



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Discontinued at Digi-Key                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 38                                                                              |
| Program Memory Size        | 64KB (64K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 4K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 12x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 52-LQFP                                                                         |
| Supplier Device Package    | 52-LQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101jedfa-v0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.2 List of Part Numbers





- **Notes** 1. Products only for "A: Consumer applications ( $T_A = -40$  to  $+85^{\circ}C$ )", and "G: Industrial applications ( $T_A = -40$  to  $+105^{\circ}C$ )"
  - **2.** Products only for "A: Consumer applications ( $T_A = -40$  to  $+85^{\circ}C$ )", and "D: Industrial applications ( $T_A = -40$  to  $+85^{\circ}C$ )"



#### Table 1-1. List of Ordering Part Numbers

| -       |                        |         |                  | (1/12)                                          |
|---------|------------------------|---------|------------------|-------------------------------------------------|
| Pin     | Package                | Data    | Fields of        | Ordering Part Number                            |
| count   |                        | flash   | Application Note |                                                 |
| 20 pins | 20-pin plastic LSSOP   | Mounted | А                | R5F1006AASP#V0, R5F1006CASP#V0, R5F1006DASP#V0, |
|         | (7.62 mm (300), 0.65   |         |                  | R5F1006EASP#V0                                  |
|         | mm pitch)              |         |                  | R5F1006AASP#X0, R5F1006CASP#X0, R5F1006DASP#X0, |
|         |                        |         |                  | R5F1006EASP#X0                                  |
|         |                        |         | D                | R5F1006ADSP#V0, R5F1006CDSP#V0, R5F1006DDSP#V0, |
|         |                        |         |                  | R5F1006EDSP#V0                                  |
|         |                        |         |                  | R5F1006ADSP#X0, R5F1006CDSP#X0, R5F1006DDSP#X0, |
|         |                        |         |                  | R5F1006EDSP#X0                                  |
|         |                        |         | G                | R5F1006AGSP#V0, R5F1006CGSP#V0, R5F1006DGSP#V0, |
|         |                        |         |                  | R5F1006EGSP#V0                                  |
|         |                        |         |                  | R5F1006AGSP#X0, R5F1006CGSP#X0, R5F1006DGSP#X0, |
|         |                        |         |                  | R5F1006EGSP#X0                                  |
|         |                        | Not     | А                | R5F1016AASP#V0, R5F1016CASP#V0, R5F1016DASP#V0, |
|         |                        | mounted |                  | R5F1016EASP#V0                                  |
|         |                        |         |                  | R5F1016AASP#X0, R5F1016CASP#X0, R5F1016DASP#X0, |
|         |                        |         |                  | R5F1016EASP#X0                                  |
|         |                        |         | D                | R5F1016ADSP#V0, R5F1016CDSP#V0, R5F1016DDSP#V0, |
|         |                        |         |                  | R5F1016EDSP#V0                                  |
|         |                        |         |                  | R5F1016ADSP#X0, R5F1016CDSP#X0, R5F1016DDSP#X0, |
|         |                        |         |                  | R5F1016EDSP#X0                                  |
| 24 pins | 24-pin plastic         | Mounted | А                | R5F1007AANA#U0, R5F1007CANA#U0, R5F1007DANA#U0, |
|         | HWQFN (4 $\times$ 4mm, |         |                  | R5F1007EANA#U0                                  |
|         | 0.5 mm pitch)          |         |                  | R5F1007AANA#W0, R5F1007CANA#W0, R5F1007DANA#W0, |
|         |                        |         |                  | R5F1007EANA#W0                                  |
|         |                        |         | D                | R5F1007ADNA#U0, R5F1007CDNA#U0, R5F1007DDNA#U0, |
|         |                        |         |                  | R5F1007EDNA#U0                                  |
|         |                        |         |                  | R5F1007ADNA#W0, R5F1007CDNA#W0, R5F1007DDNA#W0, |
|         |                        |         |                  | R5F1007EDNA#W0                                  |
|         |                        |         | G                | R5F1007AGNA#U0, R5F1007CGNA#U0, R5F1007DGNA#U0, |
|         |                        |         |                  | R5F1007EGNA#U0                                  |
|         |                        |         |                  | R5F1007AGNA#W0, R5F1007CGNA#W0, R5F1007DGNA#W0, |
|         |                        |         |                  | R5F1007EGNA#W0                                  |
|         |                        | Not     | А                | R5F1017AANA#U0, R5F1017CANA#U0, R5F1017DANA#U0, |
|         |                        | mounted |                  | R5F1017EANA#U0                                  |
|         |                        |         |                  | R5F1017AANA#W0, R5F1017CANA#W0, R5F1017DANA#W0, |
|         |                        |         |                  | R5F1017EANA#W0                                  |
|         |                        |         | D                | R5F1017ADNA#U0, R5F1017CDNA#U0, R5F1017DDNA#U0, |
|         |                        |         |                  | R5F1017EDNA#U0                                  |
|         |                        |         |                  | R5F1017ADNA#W0, R5F1017CDNA#W0, R5F1017DDNA#W0, |
|         |                        |         |                  | R5F1017EDNA#W0                                  |

