DD} = 5.0 \text{ V}$ |                      | 2.1  |      | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
| current Note 1 |                  | mode      | speed main)<br>mode Note 5 |                                            | operation               | $V_{DD} = 3.0 \text{ V}$ |                      | 2.1  |      | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | mode                       |                                            | Normal                  | $V_{DD} = 5.0 \text{ V}$ |                      | 4.6  | 7.0  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            |                                            | operation               | V <sub>DD</sub> = 3.0 V  |                      | 4.6  | 7.0  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | fin = 24 MHz Note 3                        | Normal                  | V <sub>DD</sub> = 5.0 V  |                      | 3.7  | 5.5  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            |                                            | operation               | V <sub>DD</sub> = 3.0 V  |                      | 3.7  | 5.5  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | fin = 16 MHz Note 3                        | Normal                  | V <sub>DD</sub> = 5.0 V  |                      | 2.7  | 4.0  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            |                                            | operation               | V <sub>DD</sub> = 3.0 V  |                      | 2.7  | 4.0  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | LS (low-                   | fin = 8 MHz Note 3                         | Normal                  | $V_{DD} = 3.0 \text{ V}$ |                      | 1.2  | 1.8  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | speed main)<br>mode Note 5 |                                            | operation               | V <sub>DD</sub> = 2.0 V  |                      | 1.2  | 1.8  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | LV (low-                   | fin = 4 MHz Note 3                         | Normal                  | $V_{DD} = 3.0 \text{ V}$ |                      | 1.2  | 1.7  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  | ma        | voltage<br>main) mode      |                                            | operation               | V <sub>DD</sub> = 2.0 V  |                      | 1.2  | 1.7  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | HS (high-                  | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal                  | Square wave input        |                      | 3.0  | 4.6  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | speed main)<br>mode Note 5 | V <sub>DD</sub> = 5.0 V                    | operation               | Resonator connection     |                      | 3.2  | 4.8  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal                  | Square wave input        |                      | 3.0  | 4.6  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            |                                            |                         |                          |                      |      |      | V <sub>DD</sub> = 3.0 V | operation | Resonator connection |  | 3.2 | 4.8                     | mA        |                      |  |     |     |    |
|                |                  |           |                            | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Normal                  | Square wave input        |                      | 1.9  | 2.7  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            |                                            | V <sub>DD</sub> = 5.0 V | operation                | Resonator connection |      | 1.9  | 2.7                     | mA        |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Normal                  | Square wave input        |                      | 1.9  | 2.7  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  | LS (low-  | V <sub>DD</sub> = 3.0 V    | operation                                  | Resonator connection    |                          | 1.9                  | 2.7  | mA   |                         |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | $f_{MX} = 8 MHz^{Note 2},$ | Normal                                     | Square wave input       |                          | 1.1                  | 1.7  | mA   |                         |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | speed main)<br>mode Note 5 | V <sub>DD</sub> = 3.0 V                    | operation               | Resonator connection     |                      | 1.1  | 1.7  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | $f_{MX} = 8 MHz^{Note 2},$                 | Normal                  | Square wave input        |                      | 1.1  | 1.7  | mA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            |                                            | \                       | \                        |                      |      |      |                         |           |                      |  | \   | V <sub>DD</sub> = 2.0 V | operation | Resonator connection |  | 1.1 | 1.7 | mA |
|                |                  |           | Subsystem                  | fsuв = 32.768 kHz                          | Normal                  | Square wave input        |                      | 4.1  | 4.9  | μА                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | clock<br>operation         | Note 4 $T_A = -40^{\circ}C$                | operation               | Resonator connection     |                      | 4.2  | 5.0  | μА                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | fsuB = 32.768 kHz                          | Normal                  | Square wave input        |                      | 4.1  | 4.9  | μA                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | Note 4  TA = +25°C                         | operation               | Resonator connection     |                      | 4.2  | 5.0  | μА                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | fsuB = 32.768 kHz                          | Normal                  | Square wave input        |                      | 4.2  | 5.5  | μΑ                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | P                          | Note 4 $T_A = +50^{\circ}C$                | operation               | Resonator connection     |                      | 4.3  | 5.6  | μА                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | fsuв = 32.768 kHz                          | Normal                  | Square wave input        |                      | 4.3  | 6.3  | μΑ                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           | Noi<br>T,                  | Note 4 $T_A = +70^{\circ}C$                |                         | operation                | Resonator connection |      | 4.4  | 6.4                     | μА        |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | fsuB = 32.768 kHz N                        |                         | Square wave input        |                      | 4.6  | 7.7  | μА                      |           |                      |  |     |                         |           |                      |  |     |     |    |
|                |                  |           |                            | Note 4 $T_A = +85^{\circ}C$                | operation               | Resonator connection     |                      | 4.7  | 7.8  | μА                      |           |                      |  |     |                         |           |                      |  |     |     |    |

(Notes and Remarks are listed on the next page.)



- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 3. When high-speed system clock and subsystem clock are stopped.
  - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
  - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V  $\leq$  VDD  $\leq$  5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$  to 16 MHz

LS (low-speed main) mode:  $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$  to 8 MHz LV (low-voltage main) mode:  $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$  to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

# (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (1/2)

(Ta = -40 to +85°C, 2.7 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, Vss = EVss0 = EVss1 = 0 V)

| Parameter                                  | Symbol |                                                                                                                                                                                                                                                               | Conditions                                                                                                                                                                                                                                      | HS (hig                      |      | LS (low<br>main)          | -speed | LV (low-<br>main)         | •    | Unit |
|--------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|---------------------------|--------|---------------------------|------|------|
|                                            |        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 | MIN.                         | MAX. | MIN.                      | MAX.   | MIN.                      | MAX. |      |
| SCKp cycle time                            | tkcy1  | tkcy1 ≥ 2/fclk                                                                                                                                                                                                                                                | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 20 \; pF, \; R_b = 1.4 \\ &k\Omega \end{aligned} $                                                                                      | 200                          |      | 1150                      |        | 1150                      |      | ns   |
|                                            |        |                                                                                                                                                                                                                                                               | $\begin{split} & 2.7 \; \text{V} \leq \text{EV}_{\text{DD0}} < 4.0 \; \text{V}, \\ & 2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}, \\ & C_{\text{b}} = 20 \; \text{pF}, \; R_{\text{b}} = 2.7 \\ & \text{k}\Omega \end{split}$ | 300                          |      | 1150                      |        | 1150                      |      | ns   |
| SCKp high-level width                      | tкнı   | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 6$ $C_{b} = 20 \text{ pF, F}$                                                                                                                                                       | 4.0 V,                                                                                                                                                                                                                                          | tксу1/2 —<br>50              |      | tксү1/2 —<br>50           |        | tксү1/2 —<br>50           |      | ns   |
|                                            |        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 | tксу1/2 —<br>120             |      | tксу1/2 —<br>120          |        | tксу1/2 —<br>120          |      | ns   |
| SCKp low-level width                       | tĸL1   | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega $                                                                                                                                           |                                                                                                                                                                                                                                                 | tксү1/2 —<br>7               |      | t <sub>KCY1</sub> /2 – 50 |        | t <sub>KCY1</sub> /2 – 50 |      | ns   |
|                                            |        | $2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq 2$ $C_{b} = 20 \text{ pF, F}$                                                                                                                                                       | 2.7 V,                                                                                                                                                                                                                                          | tксу <sub>1</sub> /2 –<br>10 |      | tксү1/2 —<br>50           |        | tксү1/2 —<br>50           |      | ns   |
| SIp setup time<br>(to SCKp↑) Note 1        | tsıĸı  | $\begin{aligned} &C_{b} = 20 \text{ pr}, \ H_{b} = 2.7 \text{ K}22 \\ &4.0 \text{ V} \leq \text{EV}_{DD0} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, \\ &C_{b} = 20 \text{ pF}, \ R_{b} = 1.4 \text{ k}\Omega \end{aligned}$ |                                                                                                                                                                                                                                                 | 58                           |      | 479                       |        | 479                       |      | ns   |
|                                            |        | $2.7 \text{ V} \leq \text{EV}_{DD}$<br>$2.3 \text{ V} \leq \text{V}_{b} \leq 2$<br>$C_{b} = 20 \text{ pF, F}$                                                                                                                                                 | 2.7 V,                                                                                                                                                                                                                                          | 121                          |      | 479                       |        | 479                       |      | ns   |
| SIp hold time<br>(from SCKp↑) Note 1       | tksi1  | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 4$ $C_{b} = 20 \text{ pF, F}$                                                                                                                                                       | 4.0 V,                                                                                                                                                                                                                                          | 10                           |      | 10                        |        | 10                        |      | ns   |
|                                            |        | $2.7 \text{ V} \leq \text{EV}_{DD}$<br>$2.3 \text{ V} \leq \text{V}_{b} \leq 2$<br>$C_{b} = 20 \text{ pF}, \text{ F}$                                                                                                                                         | 2.7 V,                                                                                                                                                                                                                                          | 10                           |      | 10                        |        | 10                        |      | ns   |
| Delay time from SCKp↓ to SOp output Note 1 | tkso1  | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ C}$ $C_{b} = 20 \text{ pF, F}$                                                                                                                                           | o ≤ 5.5 V,<br>4.0 V,                                                                                                                                                                                                                            |                              | 60   |                           | 60     |                           | 60   | ns   |
|                                            |        | $2.7 \text{ V} \le \text{EV}_{DD}$ $2.3 \text{ V} \le \text{V}_{b} \le 2$ $C_{b} = 20 \text{ pF, F}$                                                                                                                                                          | o < 4.0 V,<br>2.7 V,                                                                                                                                                                                                                            |                              | 130  |                           | 130    |                           | 130  | ns   |

