Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Data:la | | |----------------------------|---| | Details | | | Product Status | Active | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 48 | | Program Memory Size | 48KB (48K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 3K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 12x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-LQFP | | Supplier Device Package | 64-LFQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101ldafb-30 | RL78/G13 1. OUTLINE #### 1.3.7 40-pin products • 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - 3. It is recommended to connect an exposed die pad to Vss. RL78/G13 1. OUTLINE ### 1.5 Block Diagram #### 1.5.1 20-pin products RL78/G13 1. OUTLINE ### 1.5.13 100-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. RL78/G13 1. OUTLINE #### 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products] Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H. (1/2) | (1/2) | | | | | | | | | | | | | | |-------------------|---|---|--|-----------------|-------------------------------------|-----------|--------------------------------|---|---------------------|--|--------------------|--|---------------------| | | Item | 20- | pin | 24- | -pin | 25 | -pin | 30- | pin | 32- | pin | 36- | pin | | | | R5F1006x | R5F1016x | R5F1007x | R5F1017x | R5F1008x | R5F1018x | R5F100Ax | R5F101Ax | R5F100Bx | R5F101Bx | R5F100Cx | R5F101Cx | | Code flash me | emory (KB) | 16 to | 64 | 16 t | o 64 | 16 t | o 64 | 16 to | 128 | 16 to | 128 | 16 to | 128 | | Data flash me | mory (KB) | 4 | = | 4 | _ | 4 | - | 4 to 8 | = | 4 to 8 | - | 4 to 8 | = | | RAM (KB) | | 2 to | 2 to 4 ^{Note1} 2 to 4 ^{Note1} 2 to 4 ^{Note1} 2 to 12 ^{Note1} 2 to 12 ^{Note1} 2 to 12 ^{Note1} | | | | | | | | 2 ^{Note1} | | | | Address space | e | 1 MB | | | | | | | | | | | | | Main system clock | High-speed system clock | HS (Hig
HS (Hig
LS (Low | (crystal/ceramic) oscillation, external main system clock input (EXCLK) (High-speed main) mode: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), (Low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 5.5 V), (Low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 5.5 V) | | | | | | | | | | | | | High-speed on-chip oscillator | HS (Hig
LS (Lov | High-speed main) mode: 1 to 32 MHz (V_{DD} = 2.7 to 5.5 V),
High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V),
Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V),
Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V) | | | | | | | | | | | | Subsystem clo | ock | | | | | | - | - | | | | | | | Low-speed on | -chip oscillator | 15 kHz | (TYP.) | | | | | | | | | | | | General-purpo | ose registers | (8-bit re | gister× | 8) × 4 ba | anks | | | | | | | | | | Minimum instr | ruction execution time | 0.03125 | μs (Hig | h-speed | on-chip | oscillato | or: fін = 32 | 2 MHz o _l | peration |) | | | | | | | 0.05 <i>μ</i> s | (High-sp | peed sys | tem cloc | :k: fмx = | 20 MHz | operation | า) | | | | | | Instruction set | | Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. | | | | | | | | | | | | | I/O port | Total | 1 | 6 | 2 | .0 | 2 | 21 | 2 | 6 | 2 | 8 | 3 | 2 | | | CMOS I/O | (N-ch C
(V _{DD} wit
voltag | D.D. I/O
hstand | (N-ch C | 5
D.D. I/O
thstand
ge]: 6) | (N-ch (| D.D. I/O
thstand
ge]: 6) | (N-ch C
[V _{DD} with
voltage | D.D. I/O
thstand | 2
(N-ch C
[V _{DD} wi ¹
voltag | thstand | (N-ch C
[V _{DD} wit
voltage | D.D. I/O
thstand | | | CMOS input | 3 | 3 | (| 3 | ; | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | CMOS output | = | - | - | = | | 1 | = | = | = | = | = | = | | | N-ch O.D. I/O
(withstand voltage: 6 V) | - | - | 2 | 2 | : | 2 | 2 | 2 | 3 | 3 | 3 | 3 | | Timer | 16-bit timer | 8 channels | | | | | | | | | | | | | | Watchdog timer | | | | | | 1 cha | ınnel | | | | | | | | Real-time clock (RTC) | | | | | | 1 chanı | nel Note 2 | | | | | | | | 12-bit interval timer (IT) | | | | | | 1 cha | ınnel | | | | | | | | Timer output | 3 chann