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

|                      |                      |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                                                      |                                                                |                    | (2/2)    |  |  |  |
|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|--------------------|----------|--|--|--|
| Ite                  | ۰m                   | 80-                                                                                                                                                                                                                                                                                                                                          | pin                                                                                                                                                                                                                                                                                 | 100                                                                  | -pin                                                           | 128                | -pin     |  |  |  |
|                      |                      | R5F100Mx                                                                                                                                                                                                                                                                                                                                     | R5F101Mx                                                                                                                                                                                                                                                                            | R5F100Px                                                             | R5F101Px                                                       | R5F100Sx           | R5F101Sx |  |  |  |
| Clock output/buzz    | er output            | ;                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                   | :                                                                    | 2                                                              |                    | 2        |  |  |  |
|                      |                      | <ul> <li>2.44 kHz, 4.8<br/>(Main system)</li> <li>256 Hz, 512 H<br/>(Subsystem c)</li> </ul>                                                                                                                                                                                                                                                 | <ul> <li>2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz<br/>(Main system clock: fmain = 20 MHz operation)</li> <li>256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz<br/>(Subsystem clock: fsuB = 32.768 kHz operation)</li> </ul> |                                                                      |                                                                |                    |          |  |  |  |
| 8/10-bit resolution  | A/D converter        | 17 channels                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     | 20 channels                                                          |                                                                | 26 channels        |          |  |  |  |
| Serial interface     |                      | [80-pin, 100-pin                                                                                                                                                                                                                                                                                                                             | , 128-pin product                                                                                                                                                                                                                                                                   | ts]                                                                  |                                                                |                    |          |  |  |  |
|                      |                      | <ul> <li>CSI: 2 channe</li> </ul>                                                                                                                                                                                                                | els/simplified l <sup>2</sup> C:<br>els/simplified l <sup>2</sup> C:<br>els/simplified l <sup>2</sup> C:<br>els/simplified l <sup>2</sup> C:                                                                                                                                        | 2 channels/UAR<br>2 channels/UAR<br>2 channels/UAR<br>2 channels/UAR | T: 1 channel<br>T: 1 channel<br>T (UART suppor<br>T: 1 channel | ting LIN-bus): 1 c | hannel   |  |  |  |
|                      | I <sup>2</sup> C bus | 2 channels                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     | 2 channels                                                           |                                                                | 2 channels         |          |  |  |  |
| Multiplier and divid | der/multiply-        | • 16 bits × 16 bit                                                                                                                                                                                                                                                                                                                           | ts = 32 bits (Unsi                                                                                                                                                                                                                                                                  | igned or signed)                                                     |                                                                |                    |          |  |  |  |
| accumulator          |                      | • 32 bits ÷ 32 bits = 32 bits (Unsigned)                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                      |                                                                |                    |          |  |  |  |
|                      |                      | • 16 bits × 16 bit                                                                                                                                                                                                                                                                                                                           | • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)                                                                                                                                                                                                                        |                                                                      |                                                                |                    |          |  |  |  |
| DMA controller       |                      | 4 channels                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                      |                                                                |                    |          |  |  |  |
| Vectored             | Internal             | з                                                                                                                                                                                                                                                                                                                                            | 37                                                                                                                                                                                                                                                                                  | 37                                                                   |                                                                | 2                  | 41       |  |  |  |
| interrupt sources    | External             | 13 13 13                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                      |                                                                |                    | 13       |  |  |  |
| Key interrupt        | -                    | ;                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                   | 8                                                                    |                                                                |                    | 8        |  |  |  |
| Reset                |                      | <ul> <li>Reset by RESET pin</li> <li>Internal reset by watchdog timer</li> <li>Internal reset by power-on-reset</li> <li>Internal reset by voltage detector</li> <li>Internal reset by illegal instruction execution <sup>Note</sup></li> <li>Internal reset by RAM parity error</li> <li>Internal reset by illegal-memory access</li> </ul> |                                                                                                                                                                                                                                                                                     |                                                                      |                                                                |                    |          |  |  |  |
| Power-on-reset ci    | rcuit                | <ul> <li>Power-on-reset: 1.51 V (TYP.)</li> <li>Power-down-reset: 1.50 V (TYP.)</li> </ul>                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                      |                                                                |                    |          |  |  |  |
| Voltage detector     |                      | Rising edge : 1.67 V to 4.06 V (14 stages)     Falling edge : 1.63 V to 3.98 V (14 stages)                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                      |                                                                |                    |          |  |  |  |
| On-chip debug fur    | nction               | Provided                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                      |                                                                |                    |          |  |  |  |
| Power supply volt    | age                  | $V_{DD} = 1.6 \text{ to } 5.5$                                                                                                                                                                                                                                                                                                               | V ( $T_A = -40$ to +8                                                                                                                                                                                                                                                               | 5°C)                                                                 |                                                                |                    |          |  |  |  |
|                      |                      | $V_{DD} = 2.4$ to 5.5                                                                                                                                                                                                                                                                                                                        | V ( $T_{A} = -40$ to +1                                                                                                                                                                                                                                                             | 05°C)                                                                |                                                                |                    |          |  |  |  |
| Operating ambien     | t temperature        | $T_A = 40 \text{ to } +85^{\circ}0$                                                                                                                                                                                                                                                                                                          | C (A: Consumer                                                                                                                                                                                                                                                                      | applications, D: Ir                                                  | ndustrial applicat                                             | ions)              |          |  |  |  |
|                      |                      | T <sub>A</sub> = 40 to +105                                                                                                                                                                                                                                                                                                                  | °C (G: Industrial                                                                                                                                                                                                                                                                   | applications)                                                        |                                                                |                    |          |  |  |  |