(Notes, Caution, and Remarks are listed on the next page.)

- **Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).
  - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
  - **3.** When  $AV_{REFP} < V_{DD}$ , the MAX. values are as follows.
    - Overall error: Add  $\pm 1.0$  LSB to the MAX. value when AV<sub>REFP</sub> =  $V_{DD}$ .
    - Zero-scale error/Full-scale error: Add  $\pm 0.05\%FSR$  to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
    - Integral linearity error/ Differential linearity error: Add  $\pm 0.5$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
  - **4.** Values when the conversion time is set to 57  $\mu$ s (min.) and 95  $\mu$ s (max.).
  - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.



(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

(TA = -40 to +85°C, 1.6 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, 1.6 V  $\leq$  AVREFP  $\leq$  VDD  $\leq$  5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

| Parameter                                | Symbol | Condit                                                  | ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MIN.   | TYP. | MAX.                | Unit |
|------------------------------------------|--------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---------------------|------|
| Resolution                               | RES    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      |      | 10                  | bit  |
| Overall error <sup>Note 1</sup>          | AINL   | 10-bit resolution                                       | $1.8~V \leq AV_{REFP} \leq 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 1.2  | ±5.0                | LSB  |
|                                          |        | EVDD0 = AV <sub>REFP</sub> = V <sub>DD</sub> Notes 3, 4 | $\begin{array}{ c c c }\hline 1.6 \ V \leq AV_{REFP} \leq 5.5 \ V^{Note} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ |        | 1.2  | ±8.5                | LSB  |
| Conversion time                          | tconv  | 10-bit resolution                                       | $3.6~V \leq V_{DD} \leq 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.125  |      | 39                  | μS   |
|                                          |        | Target ANI pin : ANI16 to                               | $2.7~V \leq V_{DD} \leq 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.1875 |      | 39                  | μS   |
|                                          |        | ANI26                                                   | $1.8~V \leq V_{DD} \leq 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17     |      | 39                  | μS   |
|                                          |        |                                                         | $1.6~V \leq V_{DD} \leq 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57     |      | 95                  | μS   |
| Zero-scale error <sup>Notes 1, 2</sup>   | Ezs    | 10-bit resolution                                       | $1.8~V \leq AV_{REFP} \leq 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |      | ±0.35               | %FSR |
|                                          |        | EVDD0 = AVREFP = VDD Notes 3, 4                         | $1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |      | ±0.60               | %FSR |
| Full-scale error <sup>Notes 1, 2</sup>   | Ers    | 10-bit resolution                                       | $1.8~V \le AV_{REFP} \le 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      | ±0.35               | %FSR |
|                                          |        | EVDD0 = AVREFP = VDD Notes 3, 4                         | $1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |      | ±0.60               | %FSR |
| Integral linearity error <sup>Note</sup> | ILE    | 10-bit resolution                                       | $1.8~V \le AV_{REFP} \le 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      | ±3.5                | LSB  |
| 1                                        |        | EVDD0 = AVREFP = VDD Notes 3, 4                         | $1.6~V \le AV_{REFP} \le 5.5~V^{Note}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |      | ±6.0                | LSB  |
| Differential linearity                   | DLE    | 10-bit resolution                                       | 1.8 V ≤ AV <sub>REFP</sub> ≤ 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |      | ±2.0                | LSB  |
| error <sup>Note 1</sup>                  |        | EVDD0 = AVREFP = VDD Notes 3, 4                         | $1.6~V \le AV_{REFP} \le 5.5~V^{Note}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |      | ±2.5                | LSB  |
| Analog input voltage                     | VAIN   | ANI16 to ANI26                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      |      | AVREFP<br>and EVDD0 | ٧    |

- **Notes 1.** Excludes quantization error (±1/2 LSB).
  - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
  - **3.** When  $AV_{REFP} < V_{DD}$ , the MAX. values are as follows.