(PWM c
2 Note 3) | | 4 chanr
(PWM | nels
outputs: | 3 Note 3) | | | | M output | | | | | | RTC output | | | | | | _ | - | | | | | | Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below. R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944). 2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected ### (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products ### (Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2) | Parameter | Symbol | | | Conditions | | | MIN. | TYP. | MAX. | Unit | |-------------------|------------------|----------------------------|--|--|---|-------------------------|------------|------------|----------|------| | Supply | I _{DD1} | Operating | HS (high- | fin = 32 MHz ^{Note 3} | Basic | V _{DD} = 5.0 V | | 2.3 | | mA | | Current
Note 1 | | mode | speed main)
mode Note 5 | | operation | V _{DD} = 3.0 V | | 2.3 | | mA | | | | | modo | | Nomal | V _{DD} = 5.0 V | | 5.2 | 8.5 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 5.2 | 8.5 | mA | | | | | | fin = 24 MHz Note 3 | Nomal | V _{DD} = 5.0 V | | 4.1 | 6.6 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 4.1 | 6.6 | mA | | | | | | fin = 16 MHz Note 3 | Normal | V _{DD} = 5.0 V | | 3.0 | 4.7 | mA | | | | | | | operation | V _{DD} = 3.0 V | | 3.0 | 4.7 | mA | | | | | LS (low- | fin = 8 MHz Note 3 | Normal | V _{DD} = 3.0 V | | 1.3 | 2.1 | mA | | | | | speed main)
mode Note 5 | | operation | V _{DD} = 2.0 V | | 1.3 | 2.1 | mA | | | | | LV (low- | fin = 4 MHz Note 3 | Nomal | V _{DD} = 3.0 V | | 1.3 | 1.8 | mA | | | | voltage
main) mode | | operation | V _{DD} = 2.0 V | | 1.3 | 1.8 | mA | | | | | | HS (high- | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Nomal | Square wave input | | 3.4 | 5.5 | mA | | | sp
m | speed main)
mode Note 5 | V _{DD} = 5.0 V | operation | Resonator connection | | 3.6 | 5.7 | mA | | | | | f | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Normal | Square wave input | | 3.4 | 5.5 | mA | | | | | | V _{DD} = 3.0 V | operation | Resonator connection | | 3.6 | 5.7 | mA | | | | | | | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ | Normal operation | Square wave input | | 2.1 | 3.2 | mA | | | | | | VDD = 5.0 V | | Resonator connection | | 2.1 | 3.2 | mA | | | | | | $f_{MX} = 10 \text{ MHz}^{Note 2},$ | Nomal | Square wave input | | 2.1 | 3.2 | mA | | | | | | V _{DD} = 3.0 V | operation | Resonator connection | | 2.1 | 3.2 | mA | | | | | LS (low- | $f_{MX} = 8 MHz^{Note 2}$ | Normal | Square wave input | | 1.2 | 2.0 | mA | | | | | speed main)
mode Note 5 | V _{DD} = 3.0 V | operation | Resonator connection | | 1.2 | 2.0 | mA | | | | | modo | $f_{MX} = 8 MHz^{Note 2}$ | Normal | Square wave input | | 1.2 | 2.0 | mA | | | | | | V _{DD} = 2.0 V | operation | Resonator connection | | 1.2 | 2.0 | mA | | | | | Subsystem | fsub = 32.768 kHz | Nomal | Square wave input | | 4.8 | 5.9 | μΑ | | | | | clock
operation | T _A = -40°C | operation | Resonator connection | | 4.9 | 6.0 | μΑ | | | | | | fsub = 32.768 kHz | Nomal | Square wave input | | 4.9 | 5.9 | μΑ | | | | | | T _A = +25°C | operation | Resonator connection | | 5.0 | 6.0 | μA | | | | | | fsuB = 32.768 kHz | Nomal | Square wave input | _ | 5.0 | 7.6 | μΑ | | | | | | Note 4 | operation | Resonator connection | | 5.1 | 7.7 | μА | | | | | | T _A = +50°C | No. | 0 | | F 0 | 0.0 | | | | | | Ninks 4 | Normal operation | Square wave input Resonator connection | | 5.2
5.3 | 9.3
9.4 | μA
μA | | | | | | T _A = +70°C | | | | 0.0 | 0.4 | par C | | | | | | fsub = 32.768 kHz | Normal | Square wave input | | 5.7 | 13.3 | μА | | | | | | | T _A = +85°C | operation | Resonator connection | | 5.8 | 13.4 | μA | | | l |] | 1 | 1 | 1 | l . | | I | ı | l | (Notes and Remarks are listed on the next page.) ### (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbo | | Conditions | HS (high
main) | | LS (low-sp