<R>

**Note** The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.



## 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications  $T_A = -40$  to  $+85^{\circ}C$ 

R5F100xxAxx, R5F101xxAxx

- D: Industrial applications  $T_A = -40$  to  $+85^{\circ}C$ R5F100xxDxx, R5F101xxDxx
- G: Industrial applications when  $T_A = -40$  to  $+105^{\circ}$ C products is used in the range of  $T_A = -40$  to  $+85^{\circ}$ C

R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
  - 2. With products not provided with an EV<sub>DD0</sub>, EV<sub>DD1</sub>, EV<sub>SS0</sub>, or EV<sub>SS1</sub> pin, replace EV<sub>DD0</sub> and EV<sub>DD1</sub> with V<sub>DD</sub>, or replace EV<sub>SS0</sub> and EV<sub>SS1</sub> with V<sub>SS</sub>.
  - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.



| Items                          | Symbol | Conditio                                                                                                                                                                                   | ns                     |                                             | MIN. | TYP. | MAX. | Unit |
|--------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|------|------|------|------|
| Input leakage<br>current, high | ILIH1  | P00 to P07, P10 to P17,<br>P30 to P37, P40 to P47,<br>P50 to P57, P60 to P67,<br>P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106,<br>P110 to P117, P120,<br>P125 to P127, P140 to P147 | VI = EVDDO             |                                             |      |      | 1    | μA   |
|                                | ILIH2  | P20 to P27, P1 <u>37,</u><br>P150 to P156, RESET                                                                                                                                           | VI = VDD               |                                             |      |      | 1    | μA   |
|                                | Іцнз   | P121 to P124<br>(X1, X2, XT1, XT2, EXCLK,<br>EXCLKS)                                                                                                                                       | $V_{I} = V_{DD}$       | In input port or<br>external clock<br>input |      |      | 1    | μA   |
|                                |        |                                                                                                                                                                                            |                        | In resonator connection                     |      |      | 10   | μΑ   |
| Input leakage<br>current, low  | ILIL1  | P00 to P07, P10 to P17,<br>P30 to P37, P40 to P47,<br>P50 to P57, P60 to P67,<br>P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106,<br>P110 to P117, P120,<br>P125 to P127, P140 to P147 | VI = EV <sub>SS0</sub> |                                             |      |      | -1   | μA   |
|                                | Ilil2  | P20 to P27, P137,<br>P150 to P156, RESET                                                                                                                                                   | VI = Vss               |                                             |      |      | -1   | μA   |
|                                | Ilili  | P121 to P124<br>(X1, X2, XT1, XT2, EXCLK,<br>EXCLKS)                                                                                                                                       | VI = VSS               | In input port or<br>external clock<br>input |      |      | -1   | μA   |
|                                |        |                                                                                                                                                                                            |                        | In resonator connection                     |      |      | -10  | μA   |
| On-chip pll-up<br>resistance   | Ru     | P00 to P07, P10 to P17,<br>P30 to P37, P40 to P47,<br>P50 to P57, P64 to P67,<br>P70 to P77, P80 to P87,<br>P90 to P97, P100 to P106,<br>P110 to P117, P120,<br>P125 to P127, P140 to P147 | VI = EVsso             | , In input port                             | 10   | 20   | 100  | kΩ   |

## $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (5/5)

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



- **Notes 1.** Total current flowing into V<sub>DD</sub> and EV<sub>DD0</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub>, EV<sub>DD0</sub> or V<sub>SS</sub>, EV<sub>SS0</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 3. When high-speed system clock and subsystem clock are stopped.
  - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
  - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V  $\leq$  V\_DD  $\leq$  5.5 V@1 MHz to 32 MHz

2.4 V  $\leq$  V\_{DD}  $\leq$  5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode:  $1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1$  MHz to 8 MHz

LV (low-voltage main) mode: 1.6 V  $\leq$  V\_DD  $\leq$  5.5 V@1 MHz to 4 MHz

- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation, temperature condition of the TYP. value is  $T_A = 25^{\circ}C$





TCY vs VDD (LS (low-speed main) mode)



## Simplified I<sup>2</sup>C mode mode connection diagram (during communication at same potential)



## Simplified I<sup>2</sup>C mode serial transfer timing (during communication at same potential)



- **Remarks 1.** R<sub>b</sub>[Ω]:Communication line (SDAr) pull-up resistance, C<sub>b</sub>[F]: Communication line (SDAr, SCLr) load capacitance
  - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
    h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
  - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)