Overall error: Add  $\pm 1.0$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Zero-scale error/Full-scale error: Add  $\pm 0.05\%$  FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- **4.** When  $AV_{REFP} < EV_{DD0} \le V_{DD}$ , the MAX. values are as follows.
  - Overall error: Add  $\pm 4.0$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Zero-scale error/Full-scale error: Add  $\pm 0.20\%$  FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

5. When the conversion time is set to 57  $\mu s$  (min.) and 95  $\mu s$  (max.).

### 3.3.2 Supply current characteristics

# (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V $\leq$ EVDD0 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = 0 V) (1/2)

| Parameter      | Symbol           |                |                          | Conditions                                 |                          |                          | MIN.                 | TYP.                     | MAX.          | Unit                 |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|----------------|------------------|----------------|--------------------------|--------------------------------------------|--------------------------|--------------------------|----------------------|--------------------------|---------------|----------------------|-----|-----|-----|----|--|--|--|--|------------------------|---------------|----------------------|--|-----|-----|----|
| Supply current | I <sub>DD1</sub> | Operating mode | HS (high-<br>speed main) | fih = 32 MHz <sup>Note 3</sup>             | Basic operatio           | V <sub>DD</sub> = 5.0 V  |                      | 2.1                      |               | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
| Note 1         |                  | mode           | mode Note 5              |                                            | n                        | V <sub>DD</sub> = 3.0 V  |                      | 2.1                      |               | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          |                                            | Normal                   | V <sub>DD</sub> = 5.0 V  |                      | 4.6                      | 7.5           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          |                                            | operatio<br>n            | V <sub>DD</sub> = 3.0 V  |                      | 4.6                      | 7.5           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | fin = 24 MHz Note 3                        | Normal                   | V <sub>DD</sub> = 5.0 V  |                      | 3.7                      | 5.8           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          |                                            | operatio<br>n            | V <sub>DD</sub> = 3.0 V  |                      | 3.7                      | 5.8           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | fih = 16 MHz <sup>Note 3</sup>             | Normal                   | V <sub>DD</sub> = 5.0 V  |                      | 2.7                      | 4.2           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          |                                            | operatio<br>n            | V <sub>DD</sub> = 3.0 V  |                      | 2.7                      | 4.2           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                | HS (high-                | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal                   | Square wave input        |                      | 3.0                      | 4.9           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | speed main)<br>mode Note 5                 | $V_{DD} = 5.0 \text{ V}$ | operatio<br>n            | Resonator connection |                          | 3.2           | 5.0                  | mA  |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal                   | Square wave input        |                      | 3.0                      | 4.9           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          |                                            |                          |                          |                      | $V_{DD} = 3.0 \text{ V}$ | operatio<br>n | Resonator connection |     | 3.2 | 5.0 | mA |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | $f_{MX} = 10 \text{ MHz}^{Note 2},$        | Normal                   | Square wave input        |                      | 1.9                      | 2.9           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          |                                            |                          | $V_{DD} = 5.0 \text{ V}$ | operatio<br>n        | Resonator connection     |               | 1.9                  | 2.9 | mA  |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Normal                   | Square wave input        |                      | 1.9                      | 2.9           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | $V_{DD} = 3.0 \text{ V}$                   | operatio<br>n            | Resonator connection     |                      | 1.9                      | 2.9           | mA                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                | Subsystem                | fsuв = 32.768 kHz                          | Normal                   | Square wave input        |                      | 4.1                      | 4.9           | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                | clock<br>operation       | Note 4 $T_A = -40^{\circ}C$                | operatio<br>n            | Resonator connection     |                      | 4.2                      | 5.0           | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | fsub = 32.768 kHz                          | Normal                   | Square wave input        |                      | 4.1                      | 4.9           | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          |                                            |                          |                          | ı                    |                          |               |                      |     |     |     |    |  |  |  |  | T <sub>A</sub> = +25°C | operatio<br>n | Resonator connection |  | 4.2 | 5.0 | μΑ |
|                |                  |                |                          | fsuв = 32.768 kHz                          | Normal                   | Square wave input        |                      | 4.2                      | 5.5           | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | Note 4 $T_A = +50^{\circ}C$                | operatio<br>n            | Resonator connection     |                      | 4.3                      | 5.6           | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | fsuв = 32.768 kHz                          | Normal                   | Square wave input        |                      | 4.3                      | 6.3           | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | Note 4 $T_A = +70^{\circ}C$                | operatio<br>n            | Resonator connection     |                      | 4.4                      | 6.4           | μА                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | fsuB = 32.768 kHz                          | Normal                   | Square wave input        |                      | 4.6                      | 7.7           | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | Note 4 $T_A = +85^{\circ}C$                | operation                | Resonator connection     |                      | 4.7                      | 7.8           | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | fsus = 32.768 kHz                          | Normal                   | Square wave input        |                      | 6.9                      | 19.7          | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |
|                |                  |                |                          | Note 4 $T_{A} = +105^{\circ}C$             | operation                | Resonator connection     |                      | 7.0                      | 19.8          | μΑ                   |     |     |     |    |  |  |  |  |                        |               |                      |  |     |     |    |

