Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | RL78 | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CSI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 48 | | Program Memory Size | 96KB (96K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 8K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V | | Data Converters | A/D 12x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-LQFP | | Supplier Device Package | 64-LFQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101lfafb-30 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### 1.3.8 44-pin products • 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. ## 1.3.9 48-pin products • 48-pin plastic LFQFP (7 x 7 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. • 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Remarks 1. For pin identification, see 1.4 Pin Identification. - Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$ #### 1.3.13 100-pin products • 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch) - Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin. - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1). - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). - Remarks 1. For pin identification, see 1.4 Pin Identification. - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DDO} and EV_{DD1} pins and connect the Vss, EV_{SS0} and EV_{SS1} pins to separate ground lines. - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual. ## 1.5.3 25-pin products ## 1.5.5 32-pin products Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual. - Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. - 2. When high-speed on-chip oscillator and subsystem clock are stopped. - 3. When high-speed system clock and subsystem clock are stopped. - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz - Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) - 2. fih: High-speed on-chip oscillator clock frequency - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency) - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C - When the high-speed on-chip oscillator clock is selected - During self programming When high-speed system clock is selected ## Tcy vs Vdd (LV (low-voltage main) mode) - When the high-speed on-chip oscillator clock is selected During self programming - --- When high-speed system clock is selected #### **AC Timing Test Points** #### **External System Clock Timing** ## **TI/TO Timing** ## **Interrupt Request Input Timing** ## **Key Interrupt Input Timing** ## **RESET** Input Timing ## 2.5 Peripheral Functions Characteristics #### **AC Timing Test Points** #### 2.5.1 Serial array unit ## (1) During communication at same potential (UART mode) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | | Conditions H | | h-speed
Mode | , | /-speed
Mode | ` | -voltage
Mode | Unit | |----------------------|--------|------------|---|------|------------------|------|------------------|------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Transfer rate Note 1 | | 2.4 V≤ EV | DD0 ≤ 5.5 V | | fMCK/6
Note 2 | | fмск/6 | | fмск/6 | bps | | | | | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$ | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | 1.8 V ≤ EV | $_{\text{DD0}} \leq 5.5 \text{ V}$ | | fMCK/6
Note 2 | | fмск/6 | | fмск/6 | bps | | | | | Theoretical value of the maximum transfer rate fack Note 3 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | 1.7 V ≤ EV | $000 \le 5.5 \text{ V}$ | | fMCK/6
Note 2 | | fMCK/6
Note 2 | | fмск/6 | bps | | | | | Theoretical value of the maximum transfer rate fMCK = fCLK Note 3 | | 5.3 | | 1.3 | | 0.6 | Mbps | | | | 1.6 V ≤ EV | $000 \le 5.5 \text{ V}$ | _ | _ | | fMCK/6
Note 2 | | fмск/6 | bps | | | | | Theoretical value of the maximum transfer rate fmck = fclk Note 3 | _ | _ | | 1.3 | | 0.6 | Mbps | Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only. 2. The following conditions are required for low voltage interface when EVDDO < VDD. $2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$ $1.8 \text{ V} \le \text{EV}_{\text{DDO}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$ $1.6 \text{ V} \le \text{EV}_{\text{DDO}} < 1.8 \text{ V} : \text{MAX. } 0.6 \text{ Mbps}$ 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are: HS (high-speed main) mode: 32 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq VDD \leq 5.5 V) LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V) Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). #### **UART** mode connection diagram (during communication at same potential) ## **UART** mode bit width (during communication at same potential) (reference) **Remarks 1.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) 2. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)) # (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Conditions H | | | h-speed
Mode | | r-speed
Mode | LV (low-
main) | -voltage
