



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| 2 0 0 0 0 0                |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                        |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 38                                                                              |
| Program Memory Size        | 32KB (32K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 2K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 12x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 52-LQFP                                                                         |
| Supplier Device Package    | 52-LQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101jcafa-x0 |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)





Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to  $V_{ss.}$



# 1.5.12 80-pin products



Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.



 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

<sup>3.</sup> When setting to PIOR = 1

| lt a                 | m                                                                                                                                                                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nin                      | 11                        | nin                     | 10       | nin       | EO       | nin         | 64        | (2)<br>nin |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------|----------|-----------|----------|-------------|-----------|------------|
| Ite                  |                                                                                                                                                                                   | 40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                           | -pin                    |          | -pin      | 52       | -pin<br>I   |           | -pin       |
|                      |                                                                                                                                                                                   | R5F100Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R5F101Ex                 | R5F100Fx                  | R5F101Fx                | R5F100Gx | R5F101Gx  | R5F100Jx | R5F101Jx    | R5F100Lx  | R5F101Lx   |
| Clock output/buzz    | er output                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                        |                           | 2                       |          | 2         |          | 2           |           | 2          |
| ·                    |                                                                                                                                                                                   | (Main s<br>• 256 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | system clo<br>z, 512 Hz, | оск: fмаin =<br>1.024 kHz | 20 MHz c<br>z, 2.048 kH | . ,      | Hz, 8.192 |          | 884 kHz, 32 | 2.768 kHz |            |
| 8/10-bit resolution  | A/D converter                                                                                                                                                                     | 9 channels 10 channels 10 channels 12 channels 12 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                           |                         |          |           |          |             |           |            |
| Serial interface     |                                                                                                                                                                                   | [40-pin, 44-pin products]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |                         |          |           |          |             |           |            |
|                      |                                                                                                                                                                                   | <ul> <li>CSI: 1 channel/simplified l<sup>2</sup>C: 1 channel/UART: 1 channel</li> <li>CSI: 1 channel/simplified l<sup>2</sup>C: 1 channel/UART: 1 channel</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART (UART supporting LIN-bus): 1 channel</li> <li>[48-pin, 52-pin products]</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART: 1 channel</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART: 1 channel</li> <li>CSI: 1 channel/simplified l<sup>2</sup>C: 2 channels/UART: 1 channel</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART: 1 channel</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART (UART supporting LIN-bus): 1 channel</li> <li>[64-pin products]</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART: 1 channel</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART: 1 channel</li> <li>CSI: 2 channels/simplified l<sup>2</sup>C: 2 channels/UART: 1 channel</li> </ul> |                          |                           |                         |          |           |          |             |           |            |
|                      | I <sup>2</sup> C bus                                                                                                                                                              | 1 channe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | 1 channe                  |                         | 1 channe |           | 1 channe | J LIN-bus): | 1 channe  |            |
| Multiplier and divid |                                                                                                                                                                                   | <ul> <li>16 bits × 16 bits = 32 bits (Unsigned or signed)</li> <li>32 bits ÷ 32 bits = 32 bits (Unsigned)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                           |                         |          |           |          |             |           |            |
|                      |                                                                                                                                                                                   | <ul> <li>16 bits × 16 bits + 32 bits = 32 bits (Unsigned)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                           |                         |          |           |          |             |           |            |
| DMA controller       |                                                                                                                                                                                   | 2 channe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ls                       |                           |                         |          |           |          |             |           |            |
| Vectored             | Internal                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                       | :                         | 27                      | 2        | 27        |          | 27          | 2         | 27         |
| interrupt sources    | External                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                        |                           | 7                       |          | 10        |          | 12          |           | 13         |
| Key interrupt        |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                        |                           | 4                       |          | 6         |          | 8           |           | 8          |
| Reset                |                                                                                                                                                                                   | <ul> <li>Reset by RESET pin</li> <li>Internal reset by watchdog timer</li> <li>Internal reset by power-on-reset</li> <li>Internal reset by voltage detector</li> <li>Internal reset by illegal instruction execution <sup>Note</sup></li> <li>Internal reset by RAM parity error</li> <li>Internal reset by illegal-memory access</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                           |                         |          |           |          |             |           |            |
| Power-on-reset ci    | rcuit                                                                                                                                                                             | <ul> <li>Power-on-reset: 1.51 V (TYP.)</li> <li>Power-down-reset: 1.50 V (TYP.)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                           |                         |          |           |          |             |           |            |
| Voltage detector     |                                                                                                                                                                                   | Rising edge : 1.67 V to 4.06 V (14 stages)     Falling edge : 1.63 V to 3.98 V (14 stages)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                           |                         |          |           |          |             |           |            |
| On-chip debug fur    | nction                                                                                                                                                                            | Provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                           |                         |          |           |          |             |           |            |
| Power supply volta   | $V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (T_{A} = -40 \text{ to } +85^{\circ}\text{C})$<br>$V_{DD} = 2.4 \text{ to } 5.5 \text{ V} (T_{A} = -40 \text{ to } +105^{\circ}\text{C})$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                           |                         |          |           |          |             |           |            |
| Operating ambien     | $T_A = 40$ to +85°C (A: Consumer applications, D: Industrial applications)<br>$T_A = 40$ to +105°C (G: Industrial applications)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                           |                         |          |           |          |             |           |            |

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.