(Notes and Remarks are listed on the next page.)

### 3.4 AC Characteristics

### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

| Items                                                              | Symbol          |                                         | Conditions                                          | 3                                                      | MIN.      | TYP. | MAX. | Unit               |
|--------------------------------------------------------------------|-----------------|-----------------------------------------|-----------------------------------------------------|--------------------------------------------------------|-----------|------|------|--------------------|
| Instruction cycle (minimum                                         | Tcy             | Main                                    | HS (high-speed                                      | $1 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$  | 0.03125   |      | 1    | μS                 |
| instruction execution time)                                        |                 | system<br>clock (fmain)<br>operation    | main) mode                                          | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$      | 0.0625    |      | 1    | μS                 |
|                                                                    |                 | Subsystem of operation                  | clock (fsua)                                        | $2.4~V \le V_{DD} \le 5.5~V$                           | 28.5      | 30.5 | 31.3 | μS                 |
|                                                                    |                 | In the self                             | HS (high-speed                                      | $1  2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ | 0.03125   |      | 1    | μS                 |
|                                                                    |                 | programming mode                        | main) mode                                          | $2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$      | 0.0625    |      | 1    | μS                 |
| External system clock frequency                                    | fex             | $2.7 \text{ V} \leq \text{V}_{DD} \leq$ | ≤ 5.5 V                                             |                                                        | 1.0       |      | 20.0 | MHz                |
|                                                                    |                 | 2.4 V ≤ V <sub>DD</sub> <               | < 2.7 V                                             |                                                        | 1.0       |      | 16.0 | MHz                |
|                                                                    | fexs            |                                         |                                                     |                                                        | 32        |      | 35   | kHz                |
| External system clock input high-                                  | texh, texl      | 2.7 V ≤ V <sub>DD</sub> ≤               | $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ |                                                        |           |      |      | ns                 |
| level width, low-level width                                       |                 | 2.4 V ≤ V <sub>DD</sub> <               | < 2.7 V                                             |                                                        | 30        |      |      | ns                 |
|                                                                    | texhs,<br>texhs |                                         |                                                     |                                                        | 13.7      |      |      | μS                 |
| TI00 to TI07, TI10 to TI17 input high-level width, low-level width | tтін,<br>tтіL   |                                         |                                                     |                                                        | 1/fмск+10 |      |      | ns <sup>Note</sup> |
| TO00 to TO07, TO10 to TO17                                         | <b>f</b> то     | HS (high-spe                            | eed 4.0 V                                           | ≤ EV <sub>DD0</sub> ≤ 5.5 V                            |           |      | 16   | MHz                |
| output frequency                                                   |                 | main) mode                              | 2.7 V                                               | ≤ EV <sub>DD0</sub> < 4.0 V                            |           |      | 8    | MHz                |
|                                                                    |                 |                                         | 2.4 V                                               | ≤ EV <sub>DD0</sub> < 2.7 V                            |           |      | 4    | MHz                |
| PCLBUZ0, PCLBUZ1 output                                            | fpcL            | HS (high-spe                            | eed 4.0 V                                           | ≤ EV <sub>DD0</sub> ≤ 5.5 V                            |           |      | 16   | MHz                |
| frequency                                                          |                 | main) mode                              | 2.7 V                                               | ≤ EV <sub>DD0</sub> < 4.0 V                            |           |      | 8    | MHz                |
|                                                                    |                 |                                         | 2.4 V                                               | ≤ EV <sub>DD0</sub> < 2.7 V                            |           |      | 4    | MHz                |
| Interrupt input high-level width,                                  | tinth,          | INTP0                                   | 2.4 V                                               | $\leq V_{DD} \leq 5.5 \text{ V}$                       | 1         |      |      | μS                 |
| low-level width                                                    | tintl           | INTP1 to INT                            | TP11 2.4 V                                          | $\leq EV_{DD0} \leq 5.5 V$                             | 1         |      |      | μS                 |
| Key interrupt input low-level width                                | <b>t</b> kr     | KR0 to KR7                              | 2.4 V                                               | $\leq EV_{DD0} \leq 5.5 \text{ V}$                     | 250       |      |      | ns                 |
| RESET low-level width                                              | trsL            |                                         | •                                                   |                                                        | 10        |      |      | μS                 |

