Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 34 | | Program Memory Size | 256KB (256K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 20K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 10x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-WFQFN Exposed Pad | | Supplier Device Package | 48-HWQFN (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101gjdna-u0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Table 1-1. List of Ordering Part Numbers (9/12) | Pin count | Package | Data flash | Fields of
Application | Ordering Part Number | |-----------|---|----------------|--------------------------|--| | 64 pins | 64-pin plastic
LFQFP (10 × 10
mm, 0.5 mm pitch) | Mounted | A | R5F100LCAFB#V0, R5F100LDAFB#V0, R5F100LEAFB#V0, R5F100LFAFB#V0, R5F100LGAFB#V0, R5F100LHAFB#V0, R5F100LJAFB#V0, R5F100LKAFB#V0, R5F100LCAFB#X0, R5F100LCAFB#X0, R5F100LFAFB#X0, R5F100LFAFB#X0, R5F100LFAFB#X0, R5F100LJAFB#X0, R5F100LJAFB#X0 | | | | | D | R5F100LCDFB#V0, R5F100LDDFB#V0, R5F100LEDFB#V0, R5F100LFDFB#V0, R5F100LFDFB#V0, R5F100LHDFB#V0, R5F100LJDFB#V0, R5F100LKDFB#V0, R5F100LCDFB#X0, R5F100LDDFB#X0, R5F100LEDFB#X0, R5F100LFDFB#X0, R5F100LFDFB#X0, R5F100LFDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0, R5F100LKDFB#X0, R5F100LJDFB#X0 | | | | | G | R5F100LCGFB#V0, R5F100LDGFB#V0, R5F100LEGFB#V0, R5F100LFGFB#V0 R5F100LCGFB#X0, R5F100LDGFB#X0, R5F100LEGFB#X0, R5F100LFGFB#X0 R5F100LGGFB#V0, R5F100LHGFB#V0, R5F100LJGFB#V0 | | | | | Α | R5F100LGGFB#X0, R5F100LHGFB#X0, R5F100LJGFB#X0 | | | | Not
mounted | A | R5F101LCAFB#V0, R5F101LDAFB#V0, R5F101LEAFB#V0, R5F101LFAFB#V0, R5F101LFAFB#V0, R5F101LHAFB#V0, R5F101LJAFB#V0, R5F101LJAFB#V0, R5F101LCAFB#X0, R5F101LCAFB#X0, R5F101LFAFB#X0, R5F101LFAFB#X0, R5F101LFAFB#X0, R5F101LJAFB#X0, R5F101LJAFB#X0 | | | | | D | R5F101LCDFB#V0, R5F101LDDFB#V0, R5F101LEDFB#V0, R5F101LFDFB#V0, R5F101LFDFB#V0, R5F101LHDFB#V0, R5F101LJDFB#V0, R5F101LLDFB#V0 R5F101LCDFB#X0, R5F101LCDFB#X0, R5F101LFDFB#X0, R5F101LFDFB#X0, R5F101LFDFB#X0, R5F101LFDFB#X0, R5F101LJDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDFB#X0, R5T1DDFB#X0, R5T1DDFB#X0, R5T1DDFB#X0, R5T1DDFB#X0, R5T1DDFB#X0, R5T1DDFB#X0, R5T1DDFB | | | 64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch) | Mounted | A | R5F100LCABG#U0, R5F100LDABG#U0, R5F100LEABG#U0, R5F100LFABG#U0, R5F100LGABG#U0, R5F100LHABG#U0, R5F100LJABG#U0 R5F100LCABG#W0, R5F100LDABG#W0, R5F100LEABG#W0, R5F100LFABG#W0, R5F100LGABG#W0, R5F100LHABG#W0, | | | | | G | R5F100LJABG#W0 R5F100LCGBG#U0, R5F100LDGBG#U0, R5F100LEGBG#U0, R5F100LFGBG#U0, R5F100LGGBG#U0, R5F100LHGBG#U0, R5F100LJGBG#U0 R5F100LCGBG#W0, R5F100LDGBG#W0, R5F100LEGBG#W0, | | | | | | R5F100LFGBG#W0, R5F100LGGBG#W0, R5F100LHGBG#W0, R5F100LJGBG#W0 | | | | Not
mounted | A | R5F101LCABG#W0 R5F101LCABG#U0, R5F101LDABG#U0, R5F101LEABG#U0, R5F101LFABG#U0, R5F101LGABG#U0, R5F101LHABG#U0, R5F101LJABG#U0 R5F101LCABG#W0, R5F101LDABG#W0, R5F101LEABG#W0, R5F101LFABG#W0, R5F101LGABG#W0, R5F101LHABG#W0. | Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. ### 1.3.9 48-pin products • 48-pin plastic LFQFP (7 x 7 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. • 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$ ### 1.5.4 30-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. #### 2.3 DC Characteristics #### 2.3.1 Pin characteristics $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$ | Items | Symbol | Conditions | | MIN. | TYP. | MAX. | Unit | |---|--------|---|---------------------------------------|------|------|------------------|------| | Output current,
high ^{Note 1} | Іонт | Per pin for P00 to P07, P10 to P17,
P30 to P37, P40 to P47, P50 to P57, P64
to P67, P70 to P77, P80 to P87, P90 to
P97, P100 to P106,
P110 to P117, P120, P125 to P127,
P130, P140 to P147 | $1.6~V \leq EV_{DD0} \leq 5.5~V$ | | | -10.0
Note 2 | mA | | | | Total of P00 to P04, P07, P32 to P37, | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | | | -55.0 | mA | | | | P125 to P127, P130, P140 to P145 | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -10.0 | mA | | | | (When duty $\leq 70\%^{\text{Note 3}}$) | $1.8~V \leq EV_{DD0} < 2.7~V$ | | | -5.0 | mA | | | | | $1.6~V \le EV_{DD0} < 1.8~V$ | | | -2.5 | mA | | | | Total of P05, P06, P10 to P17, P30, P31, | | | | -80.0 | mA | | | | P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to | $2.7~V \leq EV_{DD0} < 4.0~V$ | | | -19.0 | mA | | | | P117, P146, P147 | $1.8~V \leq EV_{DD0} < 2.7~V$ | | | -10.0 | mA | | | | (When duty ≤ 70% Note 3) | $1.6~V \leq EV_{DD0} < 1.8~V$ | | | -5.0 | mA | | | | Total of all pins (When duty $\leq 70\%$ Note 3) | $1.6~V \leq EV_{DD0} \leq 5.5~V$ | | | -135.0
