

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I²C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101leafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

- **Notes** 1. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)"
 - **2.** Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"

1.3.13 100-pin products

• 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)

Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the V_{SS}, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

2.1 Absolute Maximum Ratings

|--|

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87,	–0.3 to EV _{DD0} +0.3 and –0.3 to V _{DD} +0.3 ^{№te 2}	V
		P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to VDD +0.3 ^{Note 2}	V
Output voltage	Voi	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_DD0 +0.3 and -0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2, 3}	V
	Vai2	ANI0 to ANI14	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{\text{IH}} = 32 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		2.1		mA
current Note 1		mode	speed main)		operation	V _{DD} = 3.0 V		2.1		mA
			mode		Normal	$V_{DD} = 5.0 V$		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal operation	$V_{DD} = 5.0 V$		3.7	5.5	mA
						V _{DD} = 3.0 V		3.7	5.5	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	$f_{\text{IH}} = 4 \text{ MHz}^{\text{Note 3}}$	Normal	$V_{DD} = 3.0 V$		1.2	1.7	mA
			voltage main) mode		operation	$V_{DD} = 2.0 V$		1.2	1.7	mA
			HS (high- speed main) mode ^{№te 5}	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.6	mA
				$V_{DD} = 5.0 V$	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 20 \text{ MHz}^{Note 2}$,	Normal	Square wave input		3.0	4.6	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 5.0 V$	operation	Resonator connection		1.9	2.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.9	2.7	mA
			LS (low- speed main) mode Note 5	$\label{eq:main_state} \begin{split} f_{\text{MX}} &= 8 \ \text{MHz}^{\text{Note 2}}, \\ V_{\text{DD}} &= 3.0 \ \text{V} \\ \end{split}$ $f_{\text{MX}} &= 8 \ \text{MHz}^{\text{Note 2}}, \end{split}$	Normal operation	Square wave input		1.1	1.7	mA
						Resonator connection		1.1	1.7	mA
					Normal	Square wave input		1.1	1.7	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
			Note 4	Note 4 TA = $+70^{\circ}$ C	operation	Resonator connection		4.4	6.4	μA
				fsug = 32,768 kHz	Normal	Square wave input		4.6	77	//Α
				Note 4	operation	Resonator		4.7	7.8	μA
				1A = +85°C						

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating HS (high-		$f_{\text{IH}} = 32 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		2.6		mA
current		mode	speed main) mode ^{№te 5}		operation	$V_{DD} = 3.0 V$		2.6		mA
			mode		Normal operation	$V_{DD} = 5.0 V$		6.1	9.5	mA
						$V_{DD} = 3.0 V$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal operation	V _{DD} = 5.0 V		4.8	7.4	mA
						$V_{DD} = 3.0 V$		4.8	7.4	mA
				$f_{\text{IH}} = 16 \; MHz^{Note \; 3}$	Normal operation	$V_{DD} = 5.0 V$		3.5	5.3	mA
						$V_{DD} = 3.0 V$		3.5	5.3	mA
			LS (low-	$f_{IH} = 8 \text{ MHz}^{Note 3}$	Normal operation	$V_{DD} = 3.0 V$		1.5	2.3	mA
			speed main) mode ^{Note 5}			$V_{DD} = 2.0 V$		1.5	2.3	mA
			LV (low- voltage main) mode	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.0	mA
					operation	$V_{DD} = 2.0 V$		1.5	2.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.9	6.1	mA
			speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operation	Resonator connection		4.1	6.3	mA
				$f_{MX} = 20 \text{ MHz}^{Note 2}$,	Normal operation	Square wave input		3.9	6.1	mA
				$V_{DD} = 3.0 V$		Resonator connection		4.1	6.3	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 5.0 V$	operation	Resonator connection		2.5	3.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.5	3.7	mA
			LS (low- speed main) mode Note 5	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsue = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.6	9.4	μA
				$T_{A} = +50^{\circ}C$	operation	Resonator connection		5.7	9.5	μA
				fsue = 32.768 kHz	Normal	Square wave input		5.9	12.0	μA
				TA = +70°C	operation	Resonator connection		6.0	12.1	μA
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μA
				Note 4 TA = $+85^{\circ}C$	operation	Resonator connection		6.7	16.4	μA

(Notes and Remarks are listed on the next page.)

- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Unit

ns

60

130

tput,

(7) Communica correspondi	tion at di	ifferent poter) only) (1/2)	ntial (2.5 V, 3 V) (CSI	mode) (r	naster i	node, S	СКр і	nternal o	clock ou
Parameter	Symbol		Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		-voltage Mode
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
SCKp cycle time	t ксү1	tксү1 ≥ 2 /fclк	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	200		1150		1150	
			$\label{eq:cb} \begin{split} C_b &= 20 \text{ pF}, R_b = 1.4 \\ k\Omega \end{split}$						
			$\label{eq:states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	300		1150		1150	
			C_b = 20 pF, R_b = 2.7 $k\Omega$						
SCKp high-level width	$ \begin{array}{ll} & \mbox{${\rm k}$}\mbox{${\rm h}$}\mbox{${\rm h}$}\mbox{${\rm k}$}\mbox{${\rm H}$}\mbox{${\rm l}$}\mbox{${\rm k}$}\mbox{${\rm H}$}\mbox{${\rm l}$}\mbox{${\rm k}$}\mbox{${\rm h}$}\mbox{${\rm l}$}\mbox{${\rm l}$}\mbox{${\rm b}$}\mbox{${\rm s}$}\mbox{${\rm s}$}\mbox{${\rm s}$}\mbox{${\rm l}$}\mbox{${\rm s}$}\mbox{${\rm l}$}\mbox{${\rm l}$}\mbox$		tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		
		C_b = 20 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		tксү1/2 – 120		tксү1/2 – 120		tксү1/2 – 120	
		C₀ = 20 pF, I	R _b = 2.7 kΩ						
SCKp low-level width	tĸ∟1	$4.0 \text{ V} \leq \text{EV}_{\text{DD}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$	₀ ≤ 5.5 V, 4.0 V,	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50	
		$C_{b} = 20 \text{ pF}, \text{ F}$	R₀ = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $			tксү1/2 – 50		tксү1/2 – 50	
		$C_b = 20 \text{ pF}, \text{ f}$	R _b = 2.7 kΩ						
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	₀ ≤ 5.5 V, 4.0 V,	58		479		479	
		$C_{b} = 20 \text{ pF}, \text{ F}$	R _b = 1.4 kΩ						
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ 2.3 \ V \leq V_{\text{b}} \leq \end{array}$	₀ < 4.0 V, 2.7 V,	121		479		479	
		C _b = 20 pF, I	R _b = 2.7 kΩ						
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 V \le EV_{DD}$ 2.7 V < Vh <	o ≤ 5.5 V, 4.0 V.	10		10		10	

 $2.3~V \leq V_b \leq 2.7~V,$

 $C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $2.3~V \leq V_b \leq 2.7~V,$ $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$ $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$

 $2.7~V \leq V_{b} \leq 4.0~V,$

 $C_{\text{b}}=20 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 V \le EV_{DD0} < 4.0 V$,

 $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$

(Notes, Caution, and Remarks are listed on the next page.)

Delay time from

 $\mathsf{SCKp}{\downarrow} \text{ to } \mathsf{SOp}$

output Note 1

tks01

10

60

130

10

60

130

10

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (higl main)	h-speed Mode	LS (low main)	-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsikı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} \end{array} \label{eq:VD0}$	81		479		479		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$	177		479		479		ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$	479		479		479		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↑) ^{№ote 1}	tksi1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{aligned} 1.8 \ V &\leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{aligned} $	19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp↓ to	tkso1	$\label{eq:linear_states} \begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		100		100		100	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$		195		195		195	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		483		483		483	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

1	$(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \text{ V} \le \text{EV}_{DD} = \text{EV}_{D1} \le \text{V}_{D2} \le 5.5$	5 V	$V_{SS} = FV_{SS0} = FV_{SS1} = 0 V$
١.	$(1A = -40 10 + 05 0, 1.0 4 \le 24000 = 24001 \le 400 \le 5.5$, v ;	$, v_{33} - \Box v_{330} - \Box v_{331} - O v_{j}$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $EV_{DD0} \ge V_b$.

(Remarks are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Сог	nditions	HS (speed Mc	high- I main) ode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 1}	tксү2	$4.0 V \le EV_{DD0} \le 5.5 V$, 27 V < Vb < 4.0 V	24 MHz < fмск	14/ fмск		_				ns
			20 MHz < fмск ≤ 24 MHz	12/ fмск						ns
			8 MHz < fмск ≤ 20 MHz	10/ fмск		_				ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$	24 MHz < fмск	20/ fмск		_				ns
			20 MHz < fмск ≤ 24 MHz	16/ fмск						ns
			16 MHz < fмск ≤ 20 MHz	14/ fмск						ns
			8 MHz < fмск ≤ 16 MHz	12/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$\label{eq:VDD0} \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note}} \end{split}$	24 MHz < fмск	48/ fмск		—				ns
		2	20 MHz < fмск ≤ 24 MHz	36/ fмск						ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск						ns
			8 MHz < fмск ≤ 16 MHz	26/ fмск		—		_		ns
			4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск		_		ns
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 3.1 to 3.10.