**Note** The following conditions are required for low voltage interface when  $E_{VDD0} < V_{DD}$  $2.4V \le EV_{DD0} < 2.7 \text{ V}$ : MIN. 125 ns

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

### (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter     | Symbol |              | Condit                                               | ions                                                                                                            | HS (high-spee | ed main) Mode  | Unit |
|---------------|--------|--------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|----------------|------|
|               |        |              |                                                      |                                                                                                                 | MIN.          | MAX.           |      |
| Transfer rate |        | Transmission | $4.0~V~\leq~EV_{DD0}~\leq~5.5$                       |                                                                                                                 |               | Note 1         | bps  |
|               |        |              | $V,$ $2.7~V \leq V_b \leq 4.0~V$                     | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \ V_b = 2.7 \ V$          |               | 2.6 Note 2     | Mbps |
|               |        |              | $2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD0} < 4.0$ |                                                                                                                 |               | Note 3         | bps  |
|               |        |              | $V,$ $2.3~V \leq V_b \leq 2.7~V$                     | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$          |               | 1.2 Note 4     | Mbps |
|               |        |              | 2.4 V ≤ EV <sub>DD0</sub> < 3.3                      |                                                                                                                 |               | Note 5         | bps  |
|               |        |              | $V,$ $1.6~V \leq V_b \leq 2.0~V$                     | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF},  R_b = 5.5 \text{ k}\Omega,  V_b = 1.6  V$ |               | 0.43<br>Note 6 | Mbps |

**Notes 1.** The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  EV<sub>DD0</sub>  $\leq$  5.5 V and 2.7 V  $\leq$  V<sub>b</sub>  $\leq$  4.0 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V  $\leq$  EV<sub>DDO</sub> < 4.0 V and 2.4 V  $\leq$  V<sub>b</sub>  $\leq$  2.7 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.



## (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter                | Symbol | Conditions                                                                                                             | HS (high-spe | ed main) Mode | Unit |
|--------------------------|--------|------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------|
|                          |        |                                                                                                                        | MIN.         | MAX.          |      |
| SIp setup time           | tsıĸı  | $4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$                                                 | 162          |               | ns   |
| (to SCKp↑) Note          |        | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                                                                       |              |               |      |
|                          |        | $2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$                                                    | 354          |               | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                                                                       |              |               |      |
|                          |        | $2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$                                                       | 958          |               | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$                                                                       |              |               |      |
| SIp hold time            | tksi1  | $4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$                                                 | 38           |               | ns   |
| (from SCKp↑) Note        |        | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                                                                       |              |               |      |
|                          |        | $2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$                                                    | 38           |               | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                                                                       |              |               |      |
|                          |        | $2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$                                                       | 38           |               | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                                                                       |              |               |      |
| Delay time from SCKp↓ to | tkso1  | $\label{eq:4.0} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$                  |              | 200           | ns   |
| SOp output Note          |        | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                                                                       |              |               |      |
|                          |        | $2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$                                                    |              | 390           | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                                                                       |              |               |      |
|                          |        | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ |              | 966           | ns   |
|                          |        | $C_b=30~pF,~R_b=5.5~k\Omega$                                                                                           |              |               |      |