Note 4 | mA | | | 10н2 | Per pin for P20 to P27, P150 to P156 | $1.6~V \leq V_{DD} \leq 5.5~V$ | | | -0.1 Note 2 | mA | | | | Total of all pins (When duty $\leq 70\%$ Note 3) | $1.6~V \leq V_{\text{DD}} \leq 5.5~V$ | | | -1.5 | mA | - **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin. - 2. However, do not exceed the total current value. - 3. Specification under conditions where the duty factor $\leq 70\%$. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%). • Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and loh = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. **4.** The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA. Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (5/5) | Items | Symbol | Conditio | ns | | MIN. | TYP. | MAX. | Unit | |--------------------------------|--------|--|------------------|---------------------------------------|------|------|------|------| | Input leakage
current, high | Іинт | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | VI = EVDDO | · | | | 1 | μΑ | | | ILIH2 | P20 to P27, P1 <u>37,</u>
P150 to P156, RESET | $V_{I} = V_{DD}$ | $V_{I} = V_{DD}$ | | | 1 | μΑ | | | Ішнз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | VI = VDD | In input port or external clock input | | | 1 | μΑ | | | | | | In resonator connection | | | 10 | μΑ | | Input leakage
current, low | lut1 | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vı = EVsso | | | | -1 | μΑ | | | ILIL2 | P20 to P27, P137,
P150 to P156, RESET | Vı = Vss | | | | -1 | μΑ | | | Ішз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | Vı = Vss | In input port or external clock input | | | -1 | μΑ | | | | | | In resonator connection | | | -10 | μΑ | | On-chip pll-up resistance | R∪ | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P64 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vı = EVsso | , In input port | 10 | 20 | 100 | kΩ | **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. During HALT instruction execution by flash memory. - 3. When high-speed on-chip oscillator and subsystem clock are stopped. - 4. When high-speed system clock and subsystem clock are stopped. - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz - **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode. - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fin: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C #### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions | | | high-
I main)
ode | | /-speed
Mode | voltage | low-
e main)
ode | Unit | |---------------|--------|----------------|--|---|------|-------------------------|------|----------------------|---------|------------------------|------| | | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Transfer rate | | Recep-
tion | $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$
$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$ | | | fMCK/6
Note 1 | | fMCK/6
Note 1 | | fMCK/6
Note 1 | bps | | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$
$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ | | | fMCK/6
Note 1 | | fMCK/6
Note 1 | | fMCK/6
Note 1 | bps | | | | | 2.3 V \(\times\) V \(\times\) \(\times\) | Theoretical value of the maximum transfer rate folk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | | $1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$ | | | fMCK/6
Notes 1 to 3 | | fMCK/6
Notes 1, 2 | | fMCK/6
Notes 1, 2 | bps | | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 4 | | 5.3 | | 1.3 | | 0.6 | Mbps | **Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only. - 2. Use it with EVDD0≥Vb. - 3. The following conditions are required for low voltage interface when $E_{VDDO} < V_{DD}$. $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$ 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are: HS (high-speed main) mode: 32 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V) LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 5.5 V) Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance (When 20- to 52-pin products)/EVpd tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected. **Remarks 1.** $V_b[V]$: Communication line voltage - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. # (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (1/2) (Ta = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | | Conditions | HS (hig | h-speed