## (2) I<sup>2</sup>C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ 

| Parameter                        | Symbol       | Conditions                                                     |                                         | Conditions HS (high-speed main) Mode |      | LS (low-speed main) Mode |      | LV (low-voltage main) Mode |      | Unit |
|----------------------------------|--------------|----------------------------------------------------------------|-----------------------------------------|--------------------------------------|------|--------------------------|------|----------------------------|------|------|
|                                  |              |                                                                |                                         | MIN.                                 | MAX. | MIN.                     | MAX. | MIN.                       | MAX. |      |
| SCLA0 clock frequency            | fsc∟         | Fast mode:                                                     | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$ | 0                                    | 400  | 0                        | 400  | 0                          | 400  | kHz  |
|                                  |              | fc∟κ≥ 3.5 MHz                                                  | $1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$ | 0                                    | 400  | 0                        | 400  | 0                          | 400  | kHz  |
| Setup time of restart            | tsu:sta      | $2.7 V \le EV_{DD0} \le 5.5$                                   | 5 V                                     | 0.6                                  |      | 0.6                      |      | 0.6                        |      | μS   |
| condition                        |              | $1.8 V \le EV_{DD0} \le 5.8$                                   | 5 V                                     | 0.6                                  |      | 0.6                      |      | 0.6                        |      | μS   |
| Hold time <sup>Note 1</sup>      | thd:sta      | $2.7 V \le EV_{DD0} \le 5.3$                                   | 5 V                                     | 0.6                                  |      | 0.6                      |      | 0.6                        |      | μS   |
|                                  |              | $1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V$                    |                                         | 0.6                                  |      | 0.6                      |      | 0.6                        |      | μS   |
| Hold time when SCLA0 =           | t∟ow         | $2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$                        |                                         | 1.3                                  |      | 1.3                      |      | 1.3                        |      | μs   |
| "L"                              |              | $1.8~V \le EV_{\text{DD0}} \le 5.5~V$                          |                                         | 1.3                                  |      | 1.3                      |      | 1.3                        |      | μs   |
| Hold time when SCLA0 =           | tніgн        | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ |                                         | 0.6                                  |      | 0.6                      |      | 0.6                        |      | μS   |
| "H"                              |              | $1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$                        |                                         | 0.6                                  |      | 0.6                      |      | 0.6                        |      | μs   |
| Data setup time                  | tsu:dat      | $2.7 V \le EV_{DD0} \le 5.9$                                   | 5 V                                     | 100                                  |      | 100                      |      | 100                        |      | μs   |
| (reception)                      |              | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ |                                         | 100                                  |      | 100                      |      | 100                        |      | μS   |
| Data hold time                   | thd:dat      | $2.7 V \le EV_{DD0} \le 5.9$                                   | 5 V                                     | 0                                    | 0.9  | 0                        | 0.9  | 0                          | 0.9  | μS   |
| (transmission) <sup>Note 2</sup> |              | $1.8 V \le EV_{DD0} \le 5.9$                                   | 5 V                                     | 0                                    | 0.9  | 0                        | 0.9  | 0                          | 0.9  | μs   |
| Setup time of stop               | tsu:sto      | $2.7 V \le EV_{DD0} \le 5.9$                                   | 5 V                                     | 0.6                                  |      | 0.6                      |      | 0.6                        |      | μS   |
| condition                        |              | $1.8 V \le EV_{DD0} \le 5.9$                                   | 5 V                                     | 0.6                                  |      | 0.6                      |      | 0.6                        |      | μS   |
| Bus-free time                    | <b>t</b> BUF | $2.7 V \le EV_{DD0} \le 5.8$                                   | 5 V                                     | 1.3                                  |      | 1.3                      |      | 1.3                        |      | μS   |
|                                  |              | $1.8 V \le EV_{DD0} \le 5.8$                                   | 5 V                                     | 1.3                                  |      | 1.3                      |      | 1.3                        |      | μs   |

**Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode:  $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ 



# (2) When reference voltage (+) = AV<sub>REFP</sub>/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV<sub>REFM</sub>/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

| $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}_{\text{SS1}} = 0 \text{ V}_{$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Parameter                                | Symbol                                                                            | Conditi                                   | ons                                                                                               | MIN.   | TYP. | MAX.                | Unit |
|------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------|--------|------|---------------------|------|
| Resolution                               | RES                                                                               |                                           |                                                                                                   | 8      |      | 10                  | bit  |
| Overall error <sup>Note 1</sup>          | AINL                                                                              | 10-bit resolution                         | $1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$                                                          |        | 1.2  | ±5.0                | LSB  |
|                                          |                                                                                   | $EVDD0 = AV_{REFP} = V_{DD}^{Notes 3, 4}$ | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note}}$                                            |        | 1.2  | ±8.5                | LSB  |
| Conversion time                          | tCONV                                                                             | 10-bit resolution                         | $3.6~V \leq V \text{DD} \leq 5.5~V$                                                               | 2.125  |      | 39                  | μs   |
|                                          |                                                                                   | Target ANI pin : ANI16 to<br>ANI26        | $2.7~V \leq V \text{DD} \leq 5.5~V$                                                               | 3.1875 |      | 39                  | μs   |
|                                          |                                                                                   |                                           | $1.8~V \leq V \text{DD} \leq 5.5~V$                                                               | 17     |      | 39                  | μs   |
|                                          |                                                                                   |                                           | $1.6~V \leq V \text{DD} \leq 5.5~V$                                                               | 57     |      | 95                  | μs   |
| Zero-scale error <sup>Notes 1, 2</sup>   | Ezs                                                                               | 10-bit resolution                         | $1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$                                                          |        |      | ±0.35               | %FSR |
|                                          |                                                                                   | $EVDD0 = AV_{REFP} = V_{DD}$ Notes 5, 4   | $\begin{array}{l} 1.6 \ V \leq AV_{\text{REFP}} \leq 5.5 \ V^{\text{Note}} \\ {}_{5} \end{array}$ |        |      | ±0.60               | %FSR |
| Full-scale error <sup>Notes 1, 2</sup>   | Ers                                                                               | 10-bit resolution                         | $1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$                                                          |        |      | ±0.35               | %FSR |
|                                          |                                                                                   | EVDD0 = AVREFP = VDD NOTES 3, 4           | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note}}$                                            |        |      | ±0.60               | %FSR |
| Integral linearity error <sup>Note</sup> | ILE                                                                               | 10-bit resolution                         | $1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$                                                          |        |      | ±3.5                | LSB  |
| 1                                        |                                                                                   | $EVDD0 = AV_{REFP} = V_{DD}^{Notes 3,4}$  | $\begin{array}{l} 1.6 \ V \leq AV_{\text{REFP}} \leq 5.5 \ V^{\text{Note}} \\ {}_5 \end{array}$   |        |      | ±6.0                | LSB  |
| Differential linearity                   | DLE                                                                               | 10-bit resolution                         | $1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$                                                          |        |      | ±2.0                | LSB  |
| error <sup>Note 1</sup>                  | Dr <sup>Note 1</sup> EVDD0 = AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note</sup> |                                           | $1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note}}$                                            |        |      | ±2.5                | LSB  |
| Analog input voltage                     | VAIN                                                                              | ANI16 to ANI26                            |                                                                                                   | 0      |      | AVREFP<br>and EVDD0 | V    |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV<sub>REFP</sub> < V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add  $\pm 1.0$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add  $\pm 0.05\%$ FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add  $\pm 0.5$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
- 4. When AV<sub>REFP</sub> < EV<sub>DD0</sub> ≤ V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
- 5. When the conversion time is set to 57  $\mu$ s (min.) and 95  $\mu$ s (max.).