Mo | , | LV (low-vol | | Unit | |----------------------------------|-------|-----------------------------------|---|-------------------|---------------------------|------------------|----------------------------|----------------|----------------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SIp setup time (to SCKp↑) Note 1 | tsık2 | 2.7 V ≤ E | $2.7 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V}$ $1.8 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V}$ | | | 1/fмск+30 | | 1/fмск+30 | | ns | | | | 1.8 V ≤ E | | | | 1/fмск+30 | | 1/fмск+30 | | ns | | | | 1.7 V ≤ E | $EV_{DD0} \le 5.5 \text{ V}$ | 1/fмск+4
0 | | 1/fмск+40 | | 1/fмск+40 | | ns | | | | 1.6 V ≤ | EV _{DD0} ≤ 5.5 V | _ | | 1/fмск+40 | | 1/fмск+40 | | ns | | Slp hold time
(from SCKp↑) | • | | 1.8 V ≤ EV _{DD0} ≤ 5.5 V | | | 1/fмск+31 | | 1/fмск+31 | | ns | | Note 2 | | 1.7 V ≤ E | EV _{DD0} ≤ 5.5 V | 1/fмск+
250 | | 1/fмск+
250 | | 1/fмск+
250 | | ns | | | | 1.6 V ≤ | $EV_{DD0} \le 5.5 V$ | _ | | 1/fмск+
250 | | 1/fмск+
250 | | ns | | Delay time from SCKp↓ to | tkso2 | C = 30
pF Note 4 | $2.7~V \leq EV_{DD0} \leq 5.5$ V | | 2/f _{MCK+}
44 | | 2/f _{MCK+}
110 | | 2/f _{MCK+}
110 | ns | | SOp output Note | | | $2.4~V \le EV_{DD0} \le 5.5$ V | | 2/fмск+
75 | | 2/fмск+
110 | | 2/fмск+
110 | ns | | | | | $1.8~V \le EV_{DD0} \le 5.5$ V | | 2/fмск+
110 | | 2/fмск+
110 | | 2/fмск+
110 | ns | | | | 1.7 V ≤ EV _{DD0} ≤ 5.5 V | | | 2/fмск+
220 | | 2/fмск+
220 | | 2/fмск+
220 | ns | | | | | 1.6 V ≤ EV _{DD0} ≤ 5.5 V | | _ | | 2/fмск+
220 | | 2/fмск+
220 | ns | - **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SOp output lines. - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). - **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14) - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) ### (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | , 0 | h-speed
Mode | , | /-speed
Mode | , | -voltage
Mode | Unit | |--------------------------------------|---------------|---|------|-----------------|------|-----------------|------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SIp setup time
(to SCKp↓) Note 1 | tsıĸı | $\begin{array}{l} 4.0~V \leq EV_{DD0} \leq 5.5~V, \\ 2.7~V \leq V_b \leq 4.0~V, \end{array} \label{eq:pdd_pdd}$ | 44 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 44 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $ \begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $ | 110 | | 110 | | 110 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | | | | | SIp hold time
(from SCKp↓) Note 1 | t KSI1 | $ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | 19 | | 19 | | 19 | | ns | | | | $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ | | | | | | | | | Delay time from SCKp↑ to | tkso1 | $ \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $ | | 25 | | 25 | | 25 | ns | | SOp output Note 1 | | $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ | | | | | | | | | | | $ \begin{array}{c} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \end{array} $ | | 25 | | 25 | | 25 | ns | | | | $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ | | | | | | | | | | | $\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$ | | 25 | | 25 | | 25 | ns | | | | $C_b = 30$ pF, $R_b = 5.5$ k Ω | | | | | | | | Notes - 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. Use it with $EV_{DD0} \ge V_b$. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. <R> #### (3) I2C fast mode plus $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Cor | nditions | | HS (high-speed main) Mode | | r-speed
Mode | | -voltage
Mode | Unit | |--|---------|--|-----------------------------------|------|---------------------------|------|-----------------|------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCLA0 clock frequency | fscL | Fast mode plus:
fcLk≥ 10 MHz | . 2.7 * = 2 * 550 = 0.0 * | | 1000 | _ | | _ | | kHz | | Setup time of restart condition | tsu:sta | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 2.7 V ≤ EV _{DD0} ≤ 5.5 V | | | _ | | _ | _ | μS | | Hold time ^{Note 1} | thd:STA | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ | 5 V | 0.26 | | _ | | _ | | μS | | Hold time when SCLA0 = "L" | tLOW | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 2.7 V ≤ EV _{DD0} ≤ 5.5 V | | | _ | | _ | | μS | | Hold time when SCLA0 = "H" | tніgн | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0.26 | | _ | - | _ | - | μS | | Data setup time (reception) | tsu:dat | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 50 | | _ | - | _ | _ | μS | | Data hold time
(transmission) ^{Note 2} | thd:dat | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0 | 0.45 | _ | - | _ | _ | μS | | Setup time of stop condition | tsu:sto | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 2.7 V ≤ EV _{DD0} ≤ 5.5 V | | | | _ | _ | _ | μs | | Bus-free time | tbuf | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 5 V | 0.5 | | _ | _ | _ | _ | μS | **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected. 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination. **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: $C_b = 120 \ pF, \ R_b = 1.1 \ k\Omega$ #### **IICA** serial transfer timing **Remark** n = 0, 1 # 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C) This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to +105°C R5F100xxGxx - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS. - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability. Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C). There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications". | Parameter | Ар | plication | |--|--|--| | | A: Consumer applications, D: Industrial applications | G: Industrial applications | | Operating ambient temperature | T _A = -40 to +85°C | T _A = -40 to +105°C | | Operating mode Operating voltage range | HS (high-speed main) mode: $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 16 \text{ MHz}$ $LS \text{ (low-speed main) mode:}$ $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 8 \text{ MHz}$ $LV \text{ (low-voltage main) mode:}$ $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 4 \text{ MHz}$ | HS (high-speed main) mode only: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~32~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$ | | High-speed on-chip oscillator clock accuracy | 1.8 V \leq V _{DD} \leq 5.5 V
\pm 1.0%@ TA = -20 to +85°C
\pm 1.5%@ TA = -40 to -20°C
1.6 V \leq V _{DD} $<$ 1.8 V
\pm 5.0%@ TA = -20 to +85°C
\pm 5.5%@ TA = -40 to -20°C | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$
$\pm 2.0\%@ \text{ T}_{A} = +85 \text{ to } +105^{\circ}\text{C}$
$\pm 1.0\%@ \text{ T}_{A} = -20 \text{ to } +85^{\circ}\text{C}$
$\pm 1.5\%@ \text{ T}_{A} = -40 \text{ to } -20^{\circ}\text{C}$ | | Serial array unit | UART CSI: fclk/2 (supporting 16 Mbps), fclk/4 Simplified I ² C communication | UART CSI: fclk/4 Simplified I ² C communication | | IICA | Normal mode Fast mode Fast mode plus | Normal mode
Fast mode | | Voltage detector | Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels) | Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels) | (Remark is listed on the next page.) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (5/5)$ | Items | Symbol | Condition | ns | | MIN. | TYP. | MAX. | Unit | |--------------------------------|--------|--|------------------------|---------------------------------------|------|------|-----------|------| | Input leakage
current, high | Ішн1 | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | VI = EVDDO | | | | 1 | μΑ | | | ILIH2 | P20 to P27, P137,
P150 to P156, RESET | $V_I = V_{DD}$ | | | | 1 | μΑ | | | Ішнз | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | VI = VDD | In input port or external clock input | | | 1 | μΑ | | | | | | In resonator connection | | | 10 | μΑ | | Input leakage
current, low | lut1 | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P60 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | Vi = EVsso | | | | -1 | μΑ | | | ILIL2 | P20 to P27, P137,