Mode | LS (low | | LV (low-
main) | - | Unit | |--|---|--|--|------------------------------|-----------------|------------------|------|---------------------------|------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time | tkcy1 | tkcy1 ≥ 2/fclk | $\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 1.4 \\ k\Omega \end{aligned}$ | 200 | | 1150 | | 1150 | | ns | | | | | $\begin{split} &2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 2.7 \\ &k\Omega \end{split}$ | 300 | | 1150 | | 1150 | | ns | | SCKp high-level width | tкн1 | $\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned}$ | | tксү1/2 —
50 | | tксу1/2 —
50 | | tксу1/2 — 50 | | ns | | | $2.7 \text{ V} \leq \text{EV}_D$ $2.3 \text{ V} \leq \text{V}_D \leq$ | | • | tксү1/2 —
120 | | tксу1/2 –
120 | | tксу1/2 —
120 | | ns | | SCKp low-level width | t _{KL1} | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 6$ $C_{b} = 20 \text{ pF, F}$ | 4.0 V, | tксү1/2 —
7 | | tксү1/2 —
50 | | t _{KCY1} /2 - 50 | | ns | | | | $2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq 3$ $C_{b} = 20 \text{ pF, F}$ | 2.7 V, | tксу ₁ /2 –
10 | | tксу1/2 —
50 | | tксу1/2 —
50 | | ns | | SIp setup time
(to SCKp↑) Note 1 | tsıĸı | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 4$ $C_{b} = 20 \text{ pF, F}$ | 4.0 V, | 58 | | 479 | | 479 | | ns | | | | $2.7 \text{ V} \leq \text{EV}_{DD}$
$2.3 \text{ V} \leq \text{V}_{b} \leq 2$
$C_{b} = 20 \text{ pF, F}$ | 2.7 V, | 121 | | 479 | | 479 | | ns | | SIp hold time
(from SCKp↑) Note 1 | tksii | $4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 6$ $C_{b} = 20 \text{ pF, F}$ | 4.0 V, | 10 | | 10 | | 10 | | ns | | | | $2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq 2$ $C_{b} = 20 \text{ pF, F}$ | 2.7 V, | 10 | | 10 | | 10 | | ns | | Delay time from SCKp↓ to SOp output Note 1 | tkso1 | $4.0 \text{ V} \le \text{EV}_{DD}$ $2.7 \text{ V} \le \text{V}_{b} \le 6$ $C_{b} = 20 \text{ pF, F}$ | 4.0 V, | | 60 | | 60 | | 60 | ns | | | | $2.7 \text{ V} \le \text{EV}_{DD}$ $2.3 \text{ V} \le \text{V}_{b} \le 2$ $C_b = 20 \text{ pF, F}$ | o < 4.0 V,
2.7 V, | | 130 | | 130 | | 130 | ns | (Notes, Caution, and Remarks are listed on the next page.) # (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$ | Parameter | Symbol | l . | ≤ VDD ≤ 5.5 V, Vss = | HS (| high-
main)
ode | LS (low | | - | -voltage
Mode | Unit | |------------------------|--------|---|----------------------------------|-------------|-----------------------|-------------|------|-------------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time Note 1 | | $4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$
$2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$ | 24 MHz < fмск | 14/
fмск | | _ | | _ | | ns | | | | | 20 MHz < fмcκ ≤ 24 MHz | 12/
fмск | | | | | | ns | | | | | 8 MHz < fмcк ≤ 20 MHz | 10/
fмск | | _ | | _ | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 8/fмск | | 16/
fмск | | _ | | ns | | | | | fmck ≤ 4 MHz | 6/fмск | | 10/
fмск | | 10/
fмск | | ns | | | | $2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$
$2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ | 24 MHz < fмск | 20/
fмск | | _ | | _ | | ns | | | | | 20 MHz < fмcк ≤ 24 MHz | 16/
fмск | | _ | | _ | | ns | | | | | 16 MHz < fмcк ≤ 20 MHz | 14/
fмск | | _ | | _ | | ns | | | | | 8 MHz < fмcк ≤ 16 MHz | 12/
fмск | | _ | | _ | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 8/fмск | | 16/
fмск | | _ | | ns | | | | | fмск ≤ 4 MHz | 6/ƒмск | | 10/
fмск | | 10/
fмск | | ns | | | | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$ | 24 MHz < fмск | 48/
fмск | | _ | | _ | | ns | | | | 2 | 20 MHz < fмcк ≤ 24 MHz | 36/
fмск | | _ | | _ | | ns | | | | | 16 MHz < fмcк ≤ 20 MHz | 32/
fмск | | _ | | _ | | ns | | | | 8 MHz < f _{MCK} ≤ 16 MHz | 26/
fмск | | | | | | ns | | | | | | 4 MHz < f _{MCK} ≤ 8 MHz | 16/