#### [80-pin, 100-pin, 128-pin products]

# Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

|                                    |                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                   |                              | (1/2)                                         |  |  |  |  |
|------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|------------------------------|-----------------------------------------------|--|--|--|--|
|                                    | Item                                         | 80-                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                               | 100                 | )-pin                             | 128                          | -pin                                          |  |  |  |  |
|                                    |                                              | R5F100Mx                                                                                                                                                                                                                                                                          | R5F101Mx                                                                                                                                                                                                                                                                                                                                                        | R5F100Px            | R5F101Px                          | R5F100Sx                     | R5F101Sx                                      |  |  |  |  |
| Code flash m                       | emory (KB)                                   | 96 te                                                                                                                                                                                                                                                                             | o 512                                                                                                                                                                                                                                                                                                                                                           | 96 t                | o 512                             | 192                          | to 512                                        |  |  |  |  |
| Data flash me                      | emory (KB)                                   | 8                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                               | 8                   | -                                 | 8                            | -                                             |  |  |  |  |
| RAM (KB)                           |                                              | 8 to 3                                                                                                                                                                                                                                                                            | 2 Note 1                                                                                                                                                                                                                                                                                                                                                        | 8 to 3              | 32 Note 1                         | 16 to 5                      | 32 Note 1                                     |  |  |  |  |
| Address space                      | e                                            | 1 MB                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                   |                              |                                               |  |  |  |  |
| Main system<br>clock               | High-speed system<br>clock                   | HS (High-speed<br>HS (High-speed<br>LS (Low-speed                                                                                                                                                                                                                                 | K1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)<br>HS (High-speed main) mode: 1 to 20 MHz ( $V_{DD} = 2.7$ to 5.5 V),<br>HS (High-speed main) mode: 1 to 16 MHz ( $V_{DD} = 2.4$ to 5.5 V),<br>LS (Low-speed main) mode: 1 to 8 MHz ( $V_{DD} = 1.8$ to 5.5 V),<br>LV (Low-voltage main) mode: 1 to 4 MHz ( $V_{DD} = 1.6$ to 5.5 V) |                     |                                   |                              |                                               |  |  |  |  |
|                                    | High-speed on-chip<br>oscillator             | HS (High-speed main) mode: 1 to 32 MHz ( $V_{DD} = 2.7$ to 5.5 V),<br>HS (High-speed main) mode: 1 to 16 MHz ( $V_{DD} = 2.4$ to 5.5 V),<br>LS (Low-speed main) mode: 1 to 8 MHz ( $V_{DD} = 1.8$ to 5.5 V),<br>LV (Low-voltage main) mode: 1 to 4 MHz ( $V_{DD} = 1.6$ to 5.5 V) |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                   |                              |                                               |  |  |  |  |
| Subsystem cl                       | ock                                          | XT1 (crystal) os<br>32.768 kHz                                                                                                                                                                                                                                                    | XT1 (crystal) oscillation, external subsystem clock input (EXCLKS)                                                                                                                                                                                                                                                                                              |                     |                                   |                              |                                               |  |  |  |  |
| Low-speed or                       | n-chip oscillator                            | 15 kHz (TYP.)                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                   |                              |                                               |  |  |  |  |
| General-purp                       | ose register                                 | (8-bit register ×                                                                                                                                                                                                                                                                 | 8) $\times$ 4 banks                                                                                                                                                                                                                                                                                                                                             |                     |                                   |                              |                                               |  |  |  |  |
| Minimum instruction execution time |                                              | 0.03125 <i>μ</i> s (Hig                                                                                                                                                                                                                                                           | h-speed on-chip                                                                                                                                                                                                                                                                                                                                                 | oscillator: fin = 3 | 32 MHz operation                  | )                            |                                               |  |  |  |  |
|                                    |                                              | 0.05 <i>µ</i> s (High-s                                                                                                                                                                                                                                                           | peed system clo                                                                                                                                                                                                                                                                                                                                                 | ck: fмx = 20 MHz    | operation)                        |                              |                                               |  |  |  |  |
|                                    |                                              | 30.5 <i>µ</i> s (Subsys                                                                                                                                                                                                                                                           | stem clock: fsue =                                                                                                                                                                                                                                                                                                                                              | - 32.768 kHz ope    | eration)                          |                              |                                               |  |  |  |  |
| Instruction se                     | t                                            | <ul> <li>Data transfer (8/16 bits)</li> <li>Adder and subtractor/logical operation (8/16 bits)</li> <li>Multiplication (8 bits × 8 bits)</li> <li>Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.</li> </ul>                           |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                   |                              |                                               |  |  |  |  |
| I/O port                           | Total                                        | 7                                                                                                                                                                                                                                                                                 | 74                                                                                                                                                                                                                                                                                                                                                              |                     | 92                                | 1                            | 20                                            |  |  |  |  |
|                                    | CMOS I/O                                     | (N-ch O.D. I/O                                                                                                                                                                                                                                                                    | 64<br>[EV <sub>DD</sub> withstand<br>le]: 21)                                                                                                                                                                                                                                                                                                                   | (N-ch O.D. I/O      | 82<br>[EV⊳⊳ withstand<br>ge]: 24) | (N-ch O.D. I/O               | 10<br>[EV <sub>DD</sub> withstand<br>ge]: 25) |  |  |  |  |
|                                    | CMOS input                                   |                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                               |                     | 5                                 |                              | 5                                             |  |  |  |  |
|                                    | CMOS output                                  |                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                               |                     | 1                                 |                              | 1                                             |  |  |  |  |
|                                    | N-ch O.D. I/O<br>(withstand voltage: 6<br>V) |                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                               |                     | 4                                 |                              | 4                                             |  |  |  |  |
| Timer                              | 16-bit timer                                 | 12 cha                                                                                                                                                                                                                                                                            | annels                                                                                                                                                                                                                                                                                                                                                          | 12 ch               | annels                            | 16 ch                        | annels                                        |  |  |  |  |
|                                    | Watchdog timer                               | 1 cha                                                                                                                                                                                                                                                                             | annel                                                                                                                                                                                                                                                                                                                                                           | 1 ch                | annel                             | 1 cha                        | annel                                         |  |  |  |  |
|                                    | Real-time clock (RTC)                        | 1 cha                                                                                                                                                                                                                                                                             | annel                                                                                                                                                                                                                                                                                                                                                           | 1 ch                | annel                             | 1 cha                        | annel                                         |  |  |  |  |
|                                    | 12-bit interval timer (IT)                   | 1 cha                                                                                                                                                                                                                                                                             | annel                                                                                                                                                                                                                                                                                                                                                           | 1 ch                | annel                             | 1 cha                        | annel                                         |  |  |  |  |
|                                    | Timer output                                 | 12 channels     12 channels       (PWM outputs: 10 <sup>Note 2</sup> )     (PWM outputs: 10 <sup>Note 2</sup> )                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                   | 16 channels<br>(PWM outputs: | 14 Note 2)                                    |  |  |  |  |
|                                    | RTC output                                   | 1 channel<br>• 1 Hz (subsyster)                                                                                                                                                                                                                                                   | tem clock: fsuв =                                                                                                                                                                                                                                                                                                                                               |                     |                                   |                              |                                               |  |  |  |  |

**Notes 1.** The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H

R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library** for RL78 Family (R20UT2944).