# (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV<sub>REFM</sub>/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{BGR}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}^{\text{Note 4}}, \text{HS (high-speed main) mode)}$ 

| Parameter                                  | Symbol        | Cond             | MIN.                           | TYP. | MAX. | Unit                               |      |
|--------------------------------------------|---------------|------------------|--------------------------------|------|------|------------------------------------|------|
| Resolution                                 | RES           |                  |                                |      | 8    |                                    | bit  |
| Conversion time                            | <b>t</b> CONV | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17   |      | 39                                 | μs   |
| Zero-scale error <sup>Notes 1, 2</sup>     | Ezs           | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±0.60                              | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE           | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±2.0                               | LSB  |
| Differential linearity error Note 1        | DLE           | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±1.0                               | LSB  |
| Analog input voltage                       | VAIN          |                  |                                | 0    |      | $V_{\text{BGR}}{}^{\text{Note 3}}$ | V    |

Notes 1. Excludes quantization error ( $\pm 1/2$  LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

**4.** When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add  $\pm 0.35\%$ FSR to the MAX. value when reference voltage (-) = AV<sub>REFM</sub>. Integral linearity error: Add  $\pm 0.5$  LSB to the MAX. value when reference voltage (-) = AV<sub>REFM</sub>. Differential linearity error: Add  $\pm 0.2$  LSB to the MAX. value when reference voltage (-) = AV<sub>REFM</sub>.



## 2.8 Flash Memory Programming Characteristics

| Parameter                                      | Symbol | Conditions                         | MIN.    | TYP.      | MAX. | Unit  |
|------------------------------------------------|--------|------------------------------------|---------|-----------|------|-------|
| CPU/peripheral hardware clock frequency        | fс∟к   | $1.8~V \leq V\text{dd} \leq 5.5~V$ | 1       |           | 32   | MHz   |
| Number of code flash rewrites<br>Notes 1, 2, 3 | Cerwr  | Retained for 20 years<br>TA = 85°C | 1,000   |           |      | Times |
| Number of data flash rewrites<br>Notes 1, 2, 3 |        | Retained for 1 years<br>TA = 25°C  |         | 1,000,000 |      |       |
|                                                |        | Retained for 5 years<br>Ta = 85°C  | 100,000 |           |      |       |
|                                                |        | Retained for 20 years<br>TA = 85°C | 10,000  |           |      |       |

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ 

**Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

## 2.9 Dedicated Flash Memory Programmer Communication (UART)

#### $(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

| Parameter     | Symbol | Conditions                | MIN.    | TYP. | MAX.      | Unit |
|---------------|--------|---------------------------|---------|------|-----------|------|
| Transfer rate |        | During serial programming | 115,200 |      | 1,000,000 | bps  |