fмск | | 16/
fмск | | _ | | ns | | | | | fмcк ≤ 4 MHz | 10/
fмск | | 10/
fмск | | 10/
fмск | | ns | (Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. #### (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Condit | ions | HS (high-spee | ed main) Mode | Unit | |---------------|--------|--------------|--|---|---------------|----------------|------| | | | | | | MIN. | MAX. | | | Transfer rate | | Transmission | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ | | | Note 1 | bps | | | | | $V,$ $2.7~V \leq V_b \leq 4.0~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \ V_b = 2.7 \ V$ | | 2.6 Note 2 | Mbps | | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$ | | | Note 3 | bps | | | | | $V,$ $2.3~V \leq V_b \leq 2.7~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$ | | 1.2 Note 4 | Mbps | | | | | 2.4 V ≤ EV _{DD0} < 3.3 | | | Note 5 | bps | | | | | $V,$ $1.6~V \leq V_b \leq 2.0~V$ | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 V$ | | 0.43
Note 6 | Mbps | **Notes 1.** The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer. - 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq EV_{DDO} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer. ## (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | C | Conditions | HS (high-spe | ed main) Mode | Unit | |---|---------------|--|--|---------------|---------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time Note 1 | tkCY2 | $4.0~V \leq EV_{DD0} \leq 5.5$ | 24 MHz < fмск | 28/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 24/fмск | | ns | | | | $2.7~V \leq V_b \leq 4.0~V$ | 8 MHz < fмcк ≤ 20 MHz | 20/fмск | | ns | | | | | 4 MHz < fmck ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | $2.7~V \leq EV_{DD0} < 4.0$ | 24 MHz < fмск | 40/fмск | | ns | | | | V, | $20~\text{MHz} < \text{fmck} \le 24~\text{MHz}$ | 32/fмск | | ns | | | | $2.3~V \leq V_b \leq 2.7~V$ | 16 MHz < fмcк ≤ 20 MHz | 28/fмск | | ns | | | | | 8 MHz < fмск ≤ 16 MHz | 24/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 16/fмск | | ns | | | | | fмcк ≤ 4 MHz | 12/fмск | | ns | | | | $2.4~V \leq EV_{DD0} < 3.3$ | 24 MHz < fмск | 96/fмск | | ns | | | | V, | 20 MHz < fмcк ≤ 24 MHz | 72/fмск | | ns | | | | $1.6 \ V \le V_b \le 2.0 \ V$ | 16 MHz < fмcк ≤ 20 MHz | 64/fмск | | ns | | | | | 8 MHz < fмск ≤ 16 MHz | 52/fмск | | ns | | | | | 4 MHz < fмcк ≤ 8 MHz | 32/fмск | | ns | | | | | fмcк ≤ 4 MHz | 20/fмск | | ns | | SCKp high-/low-level width | tкн2,
tкL2 | $\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_b \leq 4.0 \text{ V} \\ \\ 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_b \leq 2.7 \text{ V} \end{aligned}$ | | tkcy2/2 - 24 | | ns | | | | | | tkcy2/2 - 36 | | ns | | | | $ 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 2}} $ | | tkcy2/2 - 100 | | ns | | SIp setup time (to SCKp↑) Note2 | tsık2 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $ | 5 V, | 1/fмск + 40 | | ns | | | | $2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$ | 0 V, | 1/fмск + 40 | | ns | | | | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$
$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$ | | 1/fмск + 60 | | ns | | Slp hold time
(from SCKp [↑]) Note 3 | tksi2 | | | 1/fmck + 62 | | ns | | Delay time from SCKp↓
to SOp output Note 4 | t KSO2 | $4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$ | 5 V, 2.7 V \leq V _b \leq 4.0 V, .4 k Ω | | 2/fмск + 240 | ns | | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega$ | | 2/fмск + 428 | ns | | | | $2.4 \ V \le EV_{DD0} < 3.$ $C_b = 30 \ pF, \ R_b = 5$ | 3 V, 1.6 V ≤ V _b ≤ 2.0 V
.5 kΩ | | 2/fмск + 1146 | ns | (Notes, Caution and Remarks are listed on the next page.) - Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. #### CSI mode connection diagram (during communication at different potential) - **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, - 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)) - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. ## Simplified I²C mode connection diagram (during communication at different potential) #### Simplified I²C mode serial transfer timing (during communication at different potential) Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. - **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01, 02, 10, 12, 13) - **Notes 1.