- **Notes 1.** Total current flowing into V<sub>DD</sub> and EV<sub>DD0</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub>, EV<sub>DD0</sub> or V<sub>SS</sub>, EV<sub>SS0</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 3. When high-speed system clock and subsystem clock are stopped.
  - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
  - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V  $\leq$  V\_DD  $\leq$  5.5 V@1 MHz to 32 MHz

2.4 V  $\leq$  V\_{DD}  $\leq$  5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode:  $1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1$  MHz to 8 MHz

LV (low-voltage main) mode: 1.6 V  $\leq$  V\_DD  $\leq$  5.5 V@1 MHz to 4 MHz

- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation, temperature condition of the TYP. value is  $T_A = 25^{\circ}C$



### 2.4 AC Characteristics

# (TA = -40 to +85°C, 1.6 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = EVss1 = 0 V)

| Items                                                                 | Symbol        |                                                       | Conditions                        | ;                                                        | MIN.      | TYP. | MAX. | Unit               |
|-----------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------------------------|----------------------------------------------------------|-----------|------|------|--------------------|
| Instruction cycle (minimum                                            | Тсү           | Main                                                  | HS (high-                         | $2.7V {\le} V_{DD} {\le} 5.5V$                           | 0.03125   |      | 1    | μS                 |
| instruction execution time)                                           |               | system<br>clock (fmain)                               | speed main)<br>mode               | $2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$ | 0.0625    |      | 1    | μs                 |
|                                                                       |               | operation                                             | LS (low-speed main) mode          | $1.8V\!\le\!V_{DD}\!\le\!5.5V$                           | 0.125     |      | 1    | μS                 |
|                                                                       |               |                                                       | LV (low-<br>voltage main)<br>mode | $1.6 V \le V_{DD} \le 5.5 V$                             | 0.25      |      | 1    | μS                 |
|                                                                       |               | Subsystem of operation                                | clock (fsuв)                      | $1.8  V \! \le \! V_{DD} \! \le \! 5.5  V$               | 28.5      | 30.5 | 31.3 | μS                 |
|                                                                       |               | In the self                                           | HS (high-                         | $2.7V{\leq}V_{\text{DD}}{\leq}5.5V$                      | 0.03125   |      | 1    | μS                 |
|                                                                       |               | programming<br>mode                                   | speed main)<br>mode               | $2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$ | 0.0625    |      | 1    | μS                 |
|                                                                       |               |                                                       | LS (low-speed main) mode          | $1.8V\!\leq\!V_{DD}\!\leq\!5.5V$                         | 0.125     |      | 1    | μS                 |
|                                                                       |               |                                                       | LV (low-<br>voltage main)<br>mode | $1.8 V \le V_{DD} \le 5.5 V$                             | 0.25      |      | 1    | μS                 |
| External system clock                                                 | fex           | $2.7 \text{ V} \leq \text{V}_{DD} \leq$               |                                   | 1                                                        | 1.0       |      | 20.0 | MHz                |
| frequency                                                             |               | 2.4 V ≤ V <sub>DD</sub> <                             |                                   |                                                          | 1.0       |      | 16.0 | MHz                |
|                                                                       |               | 1.8 V ≤ V <sub>DD</sub> <                             |                                   |                                                          | 1.0       |      | 8.0  | MHz                |
|                                                                       |               | 1.6 V ≤ V <sub>DD</sub> <                             |                                   |                                                          | 1.0       |      | 4.0  | MHz                |
|                                                                       | fexs          |                                                       |                                   |                                                          | 32        |      | 35   | kHz                |
| External system clock input                                           | texh, texl    | $2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$ |                                   |                                                          |           |      |      | ns                 |
| high-level width, low-level width                                     |               | 2.4 V ≤ V <sub>DD</sub> <                             |                                   |                                                          | 24<br>30  |      |      | ns                 |
|                                                                       |               | 1.8 V ≤ V <sub>DD</sub> <                             |                                   |                                                          | 60        |      |      | ns                 |
|                                                                       |               | 1.6 V ≤ V <sub>DD</sub> <                             |                                   |                                                          | 120       |      |      | ns                 |
|                                                                       | texhs, texls  |                                                       |                                   |                                                          | 13.7      |      |      | μS                 |
| TI00 to TI07, TI10 to TI17 input<br>high-level width, low-level width | tтıн,<br>tтı∟ |                                                       |                                   |                                                          | 1/fмск+10 |      |      | ns <sup>Note</sup> |
| TO00 to TO07, TO10 to TO17                                            | fтo           | HS (high-spe                                          | eed 4.0 V                         | $\leq EV_{DD0} \leq 5.5 V$                               |           |      | 16   | MHz                |
| output frequency                                                      |               | main) mode                                            |                                   | $\leq$ EV <sub>DD0</sub> < 4.0 V                         |           |      | 8    | MHz                |
|                                                                       |               |                                                       | 1.8 V                             | $\leq$ EV <sub>DD0</sub> < 2.7 V                         |           |      | 4    | MHz                |
|                                                                       |               |                                                       | 1.6 V                             | ≤ EV <sub>DD0</sub> < 1.8 V                              |           |      | 2    | MHz                |
|                                                                       |               | LS (low-spee                                          | ed 1.8 V                          | $\leq EV_{DD0} \leq 5.5 V$                               |           |      | 4    | MHz                |
|                                                                       |               | main) mode                                            | 1.6 V                             | ≤ EV <sub>DD0</sub> < 1.8 V                              |           |      | 2    | MHz                |
|                                                                       |               | LV (low-volta<br>main) mode                           | age 1.6 V                         | $\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$                |           |      | 2    | MHz                |
| PCLBUZ0, PCLBUZ1 output                                               | <b>f</b> PCL  | HS (high-spe                                          | eed 4.0 V                         | $\leq EV_{DD0} \leq 5.5 V$                               |           |      | 16   | MHz                |
| frequency                                                             |               | main) mode                                            | 2.7 V                             | $\leq$ EV <sub>DD0</sub> < 4.0 V                         |           |      | 8    | MHz                |
|                                                                       |               |                                                       | 1.8 V                             | $\leq$ EV <sub>DD0</sub> < 2.7 V                         |           |      | 4    | MHz                |
|                                                                       |               |                                                       | 1.6 V                             | $\leq EV_{DD0} < 1.8 V$                                  |           |      | 2    | MHz                |
|                                                                       |               | LS (low-spee                                          | ed 1.8 V                          | $\leq EV_{DD0} \leq 5.5 V$                               |           |      | 4    | MHz                |
|                                                                       |               | main) mode                                            | 1.6 V                             | $\leq EV_{DD0} < 1.8 V$                                  |           |      | 2    | MHz                |
|                                                                       |               | LV (low-volta                                         | age 1.8 V                         | $\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$                |           |      | 4    | MHz                |
|                                                                       |               | main) mode                                            | 1.6 V                             | $\leq$ EV <sub>DD0</sub> < 1.8 V                         |           |      | 2    | MHz                |
| Interrupt input high-level width,                                     | tintн,        | $INTP0 		 1.6 V \le V_{DD} \le 5.5 V$                 |                                   |                                                          | 1         |      |      | μS                 |
| low-level width                                                       | tintl         | INTP1 to INT                                          | [P11 1.6 V                        | $\leq EV_{DD0} \leq 5.5 V$                               | 1         |      |      | μS                 |
| Key interrupt input low-level                                         | tкв           | KR0 to KR7                                            | 1.8 V                             | $\leq EV_{DD0} \leq 5.5 V$                               | 250       |      |      | ns                 |
| width                                                                 |               |                                                       | 1.6 V                             | $\leq EV_{DD0} < 1.8 V$                                  | 1         |      |      | μS                 |
| RESET low-level width                                                 | trsl          |                                                       |                                   |                                                          | 10        |      |      | μS                 |