**Note** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V<sub>DD</sub> tolerance (for the 20- to 52-pin products)/EV<sub>DD</sub> tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

## (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter                | Symbol | Conditions                                                                                                             | HS (high-spe | eed main) Mode | Unit |
|--------------------------|--------|------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------|
|                          |        |                                                                                                                        | MIN.         | MAX.           |      |
| SIp setup time           | tsıĸı  | $4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$                                                  | 88           |                | ns   |
| (to SCKp↓) Note          |        | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                                                                       |              |                |      |
|                          |        | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ | 88           |                | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                                                                       |              |                |      |
|                          |        | $2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$                                                       | 220          |                | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$                                                                       |              |                |      |
| SIp hold time            | tksi1  | $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$                                           | 38           |                | ns   |
| (from SCKp↓) Note        |        | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                                                                       |              |                |      |
|                          |        | $2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$                               | 38           |                | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                                                                       |              |                |      |
|                          |        | $2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$                                                              | 38           |                | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$                                                                       |              |                |      |
| Delay time from SCKp↑ to | tkso1  | $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$                                           |              | 50             | ns   |
| SOp output Note          |        | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$                                                                       |              |                |      |
|                          |        | $2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$                               |              | 50             | ns   |
|                          |        | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$                                                                       |              |                |      |
|                          |        | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ |              | 50             | ns   |
|                          |        | $C_b=30~pF,~R_b=5.5~k\Omega$                                                                                           |              |                |      |

**Note** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

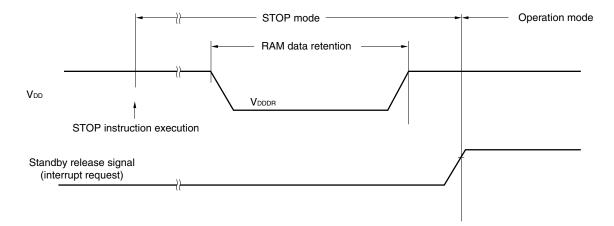
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V<sub>DD</sub> tolerance (for the 20- to 52-pin products)/EV<sub>DD</sub> tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

## 3.6.5 Power supply voltage rising slope characteristics

### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

| Parameter                         | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|--------|------------|------|------|------|------|
| Power supply voltage rising slope | SVDD   |            |      |      | 54   | V/ms |


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until  $V_{DD}$  reaches the operating voltage range shown in 3.4 AC Characteristics.

### 3.7 RAM Data Retention Characteristics

### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

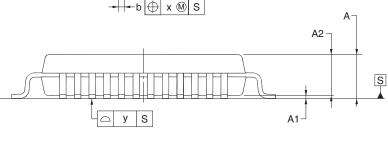
| Parameter                     | Symbol            | Conditions | MIN.                 | TYP. | MAX. | Unit |
|-------------------------------|-------------------|------------|----------------------|------|------|------|
| Data retention supply voltage | V <sub>DDDR</sub> |            | 1.44 <sup>Note</sup> |      | 5.5  | ٧    |

**Note** This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.



### 4.9 48-pin Products

R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB


R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB

R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB

R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB

R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GHGFB, R5F10

| JEITA Package Code                     | RENESAS Code | Previous Code  | MASS (TYP.)  | [g]                    |
|----------------------------------------|--------------|----------------|--------------|------------------------|
| P-LFQFP48-7x7-0.50                     | PLQP0048KF-A | P48GA-50-8EU-1 | 0.16         |                        |
| HD———————————————————————————————————— | 25 24        | E HE           | detail of le | CL                     |
| 48                                     | 13           |                |              | (UNIT:mn               |
| . 1                                    | 12.          | ↓              | <u>ITEM</u>  | DIMENSIONS             |
|                                        |              | <u> </u>       | E            | 7.00±0.20<br>7.00±0.20 |
|                                        |              | <u> </u>       | <br>HD       | 9.00±0.20              |
|                                        | '            | <u> </u>       | HE           | 9.00±0.20<br>9.00±0.20 |
| -ZD                                    | → e          |                | A            | 1.60 MAX.              |
|                                        |              |                | A1           | 0.10±0.05              |
| <del>-   -</del> b  ⊕  >               | x (M) S      | Δ.             | A1 A2        | 1.40±0.05              |
|                                        | <del></del>  | A              | A2           | 0.25                   |
|                                        |              | A2 ¬           | b            | 0.25<br>0.22±0.05      |
|                                        |              |                |              | J.LL_0.00              |



Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

0.145 <sup>+0.055</sup> -0.045 0.50

0.60±0.15

1.00±0.20 3°+5° 0.50 0.08 0.08

0.75

0.75

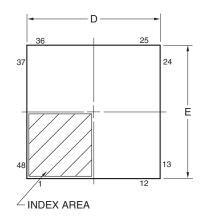
Lp

ZD

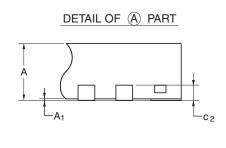
ZE

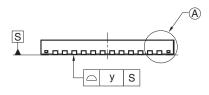


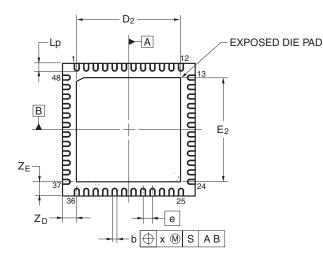
R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA, R5F100GKANA


R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA

R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA


R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA


R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA


| JEITA Package code | RENESAS code | Previous code             | MASS(TYP.)[g] |
|--------------------|--------------|---------------------------|---------------|
| P-HWQFN48-7x7-0.50 | PWQN0048KB-A | 48PJN-A<br>P48K8-50-5B4-6 | 0.13          |



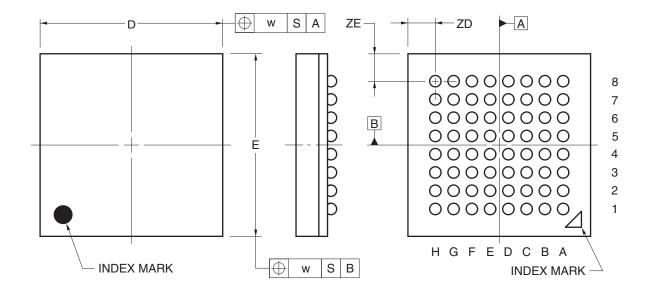


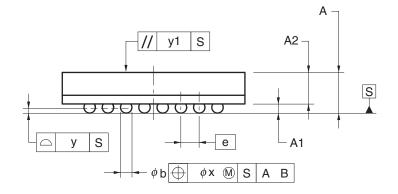






| Referance      | Dimension in Millimeters |      |      |  |
|----------------|--------------------------|------|------|--|
| Symbol         | Min                      | Nom  | Max  |  |
| D              | 6.95                     | 7.00 | 7.05 |  |
| Е              | 6.95                     | 7.00 | 7.05 |  |
| Α              |                          |      | 0.80 |  |
| A <sub>1</sub> | 0.00                     |      |      |  |
| b              | 0.18                     | 0.25 | 0.30 |  |
| е              |                          | 0.50 |      |  |
| Lp             | 0.30                     | 0.40 | 0.50 |  |
| Х              |                          |      | 0.05 |  |
| у              |                          |      | 0.05 |  |
| Z <sub>D</sub> |                          | 0.75 |      |  |
| Z <sub>E</sub> |                          | 0.75 |      |  |
| C <sub>2</sub> | 0.15                     | 0.20 | 0.25 |  |
| D <sub>2</sub> |                          | 5.50 |      |  |
| E <sub>2</sub> |                          | 5.50 | _    |  |


©2013 Renesas Electronics Corporation. All rights reserved.


R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

| JEITA Package Code | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|--------------------|--------------|----------------|-----------------|
| P-VFBGA64-4x4-0.40 | PVBG0064LA-A | P64F1-40-AA2-2 | 0.03            |





|      | (UNIT:mm)  |
|------|------------|
| ITEM | DIMENSIONS |
| D    | 4.00±0.10  |
| Е    | 4.00±0.10  |
| W    | 0.15       |
| Α    | 0.89±0.10  |
| A1   | 0.20±0.05  |
| A2   | 0.69       |
| е    | 0.40       |
| b    | 0.25±0.05  |
| х    | 0.05       |
| у    | 0.08       |
| у1   | 0.20       |
| ZD   | 0.60       |
| ZE   | 0.60       |

© 2012 Renesas Electronics Corporation. All rights reserved.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- nt may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



#### SALES OFFICES

## Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc.

4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141