| Parameter         | Symbol | ,                |                                       | Conditions                                 | ,                    |                         | MIN. | TYP. | ,<br>MAX. | Unit |
|-------------------|--------|------------------|---------------------------------------|--------------------------------------------|----------------------|-------------------------|------|------|-----------|------|
| Supply            |        | Operating        | HS (high-                             | fin = 32 MHz <sup>Note 3</sup>             | Basic                | V <sub>DD</sub> = 5.0 V |      | 2.3  |           | mA   |
| Current<br>Note 1 |        | mode             | speed main)<br>mode <sup>Note 5</sup> |                                            | operatio<br>n        | V <sub>DD</sub> = 3.0 V |      | 2.3  |           | mA   |
|                   |        |                  |                                       |                                            | Normal               | $V_{DD} = 5.0 V$        |      | 5.2  | 9.2       | mA   |
|                   |        |                  |                                       | operatio<br>n                              | VDD = 3.0 V          |                         | 5.2  | 9.2  | mA        |      |
|                   |        |                  |                                       | $f_{IH} = 24 \text{ MHz}^{Note 3}$         | Normal               | $V_{DD} = 5.0 V$        |      | 4.1  | 7.0       | mA   |
|                   |        |                  |                                       |                                            | operatio<br>n        | VDD = 3.0 V             |      | 4.1  | 7.0       | mA   |
|                   |        |                  |                                       | $f_{IH} = 16 \text{ MHz}^{Note 3}$         | Normal               | $V_{DD} = 5.0 V$        |      | 3.0  | 5.0       | mA   |
|                   |        |                  |                                       |                                            | operatio<br>n        | V <sub>DD</sub> = 3.0 V |      | 3.0  | 5.0       | mA   |
|                   |        |                  | HS (high-                             | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal               | Square wave input       |      | 3.4  | 5.9       | mA   |
|                   |        |                  | speed main)<br>mode <sup>Note 5</sup> | $V_{DD} = 5.0 V$                           | operatio<br>n        | Resonator connection    |      | 3.6  | 6.0       | mA   |
|                   |        |                  |                                       | $f_{MX} = 20 \text{ MHz}^{Note 2},$        | Normal               | Square wave input       |      | 3.4  | 5.9       | mA   |
|                   |        | $V_{DD} = 3.0 V$ | operatio<br>n                         | Resonator connection                       |                      | 3.6                     | 6.0  | mA   |           |      |
|                   |        |                  | $f_{MX} = 10 \text{ MHz}^{Note 2},$   | Normal                                     | Square wave input    |                         | 2.1  | 3.5  | mA        |      |
|                   |        |                  | $V_{DD} = 5.0 V$                      | operatio<br>n                              | Resonator connection |                         | 2.1  | 3.5  | mA        |      |
|                   |        |                  |                                       | $f_{MX} = 10 \text{ MHz}^{Note 2},$        | Normal               | Square wave input       |      | 2.1  | 3.5       | mA   |
|                   |        |                  |                                       | $V_{DD} = 3.0 V$                           | operatio<br>n        | Resonator<br>connection |      | 2.1  | 3.5       | mA   |
|                   |        |                  | Subsystem                             | fsuв = 32.768 kHz                          | Normal               | Square wave input       |      | 4.8  | 5.9       | μA   |
|                   |        |                  | clock<br>operation                    | $T_A = -40^{\circ}C$                       | operatio<br>n        | Resonator connection    |      | 4.9  | 6.0       | μA   |
|                   |        |                  |                                       | fsuв = 32.768 kHz                          | Normal               | Square wave input       |      | 4.9  | 5.9       | μA   |
|                   |        |                  |                                       | $T_{A} = +25^{\circ}C$                     | operatio<br>n        | Resonator connection    |      | 5.0  | 6.0       | μA   |
|                   |        |                  |                                       | fsuв = 32.768 kHz                          | Normal               | Square wave input       |      | 5.0  | 7.6       | μA   |
|                   |        |                  |                                       | $T_{A} = +50^{\circ}C$                     | operatio<br>n        | Resonator connection    |      | 5.1  | 7.7       | μA   |
|                   |        |                  |                                       | fsuв = 32.768 kHz                          | Normal               | Square wave input       |      | 5.2  | 9.3       | μA   |
|                   |        |                  |                                       | Note 4<br>$T_A = \pm 70^{\circ}C$          | operatio<br>n        | Resonator               |      | 5.3  | 9.4       | μA   |
|                   |        |                  |                                       | $IA = +70^{\circ} \text{C}$                | Normal               | Square wave input       |      | 5.7  | 13.3      | //A  |
|                   |        | Note 4           | operatio                              | Resonator                                  |                      | 5.8                     | 13.4 | μA   |           |      |
|                   |        |                  |                                       | T <sub>A</sub> = +85°C                     | n                    | connection              |      |      |           | -    |
|                   |        |                  |                                       | fsub = 32.768 kHz                          | Hz Normal            | Square wave input       |      | 10.0 | 46.0      | μA   |
|                   |        |                  |                                       | T <sub>A</sub> = +105°C                    | n                    | Resonator<br>connection |      | 10.0 | 46.0      | μA   |

| (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products                                                                                                      |                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ | $V_{\rm VSS} = EV_{\rm SS0} = EV_{\rm SS1} = 0 V$ (1/2) |

(Notes and Remarks are listed on the next page.)



- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. During HALT instruction execution by flash memory.
  - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
  - 4. When high-speed system clock and subsystem clock are stopped.
  - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
  - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
  - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V  $\leq$  V\_DD  $\leq$  5.5 V@1 MHz to 32 MHz 2.4 V  $\leq$  V\_DD  $\leq$  5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: High-speed on-chip oscillator clock frequency
  - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is  $T_A = 25^{\circ}C$



## **TI/TO Timing**





- **Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).
  - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
  - $\label{eq:scalar} \begin{array}{l} \textbf{3. When } AV_{\text{REFP}} < V_{\text{DD}} \text{, the MAX. values are as follows.} \\ \text{Overall error: } Add \pm 1.0 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Zero-scale error/Full-scale error: } Add \pm 0.05\%\text{FSR} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Integral linearity error/ Differential linearity error: } Add \pm 0.5 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \end{array}$
  - 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.