(Note and Remark are listed on the next page.)





TCY vs VDD (LS (low-speed main) mode)



# (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

| Parameter                                                | Symbol        | (                                          | Conditions                              | HS (high-speed<br>main) Mode |      | LS (low-speed main) Mode |      | LV (low-voltage main) Mode |      | Unit |
|----------------------------------------------------------|---------------|--------------------------------------------|-----------------------------------------|------------------------------|------|--------------------------|------|----------------------------|------|------|
|                                                          |               |                                            |                                         | MIN.                         | MAX. | MIN.                     | MAX. | MIN.                       | MAX. |      |
| SCKp cycle time                                          | tkCY1         | tксү1 $\geq$ 2/fclк                        | $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$ | 62.5                         |      | 250                      |      | 500                        |      | ns   |
|                                                          |               |                                            | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$ | 83.3                         |      | 250                      |      | 500                        |      | ns   |
| SCKp high-/low-level width                               | tĸнı,<br>tĸ∟ı | $4.0 V \le EV_{DI}$                        | $500 \leq 5.5 \text{ V}$                | tксү1/2 –<br>7               |      | tксү1/2 –<br>50          |      | tксү1/2 –<br>50            |      | ns   |
|                                                          |               | 2.7 V ≤ EV <sub>D</sub>                    | $500 \leq 5.5 \text{ V}$                | tксү1/2 –<br>10              |      | tксү1/2 –<br>50          |      | tксү1/2 –<br>50            |      | ns   |
| SIp setup time (to SCKp <sup>↑</sup> )                   | tsik1         | $4.0 \ V \le EV_{DI}$                      | $00 \leq 5.5 \text{ V}$                 | 23                           |      | 110                      |      | 110                        |      | ns   |
| Note 1                                                   |               | $2.7 \text{ V} \leq EV_{\text{DI}}$        | $00 \leq 5.5 \text{ V}$                 | 33                           |      | 110                      |      | 110                        |      | ns   |
| Slp hold time (from<br>SCKp↑) <sup>Note 2</sup>          | tksii         | $2.7 \text{ V} \leq \text{EV}_{\text{DI}}$ | $500 \leq 5.5 \text{ V}$                | 10                           |      | 10                       |      | 10                         |      | ns   |
| Delay time from SCKp↓ to<br>SOp output <sup>Note 3</sup> | tkso1         | C = 20 pF <sup>Not</sup>                   | te 4                                    |                              | 10   |                          | 10   |                            | 10   | ns   |

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$ 

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to  $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SCKp and SOp output lines.

# Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
  - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
    g: PIM and POM numbers (g = 1)
  - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))



**Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) ( $T_A = -40$  to  $+85^{\circ}$ C, 1.6 V  $\leq$  EV<sub>DD0</sub> = EV<sub>DD1</sub>  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V, Vss = EV<sub>SS0</sub> = EV<sub>SS1</sub> = 0 V)

| Parameter                      | Symbol                                                       | Condit                                               | ions                  |                   | h-speed<br>Mode       |                       | /-speed<br>Mode       |                       | -voltage<br>Mode | Unit |
|--------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------------------|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|------|
|                                |                                                              |                                                      |                       | MIN.              | MAX.                  | MIN.                  | MAX.                  | MIN.                  | MAX.             |      |
| SCKp cycle time                | tkCY2                                                        | $4.0~V \leq EV_{DD0} \leq 5.5$                       | 20 MHz < fмск         | 8/fмск            |                       | _                     |                       | _                     |                  | ns   |
| Note 5                         |                                                              | V                                                    | fмск $\leq$ 20 MHz    | 6/fмск            |                       | 6/fмск                |                       | 6/fмск                |                  | ns   |
|                                |                                                              | $2.7~V \leq EV_{\text{DD0}} \leq 5.5$                | 16 MHz < fмск         | 8/fмск            |                       | _                     |                       | _                     |                  | ns   |
|                                |                                                              | V                                                    | fмск $\leq$ 16 MHz    | 6/fмск            |                       | 6/fмск                |                       | 6/fмск                |                  | ns   |
|                                | $2.4 \ V \leq EV_{\text{DD0}}$                               |                                                      |                       | 6/fмск<br>and 500 |                       | 6/fмск<br>and<br>500  |                       | 6/fмск<br>and<br>500  |                  | ns   |
|                                |                                                              | $1.8~V \le EV_{DD0} \le 5.5~V$                       |                       | 6/fмск<br>and 750 |                       | 6/fмск<br>and<br>750  |                       | 6/fмск<br>and<br>750  |                  | ns   |
|                                | $1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ |                                                      | 6/fмск<br>and<br>1500 |                   | 6/fмск<br>and<br>1500 |                       | 6/fмск<br>and<br>1500 |                       | ns               |      |
|                                |                                                              | $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ | V                     | —                 |                       | 6/fмск<br>and<br>1500 |                       | 6/fмск<br>and<br>1500 |                  | ns   |
| SCKp high-/low-<br>level width | tкн2,<br>tкL2                                                | $4.0~V \le EV_{DD0} \le 5.5~V$                       |                       | tксү2/2 –<br>7    |                       | tксү2/2<br>- 7        |                       | tксү2/2<br>- 7        |                  | ns   |
|                                |                                                              | $2.7~V \leq EV_{DD0} \leq 5.5~V$                     |                       | tксү2/2 –<br>8    |                       | tксү2/2<br>- 8        |                       | tксү2/2<br>- 8        |                  | ns   |
|                                |                                                              | $1.8~V \le EV_{DD0} \le 5.5~V$                       |                       | tксү2/2 –<br>18   |                       | tксү2/2<br>– 18       |                       | tксү2/2<br>– 18       |                  | ns   |
|                                |                                                              | $1.7~V \leq EV_{DD0} \leq 5.5~V$                     |                       | tксү2/2 –<br>66   |                       | tксү2/2<br>- 66       |                       | tксү2/2<br>- 66       |                  | ns   |
|                                | $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$         |                                                      | V                     | _                 |                       | tксү2/2<br>- 66       |                       | tксү2/2<br>- 66       |                  | ns   |