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and -0.3 to V_{DD} +0.3 ^{Note 2}	
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_{DD0} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV_DD0 +0.3 and -0.3 to AVREF(+) +0.3 $^{\text{Notes 2, 3}}$	V
	VAI2	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2, 3}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD0}		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq EV_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156	0.7V _{DD}		VDD	٧	
	VIH4	P60 to P63		0.7EVDD0		6.0	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCL	(S, RESET	0.8Vdd		VDD	V
Input voltage, Iow	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output voltage, high	Vон1	OH1 P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 I to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 I	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.7			V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.6			V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Іон1 = -1.5 mA	EV _{DD0} - 0.5			V
	Vон2	P20 to P27, P150 to P156	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	Vdd - 0.5			V
Output voltage, low	Vol1 P00 to P07, P10 to P17, P30 to 4 P37, P40 to P47, P50 to P57, P64 Id to P67, P70 to P77, P80 to P87, 4 P90 to P97, P100 to P106, P110 to Id	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.7	V	
		$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DL1}$			0.6	V	
		P117, P120, P125 to P127, P130, P140 to P147	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 1.5 \text{ mA}$			0.4	V
			$eq:local_$			0.4	V
	Vol2	P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	Voli3 P60 to P63	$\label{eq:loss} \begin{array}{l} 4.0 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ \\ I_{\mbox{OL3}} = 15.0 \mbox{ mA} \end{array}$			2.0	V	
		$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V	
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 3.0 \text{ mA}$			0.4	V
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{Iol3} = 2.0 \text{ mA}$			0.4	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5)

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or Vss, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

$T_A = -40$ to +105°C.	$2.4 V \leq EV_{DD0} = EV_{DD1}$	\leq VDD \leq 5.5 V. Vss =	$= \mathbf{EV}_{SS0} = \mathbf{EV}_{SS1} = 0 \mathbf{V}$
		,,	

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5$	24 MHz < fмск	28/f мск		ns
		V, 2.7 V \leq V _b \leq 4.0 V	20 MHz < fмск ≤ 24 MHz	24/fмск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} < 4.0$	24 MHz < fмск	40/f мск		ns
		V,	20 MHz < fмск ≤ 24 MHz	32/f мск		ns
		$2.3V{\leq}V_b{\leq}2.7V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	24/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.4~V \leq EV_{DD0} < 3.3$	24 MHz < fмск	96/f мск		ns
		V,	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	72/f мск		ns
		$1.6 \ V \le V_b \le 2.0 \ V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	64/fмск		ns
			$8 \text{ MHz} < f_{\text{MCK}} \le 16 \text{ MHz}$	52/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	32/f мск		ns
			fмск ≤ 4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tк∟2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		tkcy2/2 – 24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4. \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	0 V,	tkcy2/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	3 V, Note 2	tĸcv2/2 – 100		ns
SIp setup time (to SCKp↑) ^{Note2}	tsik2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.3 \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	5 V,	1/fмск + 40		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		1/fмск + 40		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№ote 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.8\\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 1 \end{array}$	5 V, 2.7 V \leq V_b \leq 4.0 V, .4 k\Omega		2/fмск + 240	ns
		$\label{eq:2.7} \begin{split} 2.7 \ V &\leq EV_{\text{DD0}} < 4.0 \ \text{V}, \ 2.3 \ \text{V} \leq V_b \leq 2.7 \ \text{V}, \\ C_b &= 30 \ \text{pF}, \ R_b = 2.7 \ \text{k}\Omega \end{split}$			2/fмск + 428	ns
		$\label{eq:constraint} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} < 3.3 \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5 \end{array}$	3 V, 1.6 V \leq Vb \leq 2.0 V .5 k\Omega		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - $\label{eq:scalar} \begin{array}{l} \textbf{3. When } AV_{\text{REFP}} < V_{\text{DD}} \text{, the MAX. values are as follows.} \\ \text{Overall error: } Add \pm 1.0 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Zero-scale error/Full-scale error: } Add \pm 0.05\%\text{FSR} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \text{Integral linearity error/ Differential linearity error: } Add \pm 0.5 \ \text{LSB} \ \text{to the MAX. value when } AV_{\text{REFP}} = V_{\text{DD}} \text{.} \\ \end{array}$
 - 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

4.2 24-pin Products

R5F1007AANA, R5F1007CANA, R5F1007DANA, R5F1007EANA R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA R5F1017ADNA, R5F1017CDNA, R5F1017DDNA, R5F1017EDNA R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04

0

o

Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	3.95	4.00	4.05		
E	3.95	4.00	4.05		
A			0.80		
A ₁	0.00	—			
b	0.18	0.25	0.30		
е		0.50			
Lp	0.30	0.40	0.50		
х			0.05		
У			0.05		
ZD		0.75			
ZE		0.75			
C2	0.15	0.20	0.25		
D ₂		2.50			
E ₂		2.50			

		Description		
Rev.	Date	Page	Summary	
3.00	3.00 Aug 02, 2013		Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)	
		164, 165	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		166	Modification of table in 3.5.2 Serial interface IICA	
		166	Modification of IICA serial transfer timing	
		167	Addition of table in 3.6.1 A/D converter characteristics	
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)	
		169	Modification of description in 3.6.1 (2)	
		170	Modification of description and note 3 in 3.6.1 (3)	
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)	
		172	Modification of table and note in 3.6.3 POR circuit characteristics	
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics	
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)	
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
3.10	Nov 15, 2013	123	Caution 4 added.	
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
3.30	Mar 31, 2016		Modification of the position of the index mark in 25-pin plastic WFLGA (3×3 mm, 0.50 mm pitch) of 1.3.3 25-pin products	
			Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24- pin, 25-pin, 30-pin, 32-pin, 36-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100- pin, 128-pin products]	
			ACK corrected to ACK	
			ACK corrected to ACK	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.