(2) When reference voltage (+) = AV<sub>REFP</sub>/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV<sub>REFM</sub>/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$ Reference voltage (+) = AV\_{\text{REFP}}, Reference voltage (-) = AV\_{\text{REFM}} = 0 \text{ V})

| Parameter                                  | Symbol        | Conditior                                                                                                                                         | MIN.                                                                                     | TYP.   | MAX. | Unit                   |      |
|--------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------|------|------------------------|------|
| Resolution                                 | RES           |                                                                                                                                                   |                                                                                          | 8      |      | 10                     | bit  |
| Overall error <sup>Note 1</sup>            | AINL          | $\begin{array}{l} \mbox{10-bit resolution} \\ EV_{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}}  {}^{\text{Notes 3, 4}} \end{array}$                 | $\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$               |        | 1.2  | ±5.0                   | LSB  |
| Conversion time                            | <b>t</b> CONV | 10-bit resolution                                                                                                                                 | $3.6~V \leq V \text{DD} \leq 5.5~V$                                                      | 2.125  |      | 39                     | μS   |
|                                            |               | Target pin : ANI16 to ANI26                                                                                                                       | $2.7~V \leq V\text{DD} \leq 5.5~V$                                                       | 3.1875 |      | 39                     | μs   |
|                                            |               |                                                                                                                                                   | $2.4~V \leq V\text{DD} \leq 5.5~V$                                                       | 17     |      | 39                     | μS   |
| Zero-scale error <sup>Notes 1, 2</sup>     | Ezs           | $\begin{array}{l} 10\text{-bit resolution} \\ EV\text{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \end{array} \end{array} \label{eq:expansion}$ | $\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$ |        |      | ±0.35                  | %FSR |
| Full-scale error <sup>Notes 1, 2</sup>     | Efs           | $\begin{array}{l} \text{10-bit resolution} \\ \text{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \end{array} \end{array}$                      | $\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$ |        |      | ±0.35                  | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE           | $\begin{array}{l} \mbox{10-bit resolution} \\ EV \mbox{DD0} \leq A V_{\text{REFP}} = V_{\text{DD}} ^{\text{Notes 3, 4}} \end{array}$              | $\begin{array}{l} 2.4 \ V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$               |        |      | ±3.5                   | LSB  |
| Differential linearity error               | DLE           | $\label{eq:loss} \begin{array}{l} 10\text{-bit resolution} \\ EV \text{DD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \end{array} \end{array}$     | $\begin{array}{l} 2.4 \hspace{0.1 cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$ |        |      | ±2.0                   | LSB  |
| Analog input voltage                       | Vain          | ANI16 to ANI26                                                                                                                                    |                                                                                          | 0      |      | AVREFP<br>and<br>EVDD0 | V    |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV<sub>REFP</sub> < V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
   When AV<sub>REFP</sub> < EV<sub>DD0</sub> ≤ V<sub>DD</sub>, the MAX. values are as follows.
- 4. When AVREFP < EVDDO S VDD, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.



#### 3.6.4 LVD circuit characteristics

## LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V)

| Parameter            |                      | Symbol | Conditions             | MIN. | TYP. | MAX. | Unit |
|----------------------|----------------------|--------|------------------------|------|------|------|------|
| Detection            | Supply voltage level | VLVDO  | Power supply rise time | 3.90 | 4.06 | 4.22 | V    |
| voltage              |                      |        | Power supply fall time | 3.83 | 3.98 | 4.13 | V    |
|                      |                      | VLVD1  | Power supply rise time | 3.60 | 3.75 | 3.90 | V    |
|                      |                      |        | Power supply fall time | 3.53 | 3.67 | 3.81 | V    |
|                      |                      | VLVD2  | Power supply rise time | 3.01 | 3.13 | 3.25 | ۷    |
|                      |                      |        | Power supply fall time | 2.94 | 3.06 | 3.18 | V    |
|                      |                      | VLVD3  | Power supply rise time | 2.90 | 3.02 | 3.14 | V    |
|                      |                      |        | Power supply fall time | 2.85 | 2.96 | 3.07 | V    |
|                      |                      | VLVD4  | Power supply rise time | 2.81 | 2.92 | 3.03 | V    |
|                      |                      |        | Power supply fall time | 2.75 | 2.86 | 2.97 | V    |
|                      |                      | VLVD5  | Power supply rise time | 2.70 | 2.81 | 2.92 | V    |
|                      |                      |        | Power supply fall time | 2.64 | 2.75 | 2.86 | V    |
|                      |                      | VLVD6  | Power supply rise time | 2.61 | 2.71 | 2.81 | V    |
|                      |                      |        | Power supply fall time | 2.55 | 2.65 | 2.75 | V    |
|                      |                      | VLVD7  | Power supply rise time | 2.51 | 2.61 | 2.71 | V    |
|                      |                      |        | Power supply fall time | 2.45 | 2.55 | 2.65 | V    |
| Minimum pulse width  |                      | t∟w    |                        | 300  |      |      | μS   |
| Detection delay time |                      |        |                        |      |      | 300  | μs   |