** Excludes quantization error (±1/2 LSB). - 2. This value is indicated as a ratio (%FSR) to the full-scale value. - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows. Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} . Zero-scale error/Full-scale error: Add $\pm 0.05\% FSR$ to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}. 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. #### 3.6.3 POR circuit characteristics $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---------------------|------------------|------------------------|------|------|------|------| | Detection voltage | VPOR | Power supply rise time | | 1.51 | 1.57 | V | | | V _{PDR} | Power supply fall time | 1.44 | 1.50 | 1.56 | V | | Minimum pulse width | T _{PW} | | 300 | | | μS | **Note** Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC). ### 4. PACKAGE DRAWINGS ### 4.1 20-pin Products R5F1006AASP, R5F1006CASP, R5F1006DASP, R5F1006EASP R5F1016AASP, R5F1016CASP, R5F1016DASP, R5F1016EASP R5F1006ADSP, R5F1006CDSP, R5F1006DDSP, R5F1006EDSP R5F1016ADSP, R5F1016CDSP, R5F1016DDSP, R5F1016EDSP R5F1006AGSP, R5F1006CGSP, R5F1006DGSP, R5F1006EGSP | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LSSOP20-0300-0.65 | PLSP0020JC-A | S20MC-65-5A4-3 | 0.12 | © 2012 Renesas Electronics Corporation. All rights reserved. ### 4.10 52-pin Products R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JJAFA, R5F101JJAFA, R5F101JJAFA, R5F101JAFA, R5F101JKAFA, R5F101JLAFA R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JDFA, R5F100JPA, R R5F100JKDFA, R5F100JLDFA R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JDFA, R5 R5F101JKDFA, R5F101JLDFA R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) [g] | |---------------------|--------------|----------------|-----------------| | P-LQFP52-10x10-0.65 | PLQP0052JA-A | P52GB-65-GBS-1 | 0.3 | © 2012 Renesas Electronics Corporation. All rights reserved. (UNIT:mm) | | | | Description | |------|--------------|--------|--| | Rev. | Date | Page | Summary | | 3.00 | Aug 02, 2013 | 81 | Modification of figure of AC Timing Test Points | | | | 81 | Modification of description and note 3 in (1) During communication at same potential (UART mode) | | | | 83 | Modification of description in (2) During communication at same potential (CSI mode) | | | | 84 | Modification of description in (3) During communication at same potential (CSI mode) | | | | 85 | Modification of description in (4) During communication at same potential (CSI mode) (1/2) | | | | 86 | Modification of description in (4) During communication at same potential (CSI mode) (2/2) | | | | 88 | Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2) | | | | 89 | Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2) | | | | 91 | Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) | | | | 92, 93 | Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 94 | Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) | | | | 95 | Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2) | | | | 96 | Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2) | | | | 97 | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) | | | | 98 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) | | | | 99 | Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | 100 | Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) | | | | 102 | Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2) | | | | 103 | Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2) | | | | 106 | Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2) | | | | 107 | Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2) | | | | 109 | Addition of (1) I ² C standard mode | | | | 111 | Addition of (2) I ² C fast mode | | | | 112 | Addition of (3) I ² C fast mode plus | | | | 112 | Modification of IICA serial transfer timing | | | | 113 | Addition of table in 2.6.1 A/D converter characteristics | | | | 113 | Modification of description in 2.6.1 (1) | | | | 114 | Modification of notes 3 to 5 in 2.6.1 (1) | | | | 115 | Modification of description and notes 2, 4, and 5 in 2.6.1 (2) | | | | 116 | Modification of description and notes 3 and 4 in 2.6.1 (3) | | | | 117 | Modification of description and notes 3 and 4 in 2.6.1 (4) |