(Notes, Caution, and Remarks are listed on the next page.)



| Parameter        | Symbol |                | Conditions                                                                                                               |                                                                                       | speed | high-<br>main)<br>ode  |      | /-speed<br>Mode      | LV (low-<br>voltage main)<br>Mode |                      | Unit |
|------------------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|------------------------|------|----------------------|-----------------------------------|----------------------|------|
|                  |        |                |                                                                                                                          |                                                                                       | MIN.  | MAX.                   | MIN. | MAX.                 | MIN.                              | MAX.                 |      |
| Transfer<br>rate |        | Recep-<br>tion | $\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$               |                                                                                       |       | fмск/6<br>Note 1       |      | fмск/6<br>Note 1     |                                   | fмск/6<br>Note 1     | bps  |
|                  |        |                |                                                                                                                          | Theoretical value<br>of the maximum<br>transfer rate<br>$f_{MCK} = f_{CLK}^{Note 4}$  |       | 5.3                    |      | 1.3                  |                                   | 0.6                  | Mbps |
|                  |        |                | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$ |                                                                                       |       | fмск/6<br>Note 1       |      | fмск/6<br>Note 1     |                                   | fмск/6<br>Note 1     | bps  |
|                  |        |                |                                                                                                                          | Theoretical value<br>of the maximum<br>transfer rate<br>fмск = fclк <sup>Note 4</sup> |       | 5.3                    |      | 1.3                  |                                   | 0.6                  | Mbps |
|                  |        |                | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$<br>$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$ |                                                                                       |       | fMCK/6<br>Notes 1 to 3 |      | fMCK/6<br>Notes 1, 2 |                                   | fMCK/6<br>Notes 1, 2 | bps  |
|                  |        |                |                                                                                                                          | Theoretical value<br>of the maximum<br>transfer rate<br>fмск = fclк <sup>Note 4</sup> |       | 5.3                    |      | 1.3                  |                                   | 0.6                  | Mbps |

#### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T<sub>A</sub> = -40 to +85°C. 1.8 V $\leq$ EV<sub>DD0</sub> = EV<sub>DD1</sub> $\leq$ V<sub>DD</sub> $\leq$ 5.5 V. Vss = EV<sub>SS0</sub> = EV<sub>SS1</sub> = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with  $EV_{DD0} \ge V_b$ .
- 3. The following conditions are required for low voltage interface when  $E_{VDD0} < V_{DD}$ .

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$  : MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$  : MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode:  $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$ 

|                           | 16 MHz (2.4 V $\leq$ VDD $\leq$ 5.5 V)   |
|---------------------------|------------------------------------------|
| LS (low-speed main) mode: | 8 MHz (1.8 V $\leq$ V_{DD} $\leq$ 5.5 V) |

LV (low-voltage main) mode:  $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$ 

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.**  $V_{b}[V]$ : Communication line voltage
  - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
  - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.



|               |        |              | $\sqrt{DD0} = EVDD1 \le VDD \le$                                |                                                  |      |              | LS (low- |              | LV (low- |             | Unit |
|---------------|--------|--------------|-----------------------------------------------------------------|--------------------------------------------------|------|--------------|----------|--------------|----------|-------------|------|
| Parameter     | Symbol |              | Conditions                                                      |                                                  |      | high-        |          |              |          |             | Unit |
|               |        |              |                                                                 |                                                  |      | main)<br>ode | speed    | main)<br>ode |          | age<br>Mode |      |
|               |        |              |                                                                 |                                                  |      |              |          | 1            |          |             |      |
|               |        |              |                                                                 |                                                  | MIN. | MAX.         | MIN.     | MAX.         | MIN.     | MAX.        |      |
| Transfer rate |        | Transmission | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ |                                                  |      | Note         |          | Note         |          | Note        | bps  |
|               |        |              | $2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$                     |                                                  |      | 1            |          | 1            |          | 1           |      |
|               |        |              |                                                                 | Theoretical                                      |      | 2.8          |          | 2.8          |          | 2.8         | Mbps |
|               |        |              |                                                                 | value of the                                     |      | Note 2       |          | Note 2       |          | Note 2      |      |
|               |        |              |                                                                 | maximum                                          |      |              |          |              |          |             |      |
|               |        |              |                                                                 | transfer rate                                    |      |              |          |              |          |             |      |
|               |        |              |                                                                 | $C_b = 50 \text{ pF}, R_b =$                     |      |              |          |              |          |             |      |
|               |        |              |                                                                 | $1.4 \text{ k}\Omega, V_{\text{b}} = 2.7$        |      |              |          |              |          |             |      |
|               |        |              |                                                                 | V                                                |      |              |          |              |          |             |      |
|               |        |              | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$     |                                                  |      | Note         |          | Note         |          | Note        | bps  |
|               |        |              | $2.3~V \leq V_b \leq 2.7~V$                                     |                                                  |      | 3            |          | 3            |          | 3           |      |
|               |        |              |                                                                 | Theoretical                                      |      | 1.2          |          | 1.2          |          | 1.2         | Mbps |
|               |        |              |                                                                 | value of the                                     |      | Note 4       |          | Note 4       |          | Note 4      |      |
|               |        |              |                                                                 | maximum                                          |      |              |          |              |          |             |      |
|               |        |              |                                                                 | transfer rate                                    |      |              |          |              |          |             |      |
|               |        |              |                                                                 | $C_b = 50 \text{ pF}, R_b =$                     |      |              |          |              |          |             |      |
|               |        |              |                                                                 | $2.7 \text{ k}\Omega$ , V <sub>b</sub> = $2.3$   |      |              |          |              |          |             |      |
|               |        |              |                                                                 | V                                                |      |              |          |              |          |             |      |
|               |        |              | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$    |                                                  |      | Notes        |          | Notes        |          | Notes       | bps  |
|               |        |              | $1.6~V \leq V_b \leq 2.0~V$                                     |                                                  |      | 5, 6         |          | 5, 6         |          | 5, 6        |      |
|               |        |              |                                                                 | Theoretical                                      |      | 0.43         |          | 0.43         |          | 0.43        | Mbps |
|               |        |              |                                                                 | value of the                                     |      | Note 7       |          | Note 7       |          | Note 7      |      |
|               |        |              |                                                                 | maximum                                          |      |              |          |              |          |             |      |
|               |        |              |                                                                 | transfer rate                                    |      |              |          |              |          |             |      |
|               |        |              |                                                                 | $C_b = 50 \text{ pF}, R_b =$                     |      |              |          |              |          |             |      |
|               |        |              |                                                                 | $5.5 \text{ k}\Omega, \text{V}_{\text{b}} = 1.6$ |      |              |          |              |          |             |      |
|               |        |              |                                                                 | V                                                |      |              |          |              |          |             |      |