P150 to P156, RESET | Vı = Vss | | | | -1 | μΑ | | | ILIL3 | P121 to P124
(X1, X2, XT1, XT2, EXCLK,
EXCLKS) | V _I = Vss | In input port or external clock input | | | -1 | μΑ | | | | | | In resonator connection | | | -10 | μΑ | | On-chip pll-up resistance | Rυ | P00 to P07, P10 to P17,
P30 to P37, P40 to P47,
P50 to P57, P64 to P67,
P70 to P77, P80 to P87,
P90 to P97, P100 to P106,
P110 to P117, P120,
P125 to P127, P140 to P147 | V _I = EVsso | , In input port | 10 | 20 | 100 | kΩ | **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C ## (3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Cond | ditions | HS (high-speed ma | in) Mode | Unit | |--------------------------------------|------------------|--|------------------------------------|-------------------|------------|------| | | | | | MIN. | MAX. | | | SCKp cycle time Note 5 | tkcy2 | $4.0~V \leq EV_{DD0} \leq 5.5$ | 20 MHz < fмск | 16/fмск | | ns | | | | V | fмcк ≤ 20 MHz | 12/fмск | | ns | | | | 2.7 V ≤ EV _{DD0} ≤ 5.5 | 16 MHz < fмск | 16/fмск | | ns | | | | V | fмck ≤ 16 MHz | 12/fмск | | ns | | | | 2.4 V ≤ EV _{DD0} ≤ 5.5 V | | 16/fмск | | ns | | | | | | 12/fмcк and 1000 | | ns | | SCKp high-/low-level | t кн2, | $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ M}$ | V | tkcy2/2 – 14 | | ns | | width | t _{KL2} | $2.7~V \leq EV_{DD0} \leq 5.5$ | V | tkcy2/2 – 16 | | ns | | | | 2.4 V ≤ EV _{DD0} ≤ 5.5 | V | tkcy2/2 - 36 | | ns | | SIp setup time | tsıĸ2 | $2.7~V \leq EV_{DD0} \leq 5.5$ | V | 1/fмск+40 | | ns | | (to SCKp↑) Note 1 | | $2.4~V \leq EV_{DD0} \leq 5.5$ | V | 1/fмск+60 | | ns | | SIp hold time
(from SCKp↑) Note 2 | tksi2 | 2.4 V ≤ EV _{DD0} ≤ 5.5 | 2.4 V ≤ EV _{DD0} ≤ 5.5 V | | | ns | | Delay time from SCKp↓ to SOp output | tkso2 | C = 30 pF Note 4 | $2.7~V \leq EV_{DD0} \leq 5.5$ V | | 2/fмск+66 | ns | | Note 3 | | | $2.4~V \leq EV_{DD0} \leq 5.5$ V | | 2/fмск+113 | ns | - **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SOp output lines. - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). - **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14) - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) #### CSI mode connection diagram (during communication at same potential) # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) # CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. ### (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (TA = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) | Parameter | Symbol | Conditions | | peed main)
ode | Unit | |---------------------------|--------|---|------|-------------------|------| | | | | MIN. | MAX. | | | SCLr clock frequency | fscL | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | | 400 Note 1 | kHz | | | | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | | 400 Note 1 | kHz | | | | $\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$ | | 100 Note 1 | kHz | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$ | | 100 Note 1 | kHz | | | | $\begin{split} &2.4 \; V \leq \text{EV}_{\text{DDO}} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; p\text{F}, \; R_b = 5.5 \; k\Omega \end{split}$ | | 100 Note 1 | kHz | | Hold time when SCLr = "L" | tLow | $\begin{aligned} 4.0 & \ V \le EV_{DD0} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 50 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 1200 | | ns | | | | $\begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$ | 1200 | | ns | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 4600 | | ns | | | | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 4600 | | ns | | | | $\begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$ | 4650 | | ns | | Hold time when SCLr = "H" | tніgн | $\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 620 | | ns | | | | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$ | 500 | | ns | | | | $\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned}$ | 2700 | | ns | | | | $2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$ | 2400 | | ns | | | | $2.4 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$ | 1830 | | ns | (${f Notes}$ and ${f Caution}$ are listed on the next page, and ${f Remarks}$ are listed on the page after the next page.) ### (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | HS (high-sp | , | Unit | |-------------------------------|---------|---|------------------------------------|------|------| | | | | MIN. | MAX. | | | Data setup time (reception) | tsu:dat | $\begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$ | 1/f _{MCK} + 340
Note 2 | | ns | | | | $ \begin{aligned} 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $ | 1/f _{MCK} + 340
Note 2 | | ns | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 1/f _{MCK} + 760
Note 2 | | ns | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 1/f _{MCK} + 760
Note 2 | | ns | | | | $ \begin{aligned} &2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned} $ | 1/f _{MCK} + 570
Note 2 | | ns | | Data hold time (transmission) | thd:dat | $ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $ | 0 | 770 | ns | | | | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 0 | 770 | ns | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 0 | 1420 | ns | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 0 | 1420 | ns | | | | $\label{eq:substitute} \begin{split} 2.4 \ V & \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V & \leq V_b \leq 2.0 \ V, \\ C_b & = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$ | 0 | 1215 | ns | **Notes 1.** The value must also be equal to or less than fmck/4. 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) ### Simplified I²C mode connection diagram (during communication at different potential) #### Simplified I²C mode serial transfer timing (during communication at different potential) Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected. - **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01, 02, 10, 12, 13) #### 3.10 Timing of Entry to Flash Memory Programming Modes $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |--|---------|---|------|------|------|------| | Time to complete the communication for the initial setting after the external reset is released | tsuinit | POR and LVD reset must be released before the external reset is released. | | | 100 | ms | | Time to release the external reset after the TOOL0 pin is set to the low level | tsu | POR and LVD reset must be released before the external reset is released. | 10 | | | μS | | Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) | | POR and LVD reset must be released before the external reset is released. | 1 | | | ms | - <1> The low level is input to the TOOL0 pin. - <2> The external reset is released (POR and LVD reset must be released before the external reset is released.). - <3> The TOOL0 pin is set to the high level. - <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting. **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period. tsu: Time to release the external reset after the TOOL0 pin is set to the low level thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA, R5F100GKANA R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA | JEITA Package code | RENESAS code | Previous code | MASS(TYP.)[g] | |--------------------|--------------|---------------------------|---------------| | P-HWQFN48-7x7-0.50 | PWQN0048KB-A | 48PJN-A
P48K8-50-5B4-6 | 0.13 | | Referance | Dimension in Millimeters | | | |----------------|--------------------------|------|------| | Symbol | Min | Nom | Max | | D | 6.95 | 7.00 | 7.05 | | Е | 6.95 | 7.00 | 7.05 | | А | | | 0.80 | | A ₁ | 0.00 | | | | b | 0.18 | 0.25 | 0.30 | | е | | 0.50 | | | Lp | 0.30 | 0.40 | 0.50 | | Х | | | 0.05 | | у | | | 0.05 | | Z _D | | 0.75 | | | Z _E | | 0.75 | | | C ₂ | 0.15 | 0.20 | 0.25 | | D ₂ | | 5.50 | | | E ₂ | | 5.50 | _ | ©2013 Renesas Electronics Corporation. All rights reserved.