Mode | Unit | |--|---------------|--------------------------|----------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|------------------|------| | | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | SCKp cycle time | t KCY1 | tkcy1 ≥ 2/fclk | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | 62.5 | | 250 | | 500 | | ns | | | | | $2.7~V \leq EV_{DD0} \leq 5.5~V$ | 83.3 | | 250 | | 500 | | ns | | SCKp high-/low-level width | tкн1,
tкL1 | 4.0 V ≤ EV _{DI} | 00 ≤ 5.5 V | tксү1/2 —
7 | | tксү1/2 –
50 | | tксү1/2 —
50 | | ns | | | | 2.7 V ≤ EV _{DI} | oo ≤ 5.5 V | tксү1/2 –
10 | | tксү1/2 –
50 | | tксү1/2 —
50 | | ns | | SIp setup time (to SCKp↑) | tsıĸı | 4.0 V ≤ EV _{DI} | 00 ≤ 5.5 V | 23 | | 110 | | 110 | | ns | | Note 1 | | 2.7 V ≤ EV _{DI} | 00 ≤ 5.5 V | 33 | | 110 | | 110 | | ns | | SIp hold time (from SCKp↑) Note 2 | tksı1 | 2.7 V ≤ EV _{DI} | ₀₀ ≤ 5.5 V | 10 | | 10 | | 10 | | ns | | Delay time from SCKp↓ to SOp output Note 3 | tkso1 | C = 20 pF No | te 4 | | 10 | | 10 | | 10 | ns | - **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. - 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). - Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used. - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)) 3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V Maximum transfer rate = $$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$ [bps] $$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer. - 5. Use it with $EV_{DD0} \ge V_b$. - **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V $$\text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1 - \frac{1.5}{V_b})\} \times 3} \text{ [bps]}$$ Baud rate error (theoretical value) = $$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$ - * This value is the theoretical value of the relative difference between the transmission and reception sides. - **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer. Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. **UART** mode connection diagram (during communication at different potential) #### (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) (Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) | Parameter | Symbol | Conditions | HS (high | • | ` | /-speed
Mode | LV (low
main) | -voltage
Mode | Unit | |-------------------------------|---------|---|---------------------------------|------|---------------------------|-----------------|---------------------------|------------------|------| | | | | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | Data setup time (reception) | tsu:dat | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 1/f _{MCK} + 135 Note 3 | | 1/fMCK
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $\label{eq:substitute} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 1/f _{MCK} + 135 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $ | 1/f _{MCK} + 190 Note 3 | | 1/fmck
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $\label{eq:section} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$ | 1/f _{MCK} + 190 Note 3 | | 1/fMCK
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | | | $ \begin{aligned} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned} $ | 1/f _{MCK} + 190 Note 3 | | 1/fMCK
+ 190
Note 3 | | 1/fmck
+ 190
Note 3 | | kHz | | Data hold time (transmission) | thd:dat | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $ | 0 | 305 | 0 | 305 | 0 | 305 | ns | | | | $ \begin{cases} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{cases} $ | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | eq:second-seco | 0 | 355 | 0 | 355 | 0 | 355 | ns | | | | $\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$ | 0 | 405 | 0 | 405 | 0 | 405 | ns | **Notes 1.** The value must also be equal to or less than $f_{MCK}/4$. - 2. Use it with $EV_{DD0} \ge V_b$. - 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) ## 2.6.5 Power supply voltage rising slope characteristics #### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------------------|--------|------------|------|------|------|------| | Power supply voltage rising slope | Svdd | | | | 54 | V/ms | Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics. #### 2.7 RAM Data Retention Characteristics #### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-------------------------------|--------|------------|----------------------|------|------|------| | Data retention supply voltage | VDDDR | | 1.46 ^{Note} | | 5.5 | V | **Note** This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated. #### 2.10 Timing of Entry to Flash Memory Programming Modes $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |---|---------|---|------|------|------|------| | Time to complete the communication for the initial setting after the external reset is released | tsuіліт | POR and LVD reset must be released before the external reset is released. | | | 100 | ms | | Time to release the external reset after the TOOL0 pin is set to the low level | tsu | POR and LVD reset must be released before the external reset is released. | 10 | | | μS | | Time to hold the TOOL0 pin at
the low level after the external
reset is released
(excluding the processing time of
the firmware to control the flash