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) (TA = -40 to +85°C, 1.8 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, Vss = EVss0 = EVss1 = 0 V)

**Notes 1.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  EV  $_{DD0} \leq$  5.5 V and 2.7 V  $\leq$  V  $_{b} \leq$  4.0 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.



#### CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** R<sub>b</sub>[Ω]:Communication line (SOp) pull-up resistance, C<sub>b</sub>[F]: Communication line (SOp) load capacitance, V<sub>b</sub>[V]: Communication line voltage
  - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
  - 3. fмск: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
  - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.



#### (3) I<sup>2</sup>C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$ 

| Parameter                                          | Symbol  | Cor                                                  | nditions                                              |      | h-speed<br>Mode | LS (low<br>main) | /-speed<br>Mode | ,    | -voltage<br>Mode | Unit |
|----------------------------------------------------|---------|------------------------------------------------------|-------------------------------------------------------|------|-----------------|------------------|-----------------|------|------------------|------|
|                                                    |         |                                                      |                                                       | MIN. | MAX.            | MIN.             | MAX.            | MIN. | MAX.             |      |
| SCLA0 clock frequency                              | fscL    | Fast mode plus:<br>fc∟κ≥ 10 MHz                      | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$               | 0    | 1000            |                  | _               | _    | _                | kHz  |
| Setup time of restart condition                    | tsu:sta | $2.7 V \leq EV_{DD0} \leq 5.8$                       | $7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$ |      |                 | —                |                 | _    | -                | μS   |
| Hold time <sup>Note 1</sup>                        | thd:sta | $2.7 V \le EV_{DD0} \le 5.8$                         | $7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$ |      |                 | _                |                 | _    | _                | μS   |
| Hold time when SCLA0 =<br>"L"                      | t∟ow    | $2.7 V \leq EV_{DD0} \leq 5.8$                       | $7~V \leq EV_{\text{DD0}} \leq 5.5~V$                 |      |                 | —                |                 | _    |                  | μS   |
| Hold time when SCLA0 =<br>"H"                      | tніgн   | $2.7 V \leq EV_{DD0} \leq 5.5$                       | 5 V                                                   | 0.26 |                 | _                | _               | _    | -                | μS   |
| Data setup time<br>(reception)                     | tsu:dat | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$   | 5 V                                                   | 50   |                 | _                | _               | _    | _                | μS   |
| Data hold time<br>(transmission) <sup>Note 2</sup> | thd:dat | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.9$ | 5 V                                                   | 0    | 0.45            | _                | _               | _    | _                | μS   |
| Setup time of stop condition                       | tsu:sto | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$   | $.7~V \leq EV_{\text{DD0}} \leq 5.5~V$                |      |                 | _                | _               | _    | _                | μS   |
| Bus-free time                                      | tвuғ    | $2.7 V \le EV_{DD0} \le 5.8$                         | 5 V                                                   | 0.5  |                 | _                | _               | -    | _                | μS   |

<R>

**Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus:  $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ 

#### **IICA** serial transfer timing



**Remark** n = 0, 1



| Parameter | Symbol                |                        |                                       | Conditions                           |                         | MIN. | TYP. | MAX.  | Unit |
|-----------|-----------------------|------------------------|---------------------------------------|--------------------------------------|-------------------------|------|------|-------|------|
| Supply    | IDD2                  | HALT                   | HS (high-                             | fin = 32 MHz <sup>Note 4</sup>       | $V_{DD} = 5.0 V$        |      | 0.54 | 2.90  | mA   |
| Current   | Note 2                | mode                   | speed main)<br>mode <sup>Note 7</sup> |                                      | V <sub>DD</sub> = 3.0 V |      | 0.54 | 2.90  | mA   |
|           |                       |                        |                                       | fin = 24 MHz <sup>Note 4</sup>       | V <sub>DD</sub> = 5.0 V |      | 0.44 | 2.30  | mA   |
|           |                       |                        |                                       |                                      | V <sub>DD</sub> = 3.0 V |      | 0.44 | 2.30  | mA   |
|           |                       |                        |                                       | $f_{IH} = 16 \text{ MHz}^{Note 4}$   | $V_{DD} = 5.0 V$        |      | 0.40 | 1.70  | mA   |
|           |                       |                        |                                       |                                      | V <sub>DD</sub> = 3.0 V |      | 0.40 | 1.70  | mA   |
|           |                       |                        | HS (high-                             | $f_{MX} = 20 \text{ MHz}^{Note 3}$ , | Square wave input       |      | 0.28 | 1.90  | mA   |
|           |                       |                        | speed main)<br>mode <sup>Note 7</sup> | $V_{DD} = 5.0 V$                     | Resonator connection    |      | 0.45 | 2.00  | mA   |
|           |                       |                        |                                       | $f_{MX} = 20 \text{ MHz}^{Note 3}$ , | Square wave input       |      | 0.28 | 1.90  | mA   |
|           |                       |                        |                                       | $V_{DD} = 3.0 V$                     | Resonator connection    |      | 0.45 | 2.00  | mA   |
|           |                       |                        |                                       | $f_{MX} = 10 \text{ MHz}^{Note 3}$ , | Square wave input       |      | 0.19 | 1.02  | mA   |
|           |                       |                        |                                       | $V_{DD} = 5.0 V$                     | Resonator connection    |      | 0.26 | 1.10  | mA   |
|           |                       |                        |                                       | $f_{MX} = 10 \text{ MHz}^{Note 3}$ , | Square wave input       |      | 0.19 | 1.02  | mA   |
|           |                       |                        |                                       | $V_{DD} = 3.0 V$                     | Resonator connection    |      | 0.26 | 1.10  | mA   |
|           |                       | Subsystem              | fsub = 32.768 kHz <sup>Note 5</sup>   | Square wave input                    |                         | 0.25 | 0.57 | μA    |      |
|           |                       |                        | clock                                 | $T_A = -40^{\circ}C$                 | Resonator connection    |      | 0.44 | 0.76  | μA   |
|           |                       |                        | operation                             | fsub = 32.768 kHz <sup>Note 5</sup>  | Square wave input       |      | 0.30 | 0.57  | μA   |
|           |                       |                        |                                       | $T_A = +25^{\circ}C$                 | Resonator connection    |      | 0.49 | 0.76  | μA   |
|           |                       |                        |                                       | fsuв = 32.768 kHz <sup>Note 5</sup>  | Square wave input       |      | 0.37 | 1.17  | μA   |
|           |                       |                        |                                       | $T_A = +50^{\circ}C$                 | Resonator connection    |      | 0.56 | 1.36  | μA   |
|           |                       |                        |                                       | fsub = 32.768 kHz <sup>Note 5</sup>  | Square wave input       |      | 0.53 | 1.97  | μA   |
|           |                       |                        |                                       | $T_A = +70^{\circ}C$                 | Resonator connection    |      | 0.72 | 2.16  | μA   |
|           |                       |                        |                                       | fsub = 32.768 kHz <sup>Note 5</sup>  | Square wave input       |      | 0.82 | 3.37  | μA   |
|           |                       |                        |                                       | $T_A = +85^{\circ}C$                 | Resonator connection    |      | 1.01 | 3.56  | μA   |
|           |                       |                        |                                       | fsub = 32.768 kHz <sup>Note 5</sup>  | Square wave input       |      | 3.01 | 15.37 | μA   |
|           |                       |                        |                                       | $T_A = +105^{\circ}C$                | Resonator connection    |      | 3.20 | 15.56 | μA   |
|           | DD3 <sup>Note 6</sup> | STOP                   | $T_{\text{A}} = -40^{\circ}C$         |                                      |                         |      | 0.18 | 0.50  | μA   |
|           |                       | mode <sup>Note 8</sup> | $T_A = +25^{\circ}C$                  |                                      |                         |      | 0.23 | 0.50  | μA   |
|           |                       |                        | T <sub>A</sub> = +50°C                |                                      |                         |      | 0.30 | 1.10  | μA   |
|           |                       |                        | $T_A = +70^{\circ}C$                  |                                      |                         |      | 0.46 | 1.90  | μA   |
|           |                       |                        | $T_A = +85^{\circ}C$                  | с                                    |                         |      | 0.75 | 3.30  | μA   |
|           |                       | -                      | T <sub>A</sub> = +105°C               | ;                                    |                         |      | 2.94 | 15.30 | μA   |