## LVD Detection Voltage of Interrupt & Reset Mode

## (TA = -40 to +105°C, VPDR $\leq$ VDD $\leq$ 5.5 V, Vss = 0 V)

| Parameter           | Symbol |        | Cond                   | litions                      | MIN. | TYP. | MAX. | Unit |
|---------------------|--------|--------|------------------------|------------------------------|------|------|------|------|
| Interrupt and reset | VLVDD0 | VPOC2, | VPOC1, VPOC0 = 0, 1, 1 | , falling reset voltage      | 2.64 | 2.75 | 2.86 | V    |
| mode                | VLVDD1 |        | LVIS1, LVIS0 = 1, 0    | Rising release reset voltage | 2.81 | 2.92 | 3.03 | V    |
|                     |        |        |                        | Falling interrupt voltage    | 2.75 | 2.86 | 2.97 | V    |
|                     | VLVDD2 | VLVDD2 | LVIS1, LVIS0 = 0, 1    | Rising release reset voltage | 2.90 | 3.02 | 3.14 | V    |
|                     |        |        |                        | Falling interrupt voltage    | 2.85 | 2.96 | 3.07 | V    |
|                     | VLVDD3 |        | LVIS1, LVIS0 = 0, 0    | Rising release reset voltage | 3.90 | 4.06 | 4.22 | V    |
|                     |        |        |                        | Falling interrupt voltage    | 3.83 | 3.98 | 4.13 | V    |



## 3.10 Timing of Entry to Flash Memory Programming Modes

| Parameter                                                                                                                                                                   | Symbol  | Conditions                                                                | MIN. | TYP. | MAX. | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------|------|------|------|------|
| Time to complete the<br>communication for the initial<br>setting after the external reset is<br>released                                                                    | tsuinit | POR and LVD reset must be released before the external reset is released. |      |      | 100  | ms   |
| Time to release the external reset<br>after the TOOL0 pin is set to the<br>low level                                                                                        | tsu     | POR and LVD reset must be released before the external reset is released. | 10   |      |      | μs   |
| Time to hold the TOOL0 pin at the<br>low level after the external reset is<br>released<br>(excluding the processing time of<br>the firmware to control the flash<br>memory) | tно     | POR and LVD reset must be released before the external reset is released. | 1    |      |      | ms   |

## $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$



- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
  - $t_{\text{SU}}$ : Time to release the external reset after the TOOL0 pin is set to the low level
  - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)



|      |              | Description                                                                                            |                                                                                                                                                       |  |  |
|------|--------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rev. | Date         | Page                                                                                                   | Summary                                                                                                                                               |  |  |
| 3.00 | Aug 02, 2013 | 118                                                                                                    | Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics                                                          |  |  |
|      |              | 118                                                                                                    | Modification of table and note in 2.6.3 POR circuit characteristics                                                                                   |  |  |
|      |              | 119                                                                                                    | Modification of table in 2.6.4 LVD circuit characteristics                                                                                            |  |  |
|      |              | 120                                                                                                    | Modification of table of LVD Detection Voltage of Interrupt & Reset Mode                                                                              |  |  |
|      |              | 120                                                                                                    | Renamed to 2.6.5 Power supply voltage rising slope characteristics                                                                                    |  |  |
|      |              | 122                                                                                                    | Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes                                           |  |  |
|      |              | 123                                                                                                    | Modification of caution 1 and description                                                                                                             |  |  |
|      |              | 124                                                                                                    | Modification of table and remark 3 in Absolute Maximum Ratings (T <sub>A</sub> = 25°C)                                                                |  |  |
|      |              | 126                                                                                                    | Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics                                                          |  |  |
|      |              | 126                                                                                                    | Modification of table in 3.2.2 On-chip oscillator characteristics                                                                                     |  |  |
|      |              | 127                                                                                                    | Modification of note 3 in 3.3.1 Pin characteristics (1/5)                                                                                             |  |  |
|      |              | 128                                                                                                    | Modification of note 3 in 3.3.1 Pin characteristics (2/5)                                                                                             |  |  |
|      |              | 133                                                                                                    | Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)                                                           |  |  |
|      |              | 135                                                                                                    | Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-<br>pin products (2/2)                                                   |  |  |
|      |              | 137                                                                                                    | Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-<br>pin products (1/2)                                                     |  |  |
|      | 139          | Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)      |                                                                                                                                                       |  |  |
|      | 140          | Modification of (3) Peripheral Functions (Common to all products)                                      |                                                                                                                                                       |  |  |
|      | 142          | Modification of table in 3.4 AC Characteristics                                                        |                                                                                                                                                       |  |  |
|      | 143          | Addition of Minimum Instruction Execution Time during Main System Clock Operation                      |                                                                                                                                                       |  |  |
|      |              | 143                                                                                                    | Modification of figure of AC Timing Test Points                                                                                                       |  |  |
|      | 143          | Modification of figure of External System Clock Timing                                                 |                                                                                                                                                       |  |  |
|      |              | 145                                                                                                    | Modification of figure of AC Timing Test Points                                                                                                       |  |  |
|      |              | 145                                                                                                    | Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)                                            |  |  |
|      |              | 146                                                                                                    | Modification of description in (2) During communication at same potential (CSI mode)                                                                  |  |  |
|      |              | 147                                                                                                    | Modification of description in (3) During communication at same potential (CSI mode)                                                                  |  |  |
|      |              | 149                                                                                                    | Modification of table, note 1, and caution in (4) During communication at same potential (simplified I <sup>2</sup> C mode)                           |  |  |
|      |              | 151                                                                                                    | Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)                          |  |  |
|      |              | 152 to<br>154                                                                                          | Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5)<br>Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) |  |  |
|      | 155          | Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) |                                                                                                                                                       |  |  |
|      |              | 156                                                                                                    | Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)                                    |  |  |
|      |              | 157, 158                                                                                               | Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)                  |  |  |
|      |              | 160, 161                                                                                               | Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)                                          |  |  |