memory) | tно | POR and LVD reset must be released before the external reset is released. | 1 | | | ms | - <1> The low level is input to the TOOL0 pin. - <2> The external reset is released (POR and LVD reset must be released before the external reset is released.). - <3> The TOOL0 pin is set to the high level. - <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting. **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period. tsu: Time to release the external reset after the TOOL0 pin is set to the low level thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) #### UART mode bit width (during communication at different potential) (reference) - $\begin{array}{lll} \textbf{Remarks 1.} & R_b[\Omega]: Communication line (TxDq) \ pull-up \ resistance, \\ & C_b[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ V_b[V]: \ Communication \ line \ voltage \\ \end{array}$ - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. #### 3.10 Timing of Entry to Flash Memory Programming Modes $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |--|---------|---|------|------|------|------| | Time to complete the communication for the initial setting after the external reset is released | tsuinit | POR and LVD reset must be released before the external reset is released. | | | 100 | ms | | Time to release the external reset after the TOOL0 pin is set to the low level | tsu | POR and LVD reset must be released before the external reset is released. | 10 | | | μS | | Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) | | POR and LVD reset must be released before the external reset is released. | 1 | | | ms | - <1> The low level is input to the TOOL0 pin. - <2> The external reset is released (POR and LVD reset must be released before the external reset is released.). - <3> The TOOL0 pin is set to the high level. - <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting. **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period. tsu: Time to release the external reset after the TOOL0 pin is set to the low level thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) ## 4.9 48-pin Products R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GHGFB, R5F10 | Γ | JEITA Package Code | RENESAS Code | Previous Code | MASS (TYP.) | [g] | |-----|--------------------|--------------|----------------|--------------------------|--| | | P-LFQFP48-7x7-0.50 | PLQP0048KF-A | P48GA-50-8EU-1 | 0.16 | | | | HD— 36 37 | 25 24 | F HE | detail of I | c — L Lp | | | 48 | 13 | | | (UNIT:mm) | | | .1 | 12. | ļ | ITEM | DIMENSIONS | | | | | | D | 7.00±0.20 | | -ZE | | | | E | 7.00±0.20 | | | | , w w u u | <u>V_</u> | HD | 9.00±0.20 | | | | | | | | | _ | 70 | | | HE | 9.00±0.20 | | | ZD | е | | А | 1.60 MAX. | | | | | | A
A1 | 1.60 MAX.
0.10±0.05 | | | | | А¬ | A
A1
A2 | 1.60 MAX.
0.10±0.05
1.40±0.05 | | | | | A7
A2 ¬ | A
A1
A2
A3 | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25 | | | | | | A A1 A2 A3 b | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25
0.22±0.05 | | | | | | A A1 A2 A3 b | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25 | | | | | | A A1 A2 A3 b | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25
0.22±0.05
0.145 +0.055
0.50 | | (C | | | | A A1 A2 A3 b C L Lp | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25
0.22±0.05
0.145+0.055
0.50
0.60±0.15 | | | | | | A A1 A2 A3 b c L Lp L1 | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25
0.22±0.05
0.145 +0.055
0.50
0.60±0.15
1.00±0.20 | | | - b () | | A2 7 | A A1 A2 A3 b C L Lp | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25
0.22±0.05
0.145+0.055
0.50
0.60±0.15 | | | | | | A A1 A2 A3 b c L Lp L1 | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25
0.22±0.05
0.145 +0.055
0.50
0.60±0.15
1.00±0.20 | | | - b () | | A2 7 | A A1 A2 A3 b c L Lp L1 θ | 1.60 MAX.
0.10±0.05
1.40±0.05
0.25
0.22±0.05
0.145 +0.055
0.50
0.60±0.15
1.00±0.20
3°+5°
-3° | © 2012 Renesas Electronics Corporation. All rights reserved. ZD ZE 0.75 0.75 Each lead centerline is located within 0.08 mm of its true position at maximum material condition. R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA, R5F100GKANA R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA | JEITA Package code | RENESAS code | Previous code | MASS(TYP.)[g] | |--------------------|--------------|---------------------------|---------------| | P-HWQFN48-7x7-0.50 | PWQN0048KB-A | 48PJN-A
P48K8-50-5B4-6 | 0.13 | | Referance | Dimens | Dimension in Millimeters | | | | | | |----------------|--------|--------------------------|------|--|--|--|--| | Symbol | Min | Nom | Max | | | | | | D | 6.95 | 7.00 | 7.05 | | | | | | Е | 6.95 | 7.00 | 7.05 | | | | | | А | | | 0.80 | | | | | | A ₁ | 0.00 | | | | | | | | b | 0.18 | 0.25 | 0.30 | | | | | | е | | 0.50 | | | | | | | Lp | 0.30 | 0.40 | 0.50 | | | | | | Х | | | 0.05 | | | | | | у | | | 0.05 | | | | | | Z _D | | 0.75 | | | | | | | Z _E | | 0.75 | | | | | | | C ₂ | 0.15 | 0.20 | 0.25 | | | | | | D ₂ | | 5.50 | | | | | | | E ₂ | _ | 5.50 | _ | | | | | ©2013 Renesas Electronics Corporation. All rights reserved.