#### (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = -40 to $+105^{\circ}$ C, 2.4 V $\leq EV_{DD0} \leq V_{DD} \leq 5.5$ V, Vss = EVss<sub>0</sub> = 0 V) (2/2)

(Notes and Remarks are listed on the next page.)



#### Simplified I<sup>2</sup>C mode mode connection diagram (during communication at same potential)



### Simplified I<sup>2</sup>C mode serial transfer timing (during communication at same potential)



- **Remarks 1.** R<sub>b</sub>[Ω]:Communication line (SDAr) pull-up resistance, C<sub>b</sub>[F]: Communication line (SDAr, SCLr) load capacitance
  - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
    h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
  - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)



# (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

| Parameter     | Symbol |                                      | Condit                                | ions                                                                                                         | HS (high-spee | ed main) Mode  | Unit |
|---------------|--------|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------|----------------|------|
|               |        |                                      |                                       |                                                                                                              | MIN.          | MAX.           |      |
| Transfer rate |        | Transmission                         | $4.0~V \leq EV_{\text{DD0}} \leq 5.5$ |                                                                                                              |               | Note 1         | bps  |
|               |        |                                      | V, $2.7~V \leq V_b \leq 4.0~V$        | Theoretical value of the maximum transfer rate                                                               |               | 2.6 Note 2     | Mbps |
|               |        |                                      |                                       | $\begin{array}{l} C_{b}=50 \; pF, \; R_{b}=1.4 \; k\Omega, \; V_{b}=2.7 \\ V \end{array} \label{eq:cb}$      |               |                |      |
|               |        | $2.7 \ V \leq EV_{\text{DD0}} < 4.0$ |                                       |                                                                                                              | Note 3        | bps            |      |
|               |        |                                      | V, $2.3~V \leq V_b \leq 2.7~V$        | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3$   |               | 1.2 Note 4     | Mbps |
|               |        |                                      | 2.4 V ≤ EV <sub>DD0</sub> < 3.3       | V                                                                                                            |               | Note 5         | bps  |
|               |        |                                      | V, $1.6~V \leq V_b \leq 2.0~V$        | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6$ V |               | 0.43<br>Note 6 | Mbps |

**Notes 1.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  EV \_DD0  $\leq$  5.5 V and 2.7 V  $\leq$  V \_b  $\leq$  4.0 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 [\%]$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V  $\leq$  EV\_{DD0} < 4.0 V and 2.4 V  $\leq$  V\_b  $\leq$  2.7 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.



# (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

| Parameter                                                | Symbol           | Conditions                                                                                                                                                                                                   |                                                      | HS (high-spee   | Unit          |    |
|----------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|---------------|----|
|                                                          |                  |                                                                                                                                                                                                              |                                                      | MIN.            | MAX.          |    |
| SCKp cycle time <sup>Note 1</sup>                        | <b>t</b> ксү2    | $\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \\ V, \end{array}$                                                                                                                                          | 24 MHz < fмск                                        | <b>28/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | $20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$        | <b>24/f</b> мск |               | ns |
|                                                          |                  | $2.7 \: V {\le} V_b {\le} 4.0 \: V$                                                                                                                                                                          | $8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$  | <b>20/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | $4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$   | <b>16/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | fмск $\leq$ 4 MHz                                    | <b>12/f</b> мск |               | ns |
|                                                          |                  | $\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \\ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$                                                                                                           | 24 MHz < fмск                                        | <b>40/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | $20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$        | <b>32/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | $16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$        | <b>28/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | $8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$  | 24/fмск         |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | $4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$   | <b>16/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | fмск $\leq$ 4 MHz                                    | <b>12/f</b> мск |               | ns |
|                                                          |                  | $2.4~V \leq EV_{DD0} < 3.3$                                                                                                                                                                                  | 24 MHz < fмск                                        | <b>96/f</b> мск |               | ns |
|                                                          |                  | V,                                                                                                                                                                                                           | $20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$        | <b>72/f</b> мск |               | ns |
|                                                          |                  | $1.6 V \le V_b \le 2.0 V$                                                                                                                                                                                    | $16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$ | <b>64/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | $8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$  | <b>52/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | $4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$   | <b>32/f</b> мск |               | ns |
|                                                          |                  |                                                                                                                                                                                                              | fмск $\leq$ 4 MHz                                    | 20/fмск         |               | ns |
| SCKp high-/low-level<br>width                            | tĸ∟2<br>-        |                                                                                                                                                                                                              |                                                      | tkcy2/2 - 24    |               | ns |
|                                                          |                  | $\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$                                                                                                             |                                                      | tkcy2/2 - 36    |               | ns |
|                                                          |                  | $\label{eq:VD0} \begin{array}{l} 2.4 \ V \leq EV_{D00} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{array}$                                                                              |                                                      | tkcy2/2 - 100   |               | ns |
| SIp setup time<br>(to SCKp↑) <sup>Note2</sup>            | 2<br>2<br>2<br>2 | $\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$                                                                                                      |                                                      | 1/fмск + 40     |               | ns |
|                                                          |                  | $\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$                                                                                              |                                                      | 1/fмск + 40     |               | ns |
|                                                          |                  | $\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$                                                                                                             |                                                      | 1/fмск + 60     |               | ns |
| SIp hold time<br>(from SCKp↑) <sup>№te 3</sup>           | tksi2            |                                                                                                                                                                                                              |                                                      | 1/fмск + 62     |               | ns |
| Delay time from SCKp↓<br>to SOp output <sup>Note 4</sup> | tkso2            | $ \begin{split} 4.0 \ V &\leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{split} $                                                          |                                                      |                 | 2/fмск + 240  | ns |
|                                                          |                  | $\label{eq:V_b_b_b_b_b_b_b} \begin{split} 2.7 \ V &\leq EV_{\text{DD0}} < 4.0 \ \text{V}, \ 2.3 \ \text{V} \leq V_b \leq 2.7 \ \text{V}, \\ C_b &= 30 \ \text{pF}, \ R_b = 2.7 \ \text{k}\Omega \end{split}$ |                                                      |                 | 2/fмск + 428  | ns |
|                                                          |                  |                                                                                                                                                                                                              | 3 V, 1.6 V $\leq$ Vb $\leq$ 2.0 V                    |                 | 2/fмск + 1146 | ns |

(Notes, Caution and Remarks are listed on the next page.)



## Simplified I<sup>2</sup>C mode connection diagram (during communication at different potential)



#### Simplified I<sup>2</sup>C mode serial transfer timing (during communication at different potential)



- Caution Select the TTL input buffer and the N-ch open drain output (V<sub>DD</sub> tolerance (for the 20- to 52-pin products)/EV<sub>DD</sub> tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V<sub>DD</sub> tolerance (for the 20- to 52-pin products)/EV<sub>DD</sub> tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R<sub>b</sub>[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C<sub>b</sub>[F]: Communication line (SDAr, SCLr) load capacitance, V<sub>b</sub>[V]: Communication line voltage
  - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
  - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)



# (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$ 

| Parameter                                  | Symbol        | Conditions       |                                | MIN. | TYP. | MAX.                               | Unit |
|--------------------------------------------|---------------|------------------|--------------------------------|------|------|------------------------------------|------|
| Resolution                                 | RES           |                  |                                |      | 8    |                                    | bit  |
| Conversion time                            | <b>t</b> CONV | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17   |      | 39                                 | μS   |
| Zero-scale error <sup>Notes 1, 2</sup>     | Ezs           | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±0.60                              | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE           | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±2.0                               | LSB  |
| Differential linearity error Note 1        | DLE           | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±1.0                               | LSB  |
| Analog input voltage                       | VAIN          |                  |                                | 0    |      | $V_{\text{BGR}}{}^{\text{Note 3}}$ | V    |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

### 3.6.2 Temperature sensor/internal reference voltage characteristics

#### (T<sub>A</sub> = -40 to $+105^{\circ}$ C, 2.4 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V, HS (high-speed main) mode)

| Parameter                         | Symbol  | Conditions                                         | MIN. | TYP. | MAX. | Unit  |
|-----------------------------------|---------|----------------------------------------------------|------|------|------|-------|
| Temperature sensor output voltage | VTMPS25 | Setting ADS register = 80H, TA = +25°C             |      | 1.05 |      | V     |
| Internal reference voltage        | VBGR    | Setting ADS register = 81H                         | 1.38 | 1.45 | 1.5  | V     |
| Temperature coefficient           | Fvtmps  | Temperature sensor that depends on the temperature |      | -3.6 |      | mV/°C |
| Operation stabilization wait time | tamp    |                                                    | 5    |      |      | μS    |



C<sub>2</sub>

# 4.5 32-pin Products

R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F101BFDNA, R5F101BGDNA R5F100BAGNA, R5F100BCGNA, R5F100BDGNA, R5F100BEGNA, R5F100BFGNA, R5F100BGGNA

| JEITA Package code | RENESAS code | Previous code  | MASS (TYP.)[g] |
|--------------------|--------------|----------------|----------------|
| P-HWQFN32-5x5-0.50 | PWQN0032KB-A | P32K8-50-3B4-5 | 0.06           |





A<sub>1</sub>





| Referance      | Dimens | ension in Millimeters |      |  |  |
|----------------|--------|-----------------------|------|--|--|
| Symbol         | Min    | Nom                   | Max  |  |  |
| D              | 4.95   | 5.00                  | 5.05 |  |  |
| E              | 4.95   | 5.00                  | 5.05 |  |  |
| А              |        |                       | 0.80 |  |  |
| A <sub>1</sub> | 0.00   |                       |      |  |  |
| b              | 0.18   | 0.25                  | 0.30 |  |  |
| е              |        | 0.50                  |      |  |  |
| Lp             | 0.30   | 0.40                  | 0.50 |  |  |
| х              |        |                       | 0.05 |  |  |
| у              |        |                       | 0.05 |  |  |
| ZD             |        | 0.75                  |      |  |  |
| Z <sub>E</sub> |        | 0.75                  | —    |  |  |
| C2             | 0.15   | 0.20                  | 0.25 |  |  |
| D <sub>2</sub> |        | 3.50                  |      |  |  |
| E <sub>2</sub> |        | 3.50                  |      |  |  |

©2013 Renesas Electronics Corporation. All rights reserved.

R01DS0131EJ0330 Rev.3.30 Mar 31, 2016

